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The critical behavior of vortices in layered systems is studied. The vortex interactions that we use ap-
proximate those of vortices in a layered superconductor. We do a mathematically rigorous, real-space
renormalization-group study on our model to derive the recursion relations. Terms not found by other
studies on layered systems have been derived. It is found that one of the new terms contributes to layer
decoupling just above the transition temperature, behavior which is consistent with Monte Carlo studies
of this system. By analylzing the correlation length, we are able to study the dependence of the transi-
tion temperature and of the size of the three-dimensional (3D) critical region on the strength of the inter-
layer coupling. The size of the 3D critical region above the transition is found to depend on the inter-
layer coupling in a way which is different than that predicted by others. We study our results in the con-
text of the high-temperature superconductors and find that they are in good accord with experiments on
these materials.

I. INTRODUCTION

The effect of vortex fluctuations on the interlayer
Josephson coupling and on the critical behavior of lay-
ered superconductors [such as the high-temperature su-
perconductors (HTSC's)] has been under intense scrutiny.
At issue is the effect of the coupling on the dimensionali-
ty of the critical behavior of vortices in these systems.
The majority of theoretical studies predict a three-
dimensional (3D) transition, whereas electronic transport
experiments consistently observe two-dimensional (2D)
signatures. In Monte Carlo studies on the other hand, it
is found that the layers become decoupled just above the
transition, thereby making the system 2D. These studies
seem to help explain the discrepancy between theory and
experiment and are part of a growing body of evidence
that vortex Auctuations tend to decouple the layers near
the transition. The case for this scenario was
strengthened greatly by recent theoretical studies, '
which confirmed that the interlayer coupling is renormal-
ized to zero just above the transition due to the screening
effect of vortices.

The new findings call for a modification of the conven-
tional wisdom regarding the critical behavior of vortices
in layered systems, an intuitive understanding of which
can be achieved by considering the correlation length.
As the reader knows, the correlation length diverges at
the critical temperature T, . When the correlation length
is smaller than the distance separating the layers, 2D
behavior of the vortices is expected. When the correla-
tion length becomes larger than the interlayer separation,
the behavior should be 3D. Since the latter condition is
met as the correlation length diverges near the transition,
3D behavior is expected in a small temperature window
around T, . Outside of this window, the layers are expect-
ed to be uncoupled. Incorporating the effect of vortex
Auctuations on this scenario, we will show that the inter-
layer coupling shrinks to zero more quickly, thereby
making the size of the 3D temperature window above T,

smaller than in the conventional picture.
The study of layered systems and their critical

behavior has received constant attention since the
discovery of the HTSC's. Nevertheless, their study goes
back much further. The earliest work ' on layered sys-
tems was being done at the same time that Kosterlitz,
Thouless, and Berezinskii (KTB) were considering the
critical behavior of purely 2D systems and the effect of
vortices. While the early, layered system studies ' did
not consider the effects of vortices, they were instrumen-
tal in establishing the presence of long-range order,
which Mermin had shown to be absent in two dimen-
sions.

The effect of vortices on the critical behavior of layered
systems was considered by Hikami and Tsuneto. ' In
their work, which is based on a phenomenological argu-
ment and which is in agreement with the intuitive picture
described above, they estimated the dependence of the
size of the 3D temperature window and of the transition
temperature on the interlayer coupling strength. More
rigorous theoretical studies, " ' which are in agreement
with this general picture, have been done since the
discovery of the HTSC's. One such study" was a
momentum-space renormalization-group (RG) study that
was done on a sine-Gordon-like Hamiltonian. ' In Ref.
12 an iterated mean-field approximation of the dielectric
function is used to determine the recursion relations. In
the RG study of Ref. 13, the integration of the recursion
relations was extended into the 3D region by considering
the scaling of vortex loops in the 3D XY model. While
all of these studies were consistent in their findings of 3D
behavior near the transition, none considered the efFect of
vortex fluctuations on the interlayer coupling.

The first indications of layer decoupling and the irnpor-
tance of the vortex Auctuations came from Monte Carlo
studies. ' ' In these studies, it was found' that the vor-
tex interactions became essentially 2D just above the
transition. It was suggested by those authors that the
vortex Quctuations were responsible for this behavior.
The effect of vortex fluctuations has also been considered
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in an analytical study. ' It was found that vortex fluctua-
tions can weaken the interlayer coupling for temperatures
much lower than the critical temperature. As those au-
thors point out, a consistent RG approach is needed to
extend these results to the critical region.

The nature of the vortices and their interactions was
one of the first major thrusts after the discovery of the
HTSC's. The model upon which these studies were based
is the Lawrence-Doniach system' in which the supercon-
ducting layers are coupled to one another via Josephson
coupling. The effect of the Josephson coupling on the in-
terlayer vortex interactions was studied by Cataudella
and Minnhagen, who found a minimal correction to the
interactions for small separations and a linear term that
dominates at large separations. The work has since been
extended ' to the interactions between vortices in neigh-
boring layers. In the absence of the Josephson coupling
the vortices interact logarithmically ' due to the elec-
trornagnetic coupling as they do in a strictly 2D system.

Of course, vortex fluctuations are only part of the story
in layered superconductors. Another type of topologi-
cal excitation, which is a close relative of the vortex
fluctuation, is the fluxon. Friedel pointed out that a vor-
tex loop whose core lies parallel to the layers (i.e., entirely
between the layers) is also possible and is energetically
favorable, since its normal core lies entirely in the insulat-
ing region separating the layers. He conjectured that
such excitations, called fluxons, could drive a transition
causing the layers to become decoupled. Further stud-
ies, however, showed the transition to be 3D. In this
paper we will not deal with the effeet of fluxons. Another
type of excitation receiving considerable study are vortex
loops, which cut through the layers. These excitations
are expected to be most dominant in the 3D temperature
window, where the interlayer coupling is strong. As we
will discuss below, this is expected to happen very close
to the transition. The applicability of our model to the
vortex loops will be discussed below.

Having reviewed the theoretical background to this
work, we will now briefly describe the experimental work
that has been done to study the effect of vortices. The
behavior of vortices in 2D superconductors near the tran-

I

sition is well described by KTB theory and is character-
ized by an unbinding of pairs of vortices of opposite vor-
ticity. Signatures of the KTB transition have been ob-
served in electrical transport measurements on several
types of HTSC's. ' Yet, there has been no evidence of
3D behavior in these measurements. There is a more
recent study on BizSrzCaCuz08 g in the presence of a
finite current, which suggests that the layers decouple at
a temperature slightly higher than a temperature at
which there is evidence of unbinding. So while evidence
of the presence of KTB behavior in the HTSC's has long
been established, only recently has there been experimen-
tal evidence of layer decoupling, and there remain many
questions about why the 2D signatures are predominant.

In this work, we study a model for vortex fluctuations
in a layered system based on two-body interactions,
which approximate those of vortices in a layered super-
conductor. A mathematically rigorous real-space RG
study is performed on this model to find the recursion re-
lations. The recursion relations are analyzed to find the
size of the 3D critical region and the critical temperature
as functions of the interlayer coupling. It is found that
the vortex fluctuations do renormalize the interlayer cou-
pling to zero just above the transition and that the 3D
critical region is substantially smaller above T, than
below. Finally, we address how our results may explain
the prevalence of 2D signatures.

This paper is organized as follows. In See. II, we de-
scribe our model for vortex fluctuations in a layered sys-
tern. In Sec. III, we derive and explain the recursion rela-
tions for this model. In See. IV, we analyze the recursion
relations and discuss the results. Our conclusions are
presented in Sec. V.

II. MODEL FOR A LAYERED VORTEX GAS

In this section we will explain our model for vortex
fluctuations in a layered system. As we mentioned in Sec.
I, the bare interactions between vortices in a layered su-
perconductor are well studied. The intralayer and inter-
layer ' vortex interactions [V(R,O) and V(R, 1), respec-
tively] can be summarized as follows:

—ln(R/r)+(A, R /4r ) ln(A, R /r ), r (R(((R&
V(R, O)= '

(~&kR /r+2),—R»R~, (2.1)

AR '/r' 1n(A,R '/r'), —R «R,
V(R, 1)~ '

VAR/r, R»R, ,
(2.2)

where A, is the ratio of interlayer coupling to intralayer coupling, R&=r/VA, is an interlayer length scale, V(R, 1) is
written in units of the intralayer interaction strength, R is the in-plane separation, I is the number of layers separating
the vortices, and V(R, O) smoothly approaches zero as R —+0. r is an in-plane ultraviolet cutofF, which we will take to
be the core size of the vortex. The origin of the linear dependence in the interactions is the Josephson coupling between
the layers and can be thought of as the energy of a flux line connecting two vortices, i.e., Josephson vortex loops. ' For
more details about the interactions of vortices in layered superconduetors, we refer the reader to the literature.

Given that the vortices interactions are known, it is natural to treat the system of vortices as a gas of charged parti-
cles. The scheme of our model is depicted in Fig. 1(a), where we show vortices located throughout a layered system. A
vortex with positive (negative) vorticity will be treated as a positive (negative) charge. We will consider only thermally
induced vortices, implying that the total vorticity of the system must be zero. The grand partition function' for our
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layered, neutral gas of charges is

2+ 1 2 2Z=gy g f d r, g f d rz. . g f d r2&exp ——gp~p~V(~r; —r
~ l; —l )

1 2 2N

(2.3)

D, = A —g d, (j)5 ii
j&i

(2.4)

where 3 is the area of the layer.
For the vortex interactions, we approximate Eqs. (2.1)

and (2.2) by

V(R, O) = —ln(R /r) —&A,(R r)/r—,

V(R, 1)=b&AR /r,
(2.5)

(2.6)

where X is the ratio of the interlayer coupling to the in-
tralayer coupling p and is assumed to be sma11. The in-
tralayer interaction term Eq. (2.5), which neglects the
small-R Josephson correction, has been shown' "to be a
good approximation for the intralayer interactions of vor-

(a)

FIG. 1. (a) An illustration of our model, where vortices are
located throughout a stack of layers and interact with each oth-
er if they are in the same layer or in neighboring layers. (b) The
region over which the integrals in our model and our RG study
are done. All but the solid disks represent the area D;, Eq. (2.4).
The shaded region represents the annuli in Eq. (A1). L is the
width of the layer, which we take to be infinite.

where 2% is the total number of particles, X of which
have a positive (negative) charge p;=+p(p, . = —p), and
(r;, l; ) are the coordinates of the ith charge corresponding
to the in-plane coordinates r and the lth layer.
P '=kiiT, where T is the temperature and kii is the
Boltzmann constant. y =exp(Pp ) /r is the fugacity,
where p= E, an—d E, is the "core energy. " V(R, l) is
the interaction between two vortices expressed in the
units p . The integrals are over an area D; which is all of
the layer I,. except for disks d;(j) of radius r around the
charges j &i, which lie in the same layer. The area D, is
illustrated in Fig. 1(b) and can be written

tices in layered superconductors. The effect of the small-
R interaction on the renormalization of the interaction
strengths, A, and p, has been found to be insignificant
and so will be neglected to keep the calculation tractable.
The effect of the small-R intralayer interaction does,
however, affect the renormalization of the fugacity in an
important way and will be included there. The constant
&k has been added to Eq. (2.5) to be consistent with the
definition of E, (which inust be one half the energy of an
intralayer vortex pair at smallest separation). The inter-
layer interaction, Eq. (2.6), approximates the short-range
interaction by the long-range interaction of vortices in a
layered superconductor. Interactions between vortices
separated by more than one layer (l ~2) are very small
relative to the intralayer and interlayer interactions and
will be neglected.

This model emphasizes the 2D aspect of the problem.
This approach is justified for two reasons, the first of
which can be seen in terms of crossover and RG
behavior. In our problem, the critical behavior crosses
over from 2D (KTB) behavior away from the critical
temperature to 3D (anisotropic 3D X-Y model) behavior
near the critical temperature. This phenomenon is
termed crossover behavior. In terms of RG terminology,
the RG fiows (which are determined by integrating the
recursion relations) are first controlled by one fixed point,
which characterizes the critical behavior and then, under
the inAuence of a "relevant" parameter, How to a second
fixed point, which determines the ultimate critical
behavior. In our case, the first fixed point is that of the
KTB model and the second is the 3D system, and the
new parameter is the interlayer coupling. In RG theory
it has been shown that one can determine the depen-
dence of the size of the critical region controlled by the
second fixed point and of the critical temperature on the
new parameter by the recursion relations in the vicinity
of the first fixed point. Therefore, finding the first-order
corrections of the KTB relations due to the interlayer
coupling will enable us to study these two quantities, the
size of the 3D critical region, and the critical tempera-
ture.

The second reason for which the 2D approach is
justified involves how one addresses the 3D aspect of the
problem. In Ref. 13, the behavior of the system was ex-
amined by considering the scaling of vortex loops. There,
the RG Aows are determined first by the 2D recursion re-
lations and then are "handed over'* to the 3D recursion
relations at a certain value of the interlayer coupling.
Plainly, a complete understanding of the 2D aspect of the
problem is very important because it is the behavior of
the two-dimensional recursion relations, which deter-
mines when to switch' to the 3D recursion relations.
Therefore, not only is it fruitful to understand the 2D re-
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cursion relations; it is also essential. Furthermore, it is
clear that our model is valid even into the 3D region,
where 3D vortex loops are the dominant excitation. This
is because the energy of a vortex loop of diameter a in
our model (which is found by summing the two-body in-
teractions) is a good approximation for the correct ener-

gy of the vortex loop, E,t=a lna. Equation (2.3) is ex-
pected to break down deep into the 3D region.

ty [see discussion after Eqs. (A20) —(A22)]. Equation
(3.3) is qualitatively similar to that derived for the single-
layer analog of our system. In that work, where vortices
interact with potential V(R, O), the recursion relation for

is derived by a phenomenological RG study of a
current conservation equation.

IV. RESULTS

III. RENORMALIZATION-GROUP STUDY

In this section, we will do a renormalization-group
analysis on Eq. (2.3) to derive the recursion relations for
this model. There are three principal steps in a RG
study. The first step is to integrate out the small scale
structure incorporating it into the parameters of the sys-
tem. This step makes the system appear larger. The
second step is to arrange the resulting terms into the
form of the original partition function so that one will be
able to identify the renormalized parameters of the sys-
tem. The final step is to rescale the lengths so that the
system is "shrunk" back to its original size. The iteration
of these steps allows one to study the fixed point and the
behavior of the system near it. This is because the RG
steps of integrating out small scale structure and rescal-
ing the lengths does not change the system parameters at
the fixed point where the correlation length has diverged
and where the system is scale invariant.

We have done a RG analysis on the partition function
Eq. (2.3) in Appendix A and have derived equations for
the renormalized parameters, Eqs. (A20) —(A22). Below
we write the equations in differential form,

dx/de=2y (1 —AA, )+O(y 1, ~ ),
dy/de=2y(x + —,'A, ink, )/(1+x)+O(xy A, ),
dA, /de=2k, [1—4y /(1+x)]+O(y A, ),

(3.1)

(3.2)

(3.3)

where @=in(r/go), x =4/(Pp ) —1, 3 = (1+6 )/32, and
where go is the zero-temperature correlation length.
Note that a factor of 2m' has been absorbed into y (see
Appendix A), and that, in the A, =O limit, our equations
reduce to the recursion relations of Kosterlitz. Because
A, is in both the intralayer and interlayer interaction, its
renormalized value appears in two di8'erent places [see
Eqs. (A17)—(A19)]. That both corrections lead to identi-
cal recursion relations for k demonstrates the robustness
of our results.

Our recursion relations, Eqs. (3.1)—(3.2), contain two
terms that recursion relations derived by others' ' for
the layered system do not have. In Eq. (3.1), we include
the lowest-order A, term. This term takes into account
the Josephson coupling on the renormalization of the in-
tralayer interaction strength. An even more important
term is —8Ay in the recursion relation for A.. This term
represents the effect of vortex Auctuations on the inter-
layer coupling. As we shall show in the next section, this
term plays an important role in the decoupling of the lay-
ers above T, . Our X correction to the recursion relation
for y differs from those references because we have incor-
porated the small R Josephson correction into the fugaci-

In this section, we analyze the recursion relations Eqs.
(3.1)—(3.3). We will begin with a qualitative discussion of
the recursion relations and of the results. These results
will be made more quantitative by examining the
behavior of the correlation length. We will study the
dependence of the size of the 3D critical region and of the
critical temperature on the strength of the interlayer cou-
pling. Finally, we will examine the critical behavior of
two related layered systems.

A. Analysis of the recursion relations

Better insight into Eqs. (3.1)—(3.3) is attained by know-
ing the origin of each of the terms. Any term that is of
0 (y ) originates from the first step of the RG process,
the averaging out of small-scale structure. This can be
seen by inspecting Eq. (A18), the last equation in the
coarse graining step of the RG analysis and the last equa-
tion before rescaling the lengths, where all the correc-
tions are of O(y ). A more intuitive understanding of
this is reached by recalling that the density of vortex
pairs is proportional to the square of the fugacity. There-
fore terms that depend upon y must be due to small vor-
tex pairs. The rest of the terms in the recursion relations
are due to the rescaling step.

In Eq. (3.1), the A, correction to the recursion relation
is due to the first step of the RG process and causes x to
grow more slowly. In other words it causes the intralayer
coupling to be weakened less rapidly. This is because in
the presence of the interlayer coupling the vortex pairs
are more tightly bound and therefore more resilient to
Auctuations. With x growing more slowly, y will not
grow as quickly and therefore fewer Aows will go to the
high-temperature limit. (Recall that the fiows for which
y~ ~ correspond to T & T„since the density of vortex
pairs is proportional to y .) As we shall see, this leads to
a larger transition temperature.

The A, correction to the recursion relation for y, Eq.
(3.1), is due to the rescaling step and, more specifically, to
the Josephson correction to the small R interaction. It
can be significant, since A, ink, can be of the same order as
x. Its effect is to make y grow more slowly, which means
that more Aows will go towards y =0, the same effect
that the A, correction has in the recursion relation for x.
This will be discussed further in the context of T, .

In the recursion relation for A, , the first term is due to
the rescaling step and makes A, grow. Counteracting this
is the second term, which is the effect of small pairs and
which weakens the interlayer coupling, as one would ex-
pect. For small y, the first effect wins out, and X grows.
For larger y, the latter term dominates, and A, gets small-
er. In RG parlance, k is a relevant parameter in one re-
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limy(e)=0 .
p~ oo

(4.1)

Given an x, , the values of y,. which satisfy the above
equations for our recursion relations, grow with increas-
ing values of A.;. Larger values of y; correspond to an in-
creased temperature and therefore a higher T, .

There are two reasons for which the transition temper-
ature increases, each being associated with either the A,

correction to the recursion relation for x or to the A,

correction the recursion relation for y. The first reason
involves Eq. (3.1). There are actually two A, corrections
to this recursion relation, one that does not depend upon
b and one that does. Because the b enters through the in-
terlayer interaction, the first correction refers to the in-
tralayer effect and the second to an interlayer effect. The
intralayer effect is due to the fact that the vortex pairs are
more strongly attracted with the Josephson coupling, and
therefore the binding of the vortex loop in the in-plane
direction is much stronger. The b term is present be-
cause the interlayer interaction serves to bind the vortex
pairs and loops even more strongly in the in-plane and
out-of-plane directions. For these reasons, the vortex ex-
citations will not unbind until temperatures greater than
the 2D transition temperature are attained. This explains
the origin of the two terms in Eq. (3.1) and wl.y they con-
tribute to a higher T, . The second reason for which T,
increases is associated with the recursion relation for the
fugacity, Eq. (3.2). In the presence of the Josephson cou-
pling, more energy is needed to create a vortex pair.
Therefore, higher temperatures are needed to generate
enough vortex pairs to cause an unbinding. This is the
reason for which the A, correction to the recursion rela-
tion for the fugacity contributes to a higher T, .

gime and irrelevant in another. This is reAected in Fig. 1

of Ref. 1, where we have plotted the RG flows for certain
initial values (denoted by subscript i) of x and A, and vari-
ous initial values of y. For small enough values of y;, the
Aows move towards y =0 and take off to a large value of

For larger values of y; the Aows follow approximately
the associated 2D Aows, never attaining a large value of A,

and ultimately moving toward the A, =O plane. The im-
plications are clear: because the Aows for which y —+0
correspond to T & T, and because X~1 for these Aows,
3D behavior is expected for a small temperature window
below the transition. The Aows for which y —+~ corre-
spond to T & T„and, because X~O for these Aows, one
expects that the layers become decoupled above T, . This
is in contrast to prior RG studies, " ' where A, —+1 as
y~ao. Our results are in accord with the Monte Carlo
studies and discussions of Minnhagen and Olsson. How
far above T, the layers become uncoupled will be dis-
cussed in more depth below.

The behavior of T, can be examined in light of the re-
lations (3.1) and (3.2). As we mentioned earlier, the effect
of the X term is to decrease the tendency of the Aows to
go to the high-temperature limit. This increases the low-
temperature parameter space, " which corresponds to a
higher transition temperature. A better understanding of
the behavior of T, is attained by taking the definition of
T, as the maximum T such that

In two dimensions, the renormalized interaction
strength, p, jumps discontinuously to zero at the transi-
tion. In the layered system, the size of this jump is
greatly reduced, although we cannot determine if it is
destroyed because its ultimate behavior is determined by
the 3D recursion relations. The origin of the reduction in
the size of the jump can be traced to the A, correction to
the recursion relation for y, which causes Aow to be
stopped at finite positive values of x. The behavior of this
quantity has been investigated more thoroughly in Refs. 2
and 13, although the latter reference does not take into
account the effect of the vortex Auctuations on the inter-
layer coupling.

B. Correlation length

We can make our observations more quantitative by
examining the correlation length. We will first review
how one derives the temperature dependence of the
correlation length from the recursion relations in the 2D
case. Using the first integral of the 2D recursion rela-
tions, y +2 ln(1+x) —2x =c =y,. +2 ln(1+x, ) —2x, , for
small x and y, one can derive the following equation by
integrating the recursion relation for x

x

—tan (4.2)
c c

=26

where c ~t =(T—Tzz )/Txz and Tzr is the 2D transi-
tion temperature. This equation defines x as a function of
e. One integrates the recursion relations until y =0 or
until the variables become so large that the recursion re-
lations are no longer valid. The value of e when the re-
cursion relations are stopped defines e „and in turn
x,„. Since e,„is related to a length scale, and since the
correlation length is the only length scale in the problem,
one makes the following association

e,„=in[('(T)lgo] . (4.3)

It is this equation that we will use to study the behavior
of the correlation length for finite A, , gi( T).

Using Eq. (4.3) with Eq. (4.2), one obtains the tempera-
ture dependence of the 2D correlation length

( T) —= /zan( T) exp(a+t ' ),
where a+ is a nonuniversal constant whose value for
T ) Tz& o.+, differs from that for T & Tzz-, a . In Fig.
2, we have plotted ln[gzri(T)lgoj, which we have deter-
mined by numerically integrating Eqs. (3.1)—(3.3) for
A., =0. For small x, , small y;, and A,; =0, we have verified
the temperature dependence of /zan(T). Note that gzri( T)
is defined below Tzz- and that it has the same tempera-
ture dependence in that regime as it does above the criti-
cal temperature. This length scale is related to the aver-
age size of a vortex pair, in contrast to the /zan(T ( Tzz. )

defined in Ref. 6, where the quantity is associated with
the susceptibility and is infinite. Note also that gzri(T)
tends to be much larger below the critical temperature
than above.

We have also calculated the correlation lengths for
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FIG. 3. The loogarithm of the correlation length for A, =O. O
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ratio of the interlayer coupling to the intralayer coupling k,„
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atter quantity is magnified by a factor of 8 for purposes of com-

parison. One can see that the quantity t, divides the regime
where A, ,„ is large and where it is small.

tegration of the recursion relations.
We have also studied the A, dependence of the size of

t e 3D critical region, which we identify as the tempera-
tures where the correlation length for finite A. is d'ff
than the 2D

r ni e is i erent
an e correlation length. Because the vortex Auc-

tuations are expected to affect the si f th''ze o is region more
above the transition temperature than below it, we

ifferentiate the 3D temperature window above T
from that ef that be.ow, ~3D. From inspection of Fig. 2, it is ap-
parent that ~3D tends to be larger than ~3D and that both
quantities get larger with increasin k Thg . e primary A.

dependence of ~3D is found to be

(4.5)r3D ~ 1/( Ink, )

This is the same A, dependence as t (A, ) d
'

an is in agree-
ment with Refs. 10 and 11. The result for ~3D, the size of

~ ~t e D critical region above T„ is more interesting. The
dominant A. dependence is found to be

+ ~ g1/4
3D (4.6)

This is a result contrary to what has been derived by pre-
vious studies. We attribute this unique behavior to the

e in er ayer coupling.e ect of vortex Quctuations on th
' t 1

quation (4.6) was found to hold over eight orders of
magnitude, while Eqs. (4.4) and (4.5) held over at least
twelve orders of magnitude. In the small window above

„where the correlation length for finite A, is different
than the 2D correlation length A, i 11

small. Wsmal . We believe then that in this region the system is
only weakly three dimensional, i.e., that the vortices are
wea y correlated in the direction perpendicular to the
layers and that vortex lines are not well defined. This is
in contrast to the 3D window below T„where k,„ is
arge and correlations between vortic

' ' '
gices in neig oring

layers are much stronger.
Thea '

anisotropy of the behavior above and below T isc

t, (A, ) ~ 1/( ink, )' . (4.4)

This is the same dependence found in Refs. 10 and 11. In
this equation (and the following two equations), A, corre-
sponds to the initial value of this quantity used in the in-

finite X and have plotted them in Fig. 2. The method we
use for determining this quantity is to fix x; and k at ccr-

c ~

tain starting points and then to numerically integrate the
recursion for various values of h' hy;, w ic correspond to
temperatures above and below T . W t he stop t e integra-

2 2 2
tion o t e recursion relations when ( ) ~ 10y e or when
x (e)+y (e)+X (e) ~ 1 and record the value of e, e
T is quantity is then plotted versus c ~ t—:T/Tzr l. —
This process is repeated for several values of A,;.

Several quantities can be determined b stud in
behavior ofof the correlation length for various values of A,
and comparing it with the 2D correlation len th. Th'

pp in Fig. 2. There is a temperature, larger than
the 2D transition temperature T (c =0),
corre ation length peaks and which seems to separate two
temperature regimes. We have studied the behavior of
the renormalized interlayer coupling A, ,„=A,(e )
around this tetemperature and have verified that it

max ~max

sma see Fig. 3). It is also the temperature that
separates small values of y =y ( ) f 1

of . B
max y ~max 1om arge values

o ym». Because one can derive the T, from the recur-
sion relations describing the behavior around the 2D
fixed point (see the discussion at the end of Sec. II), we
believe that T, should also be reAected in the correlation
lengt, and we will therefore relate th te emperature of

e pea with the transition temperature t, =—T /T
ofthes s

c c KT

with lar
y tern. One can see that t does inde dee increase

wi arger interlayer coupling, and we find the followin
dependence on A, :

e n e o owing
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quite evident in Eqs. (4.5) and (4.6). Not only is the A,

dependencies of the critical regions different but also the
size of the critical regions varies dramatically. There are
two reasons for this. One reason appears to be that the
correlation length below T, is much larger than that
above. This is the case in Fig. 2, and it is also the
scenario depicted in Fig. 7(a) of Ref. 38. The second
reason deals with the effect of vortex fluctuations. Not
only do these Auctuations cause the layers to become
decoupled at a temperature closer to T, than would be
the case if the fluctuations were not taken into account;
they cause the T, to be slightly lower than in that case.

The constants of proportionality in Eqs. (4.4) —(4.6)
cannot be determined with certainty in this analysis.
This is because they depend upon the cutoffs that one
uses in the integration of the recursion relations. Anoth-
er point is whether the anisotropy of the 2D correlation
length is due to our choice of cutoffs. When we adjust
the cutoffs so that the temperature dependence of the 2D
correlation length is isotropic around T~z, we find that
the relation $2D(t) ~exp(l/r'~2) no longer holds. We
therefore believe that the anisotropy of the 2D correla-
tion length is intrinsic. Furthermore, the relative sizes of
the 3D critical regions and the X dependencies of those
quantities and T, are not affected when we vary the
cutoffs.

To summarize, we have verified that the critical
behavior of this system does have a 3D character for a
temperature window around T„crossing over from 2D
behavior away from T, . We have found that the 3D re-
gion above T, is much smaller than below and that this is
at least partially due to the efFect of vortex pair Auctua-
tions.

C. Related layered systems

Further insights into the behavior of vortices in layered
systems are gained by changing the interactions Eqs. (2.5)
and (2.6) of the vortices slightly. For example, if one uses
a purely logarithmic intralayer interaction,
V(R, O)= —InR/r, and the same interlayer interaction,
one would find the following recursion relations
dx/de=2y (1—b A, /32), dy/de=2xy, and dA, /de
=2k, [1—4y /(1+x)]. Two points are clear: (1) Vortex
pair fluctuations weaken the interlayer coupling. (2) T,
increases with larger values of k in this system. This is
because the vortex loops that form are more stable to
vortex fluctuations than their 2D counterparts, which
can be seen the first recursion relation. One could infer
that these properties tend to be general properties of lay-
ered systems.

One can also derive the recursion relations for a purely
2D system of vortices whose interaction is V(A, O) [Eq.
(2.5)]. This is the model studied in Ref. 2, where the re-
cursion relations are derived by a phenomenological RG
study. The recursion relations derived there for y and X
include the first-order effect due to coarse graining and
rescaling, and are qualitatively the same as Eqs. (3.2) and
(3.3). The recursion relations we derive for that system
are virtually the same as those for Eq. (2.3) and are given

by Eqs. (3.1)—(3.3) with A =1/32. This implies that the
critical behavior is the same as for the layered system (ex-
cept possibly for the small temperature regime, where X
is large and our recursion relations are no longer valid).
The main difference is that the b term is absent for the
2D analog system, which means that T, increases less in
this system for a given k. It appears then that. the large-
R interactions are more important in determining the
critical behavior than the interlayer vortex interactions.

V. CQNCLUSI(DES

We have studied the critical behavior of vortices in-
teracting in a layered system in zero-field and more
specifically, the dependence of the transition temperature
and the size of the 3D critical region on the interlayer
coupling strength. In our study, we have included the
effect of vortex pair fluctuations on the interlayer cou-
pling, an effect neglected by earlier studies on layered sys-
tems. We find that the 3D region is much smaller above
T, than below. This is not only because of the effect of
vortex pairs but also because of the anisotropy of the 2D
correlation length. The A, dependence of the size of the
3D region and of T, have also been found. The efFect of
the vortex fluctuations on the interlayer coupling is found
to significantly inAuence the size and A, dependence of the
size of the 3D critical region above T, .

Since Eq. (2.3) can be taken as a simple model for the
behavior of vortices in the HTSC's, let us now address
why KTB signatures are prevalent in electrical transport
measurements on these materials. (Recall that electrical
transport properties are heavily

influenced

by vortex
behavior, since free vortices cause resistance in the pres-
ence of a current. For specific-heat measurements on the
other hand, vortices are not believed to have a significant
effect. ) There are several possible reasons that can ex-
plain this, all or some of which may play a role. The
most prominent reason for the lack of 3D signatures in
these experiments is a very small (and experimentally
unobservable) 3D window above T, . In this paper we
have rigorous evidence that vortex fluctuations and an
anisotropic correlation length can make the 3D window
small, making this reason very viable. It has been sug-
gested' that the current used to probe these materials
could make ~30 small, although recent ' self-consistent
calculations of the effect of the current cast doubt on this
scenario. Another possibility for why 2D signatures are
predominant is that the transport measurements do not
reveal the 3D aspects of this region. In other words, in
the window above T, where the behavior is 3D, the I- V
characteristics and resistivity could behave in the same
way as in a 2D system. This seems probable if the
current is applied evenly through each layer, or if the
vortices in neighboring layers are only weakly correlated
in this narrow window (which, based on our results, we
believe to be the case), or both of the above. While pre-
liminary analysis ' of the I-V measurements suggest that
the I-V curves in the window &30 are the same as in the
2D case for temperatures above the transition tempera-
ture, a more rigorous experimental check can be made
using the techniques of Wan et a/. , where in-plane
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transport measurements can be taken while. monitoring
correlations between layers.
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done on the 2D Coulomb gas by Kosterlitz to the lay-
ered system.

The first step in the RG calculation is to integrate out
the small scale structure. In our case, this amounts to in-
creasing the minimum separation between the vortices ~
to ~+d~ and determining the effect of the vortex pairs
with a separation in that range on the interactions of oth-
er vortices. This is realized by first increasing slightly the
allowed size of the disks around each vortex D, in Eq.
(2.4) from r to r+dr:

n &1 n &i

APPENDIX A: RENORMALIZATION
OF THE PARTITION FUNCTION

In this appendix, we detail the steps of the
renormalization-group method of the partition function
Eq. (2.3) culminating in the recursion relations Eqs.
(3.1)—(3.3). This calculation is a generalization of that

where d„(i) is a disk of radius r centered around charge
n, and 5„(i) is an annulus of radius r and width dr cen-
tered around charge n Th.is is illustrated in Fig. 1(b),
where the shaded regions represent the annuli, 5„(i).
One then substitutes this into the integrals of the parti-
tion function. Expanding this resulting expression to
O(dr), we obtain

gf d r) ' ' g f d r2~ —gf d r) '' g f d r2~
1 2X Dl

12Ã 2N

+—2+gf, dr& g f dr, &g f, dr, +& g . f dr
lWJ Il

X gf dr+, gf dr2Jv+f dr gf dr+0(dr).
1

D'. +1 I D2N l
D".

1
/'J

j+1 2N

(A2)

Here D" is all of the layer I except for the disks around the other vortices.
It is the last two sums and integrals of the second term of the right-hand side of Eq. (A2) which concern us. Physical-

ly, the integral over 5, (j) puts the charge i in an annulus around charge j to form a pair of smallest separation. The in-
tegral over D" and sum over l then move this pair through all possible positions in the system. By doing these in-
tegrals, the effect of the small pairs is integrated out.

To do the stated integrals, we separate out all terms in the partition function that include i and j:
g f d r g f d r; exp —Pgp pkV(r&, l; 1k) —Pgp—p&V(r k, l —1&) (A3)

k

As in the 2D case, we assume that only vortices of opposite "charge" can form pairs and therefore p, = —p .. We also
assume that only intralayer vortices can form pairs, which is the reason for the delta function in the last term of Eq.
(Al). As a consequence of the integral over r, , r,. =r.+r. The sum over 1; results in 1, =1 because the ith and jth
charges must lie in the same layer [see Eq. (Al)]. Equation (A3) can then be written

cd' g f d r f d8exp —PgpJpk(Mk+Nk —Ok) (A4)
kl

and

rjkJ
2rjk

M~ =I:r r,k «J'k+~~(2rJ'k) —«rJI )'«,'a]5i, ~

r.rJk 7 (r rJk )
2

N=&X, '+
k

rJk& 2rJk 2rJk T

(~.r, i, )'
~1., I2~r '.

jk

(A5)

V'I jkO„=5&X. ' +
jk v 2rjk

L

(r.riq )

2rJk 7

rr rk (ark)+
5 ~1.+l 11,

jk jk
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Note that Mk contains the two-dimensional terms resulting from the logarithmic interaction. Also Nk and Ok are vir-
tually identical except that the latter pertains to the interlayer interaction.

The exponential in Eq. (A4) can now be expanded, since the leading terms in Mk and Nk [0(r/rjk ) and 0 (&A, ), re-
spectively] are both small:

r dr g f d rj f d8 1 pp—j g pk(Mk +Nk )+(I3p) /2 g pkpl [(Mk +Nk )(Ml +Nl )
—(Mk +Nl, ) ]

kWl

X 1+ppj gpkOk+(pp) /2 g pkpl[0k0l —0k]
k&1

(AS)

Not all the terms in Eq. (AS) contribute to the renormalization of the interactions. For example, the terms that are
linear in p are found to be zero either because the integral over 6I is zero or because the integral over Mk, Xk, or Ok is
independent of k leaving the sum over pk, which, in turn, vanishes.

Performing the integral over 0, we find, including only the relevant terms,

p2nrdrg . f d r 1+ g pkpl ~

I Dj- 4 k~iJ
2 2

~jk ~jl

1
2

Pjk

1+A(1+b ) +
jk jl

1 jk jl 1 1

8 3 32 2 l. l 1. l
jk jl jk

r

jk jl 1
2 (~l , I kl. , l l

b. ~l, 1k~i ,Ii+1). (A9)

We have defined the relevant terms as those that will con-
tribute to the renormahzation of the logarithmic or linear
interaction. It can be shown in our case (but not in gen-
eral) that the terms that contribute to the renormaliza-
tion of the logarithmic terms must be 0(l/r, ) (in the
limit r »rk, r, ). Thus. , all the terms on the first and
second lines of Eq. (A9) will renormalize the logarithmic
interaction. The first two such terms can be seen to be
the strictly 2D pieces and match those of Eq. (A7) in Ref.
1. The next such terms of 0(l(, ) result from products of
NkNl Nk that mat—ch this criteria. The factor (1+b )

in front of the A. takes into account the terms OkOl —Ok,
which are of the same form. It should be noted that the
terms that are 0(b A)arise ,from an approximation,
which breaks down in certain cases. In the expansion of
Eq. (A4) we assume that all of the terms in Ok were
small. However, since the vortices in neighboring layers
can sit on top of each other, r k can, in fact, be very
small, causing Ok to be very large. This breakdown does
not have great consequences, since the term in the recur-
sion relations [see Eq. (3.1)] that it affects is the least
significant k correction and, since the breakdown only
applies when r.k (v'A, r, a very small region.

Similarly it can be shown that the terms that contrib-
ute to the renormalization of the linear interaction must
be 0(1/rl ). These are the terms on the third line of Eq.
(A9). The first set of 5 functions correspond to the prod-
uct MkNk and renormalize the intralayer linear interac-
tion, and the second set to Mk Ok, which renormalizes the
interlayer linear interaction. We have included only
terms that contribute to the renormalization of the linear
and logarithmic interactions to lowest order in I,.

To proceed with this step, we do the integral over Dj",
which is all of the area in layer I except the disks dj. (n)

(r,k rl)'
d T.

A —d (k) l (r r )3J Pjk Pj

Changing variables to r =rjk, we find

2K r (r +l'kl cosO)
dO rdr

o ~ r (r +2rrkl cos8+rki)

(A10)

(Al 1)

where 0 is the angle between r and rkl. This integral can
be evaluated using integration by parts:

centered at each of the other vortices. This integral is
done by separately doing the integral over all of the plane
and the integrals over each of the disks. It runs out that
only two disks are important, d (k) and d (I). Because
we are working in the low density limit, three vortices
cannot be in the same vicinity of each other and there-
fore, given three vortices in the same layer, say n, k, and
l, r„k ))r„i,1, r„l o r„k, r, or r«, r„l ))r. Because one of
these criteria is satisfied when considering the integral
over d (n&k, I), it can be shown that the integrals are of
0 (r/max[r„k, r„j]) and that therefore they do not con-
tribute to the renormalization of the interactions.

Another note should be made for the integrals to be
done. Any term that includes only r~k (and not rll ) will

diverge as a function of system size I.. There are also
divergencies that arise in the integrals that depend on
both r k and r l. It can be shown that these divergent
pieces will cancel each other.

To give the reader a feel for the integrals, we will per-
form two of them. The first one that we will do is the
first term of the second line of Eq. (A9). We will combine
the integral over all of the area and the integral over
d (k):
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1 +Tkl COSHf d8 1—
Qr +2«k( cos~+rfi

depend upon rk&, and therefore Eq. (A13) is the main
product of Eq. (A10).

The next integral that we will do is from the third line
of Eq. (A9):

2L+ ln
Q7 +2rrkl cosl)+rkl+ r+rkI cos

= —2' in(rk(/r) . (A13)

(A12)

where L is the size of the system. We can assume that
rkI »~, since we are most interested in that regime. In
that case, we find

I' + 7 kl COSH= j'"def """
Qr +2rrk& cos8+rkI

A —d(k) j y2rJ ~jk ~)I

Using the change of variables r =r k, we find

(A14)

We have neglected the term dependent on L because, as
we discussed above, it will be canceled by the term that
depends only on rk&. We have also neglected the constant
terms, since they do not contribute to the renormaliza-
tion of the interactions. Using similar methods, we can
evaluate the integral over d (l). One finds that it does not

2mV—'Xrk. , /r , . (A15)

Performing the integrals over the rest of the terms in
Eq. (A9), we find

Making the same assumptions as we did above, we find
that the dominant contribution of Eq. (A14) is

21rr p277'rd'r ' A g pkpt
kAI

[1—k(1+5 )/32] ln +2+A, 5& I 2b+A. —
5& I +&

7
(A16)

Notice that, in the 2D limit, this equation is the same as Eq. (A8) of Ref. 6.
We have now removed the i and j dependence from Eq. (A2) and can now proceed to regroup the right-hand side of

that equation (and the accompanying integrands) into the form of the left-hand side. Rearranging the sum over n so
that we again have 2% integrals in the second term on the right-hand side and performing the sum over i and j, we ar-
rive at

Z=gy gf dr, gj dr2 gf dr2~
x (N!) ~ Di i ~ ~ z~

27' pX 1+2my rdr A — g pkpI
k&l

ln [1—A.(1+b )/32]+2&A, 5I I 2b&A—5i,
7 k~ I k~ I

X exp ——gp p, V(~r, —r, ~, l, —l, )

ling

(A17)

The next step is to put the renormalization terms into the exponential. Doing so, we find

Z=Z'gy gf d r&gf d rz. g f d rz&(N!) ( DI ( &~ (
1 2 2N

X exp ——g p, p — 1 (2~y r ) —1 — (1+b )
p 22pp dr A,

2;~ 2 v 32

1 —2(2vryr ) &A, 5I I b5l;, l +&—~Pp dr
(A18)

where Z' includes the terms that renormalize the overall free energy. For example, the constant terms, which we
neglected in the integrations of Eq. (A9), would contribute to Z'.

The final step in our renormalization is to rescale the lengths so that the limits of the integration in Eq. (A18) match
those of Eq. (2.3). Making the substitution r ' =r /( 1+d r/r ) in Eq. (A18), we obtain
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Z=Z'g [y[1+dr/r(2 P—p /2 P—p V'A, /2)]] g f d r, g f d r2 . g f d r2&
X (Q)) I D) I Dz D2~

1 2 2N

X exp ——g p;p. — 1 (2—rryr ) 1 — (1+b )
p 22pp dr

I j 2 v 32
lj

ln
l J

1 —2(2vry r') +
2 v 7- 7

Ij
~l. , I . b ~ l. , 1 .+1

t J 7 l J
(A19)

(pp )'=pp [1—(2myr ) pp (1—AA, )dr/2&],

y'=y [1+[2—Pp (1—
—,'A, ink, )/2]dr/r],

&A, '=&A, [1+[1 Pp (2m.—yr ) ]dr/r],

(A20)

(A21)

(A22)

where we have dropped the primes. The partition func-
tion now has the same form as Eq. (2.3),
Z(y, x, A, )=ZOZ(y', (pp )', A, '), but the parameters have
been renormalized:

where the primed variables are the renormalized parame-
ters and A =(1+b )/32. In Eq. (A21), I/2A, ink, was
used in place of —&A, to account for the correct small-R
Josephson term in Eq. (2.1). As we have discussed in
Secs. II and III, this terms does not have a significant
effect on the other recursion relations. This completes
our RG study of Eq. (2.3). The final steps to arrive
at Eqs. (3.1)—(3.3) are to convert Eqs. (A20) —(A22)
to differential form, to make the substitution
x =4/(pp ) —1, and to absorb the factor 2m' into y.
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