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Linear-programming method for obtaining efFective cluster interactions in alloys
from total-energy calculations: Application to the fcc Pd-V system
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We developed a method for obtaining effective cluster interactions in substitutional binary alloys from

first-principles total-energy calculations. The method reproduces not only the formation energies, but

also the ground-state line and relative energies of different structures. These quantities are crucial if the

energy parametrization is to be used to compute the temperature-composition phase diagram of the alloy

system. We applied the method to the Pd-V alloys, and obtained insight into the energetics of this corn-

plex alloy system. We showed that pair cluster interactions of long range (seventh or eighth nearest

neighbor) are necessary to reproduce the ground-state line of the fcc Pd-rich superstructures.

I. INTRODUCTION

The ability to predict thermodynamic properties of
multicomponent materials from first principles is an im-
portant step towards the understanding of phase stability
in alloys. Because the electronic, vibrational, and
configurational degrees of freedom in an alloy occur on
very different time scales, the most successful approach in
aHoy theory has been to progresssively integrate out the
excitations occurring on the smallest time scales. ' After
this process, only the relevant variables needed to charac-
terize the system are retained. The Born-Oppenheimer
approximation is generally accepted to be valid for re-
moving the electronic degrees of freedom, by assigning a
well-defined electronic (free) energy to every atomic
configuration. Recently, we also showed that, by coarse
graining the alloy partition function over all the vibra-
tional states for a given substitutional state, the total free
energy of an alloy can be obtained in the phase space of a
lattice model. Most of the emphasis in alloy theory has
therefore been on the description of the energetics of sub-
stitutional states. In this paper, we propose a method to
obtain an accurate configurational energy parametriza-
tion for substitutional alloys from first-principles total-
energy calculations.

The dependence of the energy on the configurational
state in a substitutional alloy can be described with a
cluster expansion. Given a lattice of all atomic sites, the
occupancy of site i can be labeled with a spinlike variable
o, [o;=+1(—1) when an A(B) atom sits on site i]
The configuration of a substitutional binary alloy with N
sites can then be described with a vector [oj of N com-
ponents. The energy can be expressed as

E([oJ)=g m V (cr ),
where (o ) are the lattice averages of the cluster func-
tions, defined as the product of the spin variables on the
cluster a of lattice points, V are the effective cluster in-
teractions (ECI), m is the number of clusters of type a
per lattice site, and the sum is over all possible clusters u

of lattice sites. The practical extension of the cluster ex-
pansion to ternary systems ' and certain quaternary sys-
tems has been shown recently. Sanchez, Ducastelle, and
Gratias proved that the expansion (1) is formally exact
due to the fact that the cluster functions form a complete
basis in the space of functions of configuration. %'hen
the energy of the alloy is mainly determined by the local
environments (as is the case in metal alloys), the cluster
expansion can be truncated, and a few pair and multisite
interactions of short range are enough to parametrize the
energy with enough accuracy. Then, the description of
the energy of any of the 2 configurational states of the
alloy is reduced to the knowledge of a few ECI. These
ECI can then be used to find the ground states of the sys-
tem and to compute its phase diagram. Throughout this
paper, the energy of an ordered structure computed with
the total-energy method is going to be referred to as the
direct energy, while the value obtained with the cluster
expansion is going to be referred to as the cluster expand-
ed energy. The challenge is, of course, to obtain an accu-
rate energy parametrization, in which the features of the
direct energies are well reproduced by the cluster expand-
ed energies.

At least three approaches have been used in the past to
compute the ECI. The Connolly-Williams (CW) method
takes advantage of the fact that if a few ECI are enough
to parametrize the energy, then their values can be deter-
mined by fitting a truncated form of (1) to the direct ener-

gy of a small set of ordered structures. In its first formu-
lation, the CW method consisted in fitting the values of
n ECI to the direct energy of n ordered arrangements on
the lattice. These direct energies can, for example, be
computed from first principles within the local density
approximation. Subsequent improvements used more
ordered structures than ECI, and through a least-squares
fit obtained a more stable set of ECI, avoiding the some-
times ill-conditioned inversions. When considering a set
of p ordered structure with direct energies E.,
j= 1, . . . ,p, the n ECI (n ~p) are obtained by solving

n

w E —g m V (cr ) . =minimum, (2)
j=1 a=1
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where w is the weight assigned to the jth structure. Be-J
cause the cluster expansion requires only a one-to-one
correspondence between atomic positions and lattice
sites, it can also model configurations where the atoms re-
lax away from their ideal lattice sites. In the CW
method, the effect on the energy of the atomic relaxations
is taken into account by relaxing the geometry of the or-
dered structures used in the fit. In some systems, strong
elastic effects lead to a slow convergence of the cluster ex-
pansion. To deal with this convergence problem, the CW
method has been further improved by considering long-
range pair interactions in k space, effectively allowing
for infinite-range pair ECI.

The direct configurational averaging method uses re-
cursion techniques to compute the local density of states
and the ECI through a real sj~ace average, usually in the
tight-binding approximation. ' In this method, the ECI
are computed one at a time, using their definition. At its
present stage, the method does not take atomic relaxa-
tions into account.

Finally, the coherent potential approximation can be
used to describe the disordered system by an effective
medium and the ECI are obtained perturbing this
effective medium. " Although this method has been able
to predict general trends, its ability to include atomic re-
laxations has not yet been proven.

Because atomic relaxations can play a very important
role in determining the phase stability of an alloy sys-
tem, the CW method has gained popularity (of the three
methods described above, CW is the only one that takes
the effect of atomic relaxations into account). Although
now widely applied, the least-squares fitting procedure
used in the CW method to extract the value of the ECI
from the direct energies of ordered structures has the fol-
lowing serious limitations: (i) The CW method only fits
the ECI to the absolute direct formation energies of or-
dered structures. However, ground-state and phase-
diagram predictions depend on subtle differences in direct
formation energies of different ordered structures. (ii)
The CW method does not necessarily reproduce the rela-
tive stability of the input structures one fits to (see, for ex-
ample, Ref. 12). This may cause structures that were
metastable with the direct energy calculation to become
stable with the cluster expansion. These structures would

I

be present in a phase diagram computed with the cluster
expansion, whereas it is clear from the direct energy cal-
culation that they should not be. (iii) The CW method is
incapable of determining what truncation of the cluster
expansion is needed to reproduce the desired features of
the direct formation energies of the system.

The method we have developed overcomes the limita-
tions of the CW method mentioned above. The philoso-
phy of the method is to reproduce not only the direct for-
mation energies, but also the ground states and relative
values of the direct formation energies of a set of ordered
structures. The new method only warrants that none of
the rnetastable structures included in the fit wi11 become
ground states when their energies are computed with the
cluster expansion. However, other structures not includ-
ed in the fit may be ground states of the system. In the
rest of this paper, we describe the new method, and then
apply it to the study of the energetics of the Pd-V system.

II. DETERMINING THK EFFECTIVE
CLUSTER INTERACTIONS

As in the regular CW method, the input quantities are
the direct energies of a set of p ordered structures of A
and B atoms arranged on a common parent lattice
(EJ.,j= 1, . . . ,p). Each direct energy is assigned an error
bar hj, i.e., E +5 .. This error bar can be determined ei-
ther by the error of the method used to obtain the direct
energy or by the maximum error accepted in the cluster
expanded energy. The method also needs information
about the ground-state line as obtained from the total-
energy method, and relative direct formation energies of
different structures that we wish the cluster expansion to
reproduce. Each segment of the direct ground-state line
is characterized by the two ordered ground-state struc-
tures at the ends of the segment and their energy. Final-
ly, from the description of the unit cell of each ordered
structure, the lattice averages of the cluster functions are
easily computed ((o ), j= l, . . . ,p, a=empty cluster,
point cluster, pairs, multiplets).

With the truncation of the cluster expansion symbol-
ized by e,„, we impose the following constraints on the
ECI:

max

g m V (o. ) ~E+6. , j=l, . . . ,p, (3a)

max

g m V (o. )1 ~EJ.—b,), j= 1, . . . ,p, (3b)

max

(3c)

Equations (3a) and (3b) require that the cluster expand-
ed energies be within the error bars of the direct energies.
Equation (3c) imposes the linear constraints to reproduce
the a bsegment of the dire-ct ground-state line. (o., )~ is

I

the lattice average of the point cluster function, related to
the concentration through ( o.

i ) . =2c —1, and e is a
small number (smaller than the energy differences in-
volved in the problem). Other constraints can be added
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TABLE I. Formation energies of ordered structures in the Pd-V fcc system, as computed with the
LMTO-ASA method (see text for details). Kn structures refer to the nth structure in Ref. 22 and Gn
structures refer to possible ground-state structures reported in Ref. 23. The other structures are
identified by either their prototype structure, their Strukturbericht notation, or a conventional name.
For some structures, alternative names are shown. All the formation energies are in meV/atom. The
composition is expressed by the chemical formula of the structure. The fourth column contains the
reference number where a picture of the structure can be found.

Struc.

CuPt
A~B2
MoPt2
DO»
L12
Ni4Mo =K15
W8= K13
Pt8Ti =K4
W1
K8
K12
K21
K29
K33
A5B
G3b
G4b
G4e
G6a
G6c
G6e

Energy

—240.2
—242.6
—394.1
—349.7
—281.8
—270.7
—236.6
—192.9
—348.3
—158.6
—250.5
—314.8
—328.2
—292.3
—230.6
—308.0
—259.8
—253.2
—293.0
—306.6
—203.7

Comp.

Pdv
PdV
Pd2V
Pd3V
Pd3V
Pd4V
Pd5V
PdHV

Pd5V3
Pd7V
Pd5V
Pd2V
PdqV3
Pd3V2
Pd5V
Pd2V
Pd3V
PdV
PdV
PdV
Pd2V

Ref.

11
11
11
11
11
22
18
22
18
22
22
22
22
22
11
23
23
23
23
23
23

Struc.

L1O
G4c =Z2
MoPt2
DO22
L12
Ni4Mo =K15
W8= K13
PtsTi =K4
W1
K9
K19
K22
K30
K42
G3a
G4a
G4d
G5a
G6b
G6d
G6f

Energy

—364.9
—314.3
—179.8
—199.6
—201.4
—157.8
—145.5
—98.2

—289.3
—197.9
—344.0
—304.1
—331.1
—205.3
—239.0
—236.3
—194.6
—322.6
—206.0
—249.6
—250.4

Comp.

PdV
PdV
Pdv2
PdV3
PdV3
PdV4
PdV5
PdVS
Pd3V5
Pd7V
Pd5V2
Pd2V
PdqV3
Pd2V
Pd2V
Pd3V
Pdv
Pd3V2
Pd5V
Pd, v
PdqV

Ref.

11
23
11
11
22
22
18
22
18
22
22
22
22
22
23
23
23
23
23
23
23

to require that relative stabilities of ordered structures be
reproduced in the cluster expansion. Equations (3a)—(3c)
are linear inequalities in the space of ECI, and can there-
fore be solved using any standard linear programming
technique. ' If the linear programming problem has a
feasible solution in the space of ECI, then the cluster ex-
pansion with these ECI reproduces the required proper-
ties of the direct formation energies. If the volume of the
polyhedron of feasible points is large, some of the con-
straints can be tightened to produce a better energy pa-
rametrization. If there is no feasible point, the truncation
of the cluster expansion did not include enough terms to
reproduce the direct energies. Then, we have two alter-
natives: (i) relax the constraints (increase the error bars or
take out segments of the ground-state line), or (ii) include
more ECI and look for a feasible point in the new space
of interactions. Both of these alternatives can be carried
out automatically by a computer program. One of the
strengths of this method is, therefore, that it exactly
recognizes whether a given truncation of the cluster ex-
pansion can reproduce the desired features of the direct
formation energies.

The most important features of the substitutional exci-
tation spectrum of the stable phases are determined by
the distance of other metastable ordered structures to the
ground line in the energy-composition plane. For meta-
stable structures that are close to the direct ground-state
line, a small relative error in the formation energy could
imply a big relative error in its distance to the ground-

state line, greatly altering the free energies of the stable
phases and, therefore, the phase diagram. By requiring
that the cluster expansion reproduce these distances, this
problem can be avoided and a better description of the
energetics of the system can be obtained. This can be
done in the present method by introducing linear con-
straints of the form

2
-100

-200

o -300

0
-400 MoPt2

0.25 0.5
Atomic fraction of V

I

0.75

FIG. 1. Direct formation energies of the 42 ordered struc-
tures computed with the LMTO-ASA method. The ground-
state line is shown and the ground-state structures on the Pd-
rich side are labeled with their prototype structure (Pt8Ti and
MoPt2) or Strukturbericht notation (DO» and L 10).
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FIG. 2. Effective cluster in-
teractions for the Pd-V system
computed with the new method.
The pairs are indicated with the
shell number and pictures of the
multiplets are shown by their
ECI.
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&o, )b —&o, &.
(4)

where EE is the direct energy difFerence between struc-
ture j and the a-b ground-state tieline at the same compo-
sition, and 5- is the error bar assigned to this quantity.

III. APPLICATIONS: ENERGETICS
OF THE PD-V SYSTEM

To illustrate the method, we studied the Pd-V substitu-
t l lloys on the fcc lattice. Much work has been re-iona a oy

14—20cently reported on this alloy system. Part of the
theoretical interest in Pd-V alloys was motivated by a
study indicating that relatively long-range interactions
are needed to describe the energetics of the ordering pro-
cesses. ' Since we are studying the energy of substitu-
tional arrangements on the fcc lattice, our studies are
relevant for the Pd-rich concentrations of the system. On
the V-rich side of the phase diagram, the stable phases
are not based on the fcc lattice. We computed the
formation energies of 42 ordered structures using the
linear muon-tin orbital —atomic-sphere approximation
(LMTO-ASA) method. ' The calculations were self-
consistent and semirelativistic. We used equal atomic
sphere radii for Pd and V, "combined corrections" to t e
ASA, and 17 points in the Brillouin zone for k-space in-
tegrations. The von Barth —Hedin form for the exchange
and correlation potential was used. In these calculations,
only global volume relaxations are taken into account.
The size mismatch between Pd and V is only 3%, so the
efFect of other relaxations is expected to be small. Of the
42 structures, 18 coincide with the ones studied by Wol-
verton and Zunger' using similar techniques. The for-
mation energies for these structures differ from the ones

o -100 '.
crt

-200

-300
C
O

-4OO-
O l4Mo

---Ef

-500
0.1 0.2 0.3 0.4

Atomic fraction of V
0.5 0.6

FIG. 3. Ground-state line on the Pd-rich side of the Pd-V
system. The cluster expansion obtained with the new method
reproduces the LMTO results, while the CW method produces
two extra ground states ( A &8 and Ni4Mo) that are only meta-
stable in the LMTO results. The curves obtained with the new
method and with the CW method have been shifted down by 50
and 100 meV/atom, respectively, for clarity.

I

in Ref. 19 by less than 4 meV/atom, except for Wl
(Pd~V3) and Wl (Pd3V5), for which the differences are
13.5 and —6.5 meV/atom, respectively. The energies of
the other 24 structures have not been reported before, to
our knowledge. The formation energies are shown in
Table I and Fig. 1. Figures of the unit cells of these
structures can be found in Refs. 11, 18, 22, and 23. Since
we are interested in the energetics of Pd-rich
configurations, we chose more structures on this side of
the system.
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We first apply the method to find a suitable truncation
of the cluster expansion that can reproduce the direct
LMTO-ASA ground-state line. The ground-state struc-
tures, as obtained with the LMTO-ASA method, in the
Pd-rich part of the system are fcc Pd, Pt8Ti-type, 0022,
MoPt2-type, and L lo (see Fig. 1). It is important to stress
that we are not making use of the values of the direct for-
mation energies in this stage. We are only asking what
truncation of the cluster expansion can give the desired
ground-state line. We find that the direct ground-state
line cannot be reproduced with the ECI used for this sys-
tern in the past. ' These include pairs up to the fourth
nearest neighbor, four triplets, and two quadruplets. By
adding pair ECI, the direct ground-state line can be
reproduced only when the seventh or eighth nearest
neighbor is included. This result could not have been ob-
tained with the CW method.

We decided to truncate the cluster expansion at the
11th nearest-neighbor distance, including five triplets and
three quadruplets, for a total of 20 ECI (there are two
ninth nearest neighbors not related by symmetry). The
empty and point ECI are determined by requiring that
the formation energies of fcc Pd and fcc V be zero. The
set of 20 ECI is fitted imposing the following linear con-
straints: (i) the cluster expanded formation energies of the
ground-state structures in the Pd-rich side should be
within 15 meV/atom of the LMTO values; (ii) the
ground-state line as predicted by the LMTO results on
the Pd-rich side should be reproduced by the cluster ex-
pansion; (iii) the direct energy differences between the
Pd-rich structures and the ground-state line should be
well reproduced by the cluster expansion when this
difference is relatively small; and (iv) the formation ener-

gy of the V-rich structures should be reproduced within
50 meV/atom. The resulting values for the ECI are

shown in Fig. 2. These ECI capture the essential features
of the energetics of the Pd-V system. Although the pair
ECI decay with distance, the eight nearest-neighbor ECI
is rather large. Our linear programming technique gives
clear evidence that this is necessary to reproduce the
LMTO ground-state line. Figure 3 shows that this set of
ECI indeed reproduces the ground-state structures ob-
tained with the LMTO method. The energy differences
between the metastable Pd-rich structures and the
ground-state line are shown in Fig. 4. It can be seen that
the important low-lying structures are better fitted than
the high-energy ones.

For comparison, we also used the CW method to fit the
same set of ECI. Even with the 20 ECI used, the CW
method failed to reproduce the ground-state line. Three
of the structures (Ni4Mo, 35B, and K12) that were above
the ground-state line in the direct LMTO results, were
"pushed" below the ground-state line by the CW cluster
expansion. Of course, a better CW fit could be obtained
by adjusting the weights of the different structures in the
least-squares fit [see Eq. (2)]. However, in the CW
method, there is no systematic way of achieving this, and
even more important, no a priori knowledge that a good
fit is possible. The CW results are compared to the ones
obtained with the new method in Figs. 3 and 4. Since the
Ni4Mo and A5B structures are ground states of the CW
energy parametrization, they would be stable phases in a
phase diagram computed with these ECI, contrary to
what the LMTO computations predict. The stability of
the Ni4Mo and A 58 phases, and a relatively poor fit to
the low-energy metastable structures would greatly affect
the topology of the phase diagram. This problem is natu-
rally avoided in the new method, requiring that the direct
ground-state line and the direct energies of structures
close to it be well reproduced by the cluster expansion.
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0:ya am'la ~ ~ uu aa

LMTO-ASA
new method

LMTO-AS A
CW method

H

UH
V H

H

FIG. 4. Energy differences between the Pd-
rich structures and the tielines defined by the
sequence fcc-Pd, Pt8Ti-type, DO», MoPt&-

type, and L10. On the abscissa, the Pd-rich
structures are ordered in increasing distance to
the tielines as obtained with the LMTO
method. For the LMTO results and the energy
parametrization of the new method these tie-
lines define the ground-state line, and all the
energy differences are positive. The energy pa-
rametrization obtained with the proposed
method reproduces the ground states and fits
the structures with energies close to the
ground-state line better than structures with
high energy. The CW results fail to reproduce
the ground states (negative points in this plot}
and the fits to the low-energy structures are
worse than the ones obtained with the pro-
posed method, while the high-energy struc-
tures are well reproduced.

Structures (see caption)
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Before using a cluster expansion (obtained with either
the CW method or the new method) to compute the
phase diagram of an alloy system, the ground states of
the system should be computed with the same cluster ex-
pansion. If any of the ground-state structures is not
within the set of structures used to derive the ECI, its
cluster expanded energy should be checked against the
direct energy method. If it is not a ground state in the
direct energy method or if its energy is badly reproduced
by the cluster expansion, the ECI should be recomputed
including this structure in the set of structures the cluster
expansion is fitted to.

IV. CONCLUSIONS

The proposed method to get ECI from the direct for-
mation energies of ordered structures overcomes the limi-
tations of the Connolly-Williams approach by taking into
account the relative stabilities of different structures and
the ground-state line of the alloy system. These relative
energies can have a strong effect on the predicted phase
diagram of the alloy system, especially for ordering sys-

tems with many structures close to or on the ground-state
line. By applying the method to the Pd-V alloy system,
we found that relatively long-range interactions (seventh
or eighth nearest-neighbor pairs) are needed to reproduce
the ground-state line obtained with the LMTO-ASA
method. By truncating the cluster expansion at the 11th
nearest-neighbor distance, we found a set of ECI that
reproduces most of the subtle energy differences in the
Pd-V system. The method can be easily extended to the
k-space formulation, and to volume-dependent ECI.
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