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Determination of the mobility edge in the Anderson model of localization in three dimensions
by multifractal analysis
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We study the Anderson model of localization in three dimensions with different probability distributions for
the site energies. Using the Lanczos algorithm we calculate eigenvectors for different model parameters like

disorder and energy. From these we derive the singularity spectrum typically used for the characterization of
multifractal objects. We demonstrate that the singularity spectrum at the critical disorder, which determines the

mobility edge at the band center, is independent of the employed probability distribution. Assuming that this

singularity spectrum is universal for the metal-insulator transition regardless of specific parameters of the

model we establish a straightforward method to distinguish localized and extended states. In this way we obtain

the entire mobility-edge trajectory separating regions of extended states from regions of localized states in the

energy-disorder phase diagram. The good agreement with results from transfer-matrix calculations for all

probability distributions used corroborates the applicability of our criterion.

The theoretical investigation of the localization problem
in disordered systems is of central importance for a variety of
different phenomena like transport properties of glassy or
amorphous systems. Particularly interesting are systems that
feature a metal-insulator transition (MIT). Due to this transi-
tion, the electronic wave functions show a characteristic
change from localized to extended behavior. This corre-
sponds to a change from states that do not enable transport in
the limit of vanishing temperature to states that do, thus dis-
tinguishing the insulating and metallic character.

In the localized regime the spatial behavior of the wave
functions is usually described by an exponential decay length
reflecting the spatial extent of the wave function. This
method, however, suffers from large fluctuations of the am-

plitude of the wave function especially for states close to the
MIT. Approaching the MIT from the localized regime the
localization length diverges. Close to the MIT the localiza-
tion length is already much larger than the numerically ac-
cessible system size so that there can be no direct reAection
of the localization in the calculated eigenstate. Rather the
computation yields the mentioned fluctuations only.

Approaching the MIT from the extended regime the be-
havior is analogous. Here the respective characteristic length
is the correlation length which diverges approaching the
MIT. Numerically, the correlation length is not directly ac-
cessible due to fluctuations of the wave function. In this pa-
per we will exploit exactly these fluctuations for the charac-
terization of the states, allowing a determination of the MIT.

Exactly at the MIT where there is no characteristic length
scale the su gestion that the eigenstates show fractal
characteristics was confirmed by several numerical investi-
gations (for an overview see Ref. 3). However, it became
clear that the characterization of eigenstates at the transition
requires the more general concept of multifractality. This
implies that different parts of the eigenstate scale with dif-

ferent exponents thus extending the simple fractal picture
which comprised only one scaling exponent.

The standard way to characterize multifractals which have

appeared in many different parts of physics, for example in

turbulence, diffusion limited aggregates (DLA), viscous fin-

gering, etc. is the singularity spectrum or, equivalently, the
continuous set of generalized dimensions. It was noticed that
for the Anderson model of localization in three dimensions

(3D) as well as in 2D with magnetic field ' the MIT corre-
sponds to a characteristic singularity spectrum. This result
led to the expectation that the transport properties can be
related quantitatively to the singularity spectrum. We have
shown recently, that the system size dependence of the sin-

gularity spectrum can be used to distinguish localized and

extended states in 3D at the band center. We have also been
able to determine the MIT at the band edge from the singu-

larity spectrum.
In this paper we show that the shape of the singularity

spectrum at the MIT does not depend on the probability dis-

tribution used for the site energies in the Anderson Hamil-

tonian. This suggests that the critical singularity spectrum is
universal and thus not dependent on energy or disorder. We
test this assumption by using the critical singularity spectrum
for the distinction of localized and extended states in the
entire energy-disorder phase diagram. The resulting mobility
edge trajectory is shown to agree with results obtained pre-
viously by another method.

To investigate the Anderson model of localization we use
the standard Hamiltonian H=X;!i) (ei!+VX;,!i)(j!.The
erst term describes the disorder by random site energies a;
usually taken from a box distribution of width W on a regular
cubic lattice in 3D. In addition, we study the Gaussian and
the binary (or dichotomic) distribution. In analogy to the box
distribution we define the disorder parameter W= /~t1T2 in
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u(q) = lim g pI, (q,L)lnpk(1g, )/Ink (1a)

and the corresponding fractal dimension

Nl

f(q) = lim g pr(q, L)lupi, (q,L)/In8, (1b)

which yield the characteristic singularity spectrum f(n) in a
parametric representation. Here, B=L/N denotes the ratio of
the box size and the system size. From Eq. (1) one can obtain

terms of the second moment o. in all cases. Furthermore we
choose the average (first moment) (e)=0 without loss of gen-
erality. The investigation of the binary distribution is re-

stricted to the symmetric case, i.e., P(e) = 6(e —W/Q3)+
—,'8(e+ W/Q3). The second part of the Hamiltonian consists
of constant transfer elements which are taken between near-
est neighbors only. We set V=1 fixing the energy scale.

Applying the transfer-matrix method (TMM) to the
Anderson Hamiltonian the exponential decay of electronic
states in quasi-1D systems can be determined. Its depen-
dence on the (lateral) system size yields conclusions about
the localization and the correlation length. Extensive compu-
tations were necessary to derive the mobility edge for box
and Gaussian distribution. In both cases the maximal
value of the critical disorder occurs in the center of the band
(E=O), it is W, =16.5 for the box and W, =20.9 for the
Gaussian distribution.

The binary distribution yields increasing critical disorders
for increasing energy. This can be traced back to the specific
shape of the density of states in this model which features
two distinct subbands around E= ~ W/Q3 for large disorder
corresponding to two separate percolating networks of sites
with e;~0 and e;(0, respectively. Here, only a few TMM
results are available, in particular W, (E=0)=9.1.

We employ the Lanczos algorithm for the direct compu-
tation of the eigenstates. This algorithm is especially suited
for large sparse matrices as described by the Hamiltonian
above. Indeed it was possible to treat samples with more than
250 000 sites in 3D in the band center. At the band edges the
algorithm allows us to investigate even larger systems. To
facilitate vectorization on supercomputers we have used he-
lical boundary conditions instead of the more common peri-
odic ones. Furthermore it should be noted, that the algorithm
enables the simultaneous computation of several eigenstates
in a certain energy range allowing us to average the singu-
larity spectra of several eigenstates without repeating the al-
gorithm.

For the computation of the singularity spectrum we use
the standard box-counting method. First we divide the
system with N sites into Nr =N /L boxes of linear size L.
The probability to find an electron in such a box is given by

pl, (L)=Z„ i~e;„~ for k=1, . . . ,Nr where e;„denotes the
amplitude of an eigenstate with energy E; at site n.
The normalized qth moment of this probability

pl, (q,L) = pr(L)/X, ,pz, (L) constitutes a measure. From
this one obtains the Lipschitz-Holder exponent or singularity
strength
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FIG. 1. Singularity spectrum at E=O and W, for box (0),
Gaussian ( ), and binary (6) probability distribution. Integer val-
ues of the implicit parameters q are marked by symbols for
~q~~2. Error bars are due to the statistical error from averaging
over disorder realizations and energy range. The dashed line shows
the analytical result of Wegner (Ref. 18).

the generalized dimensions D (q) = (ft n(q) ]—q n(q))/
(1—q). As pointed out by different authors (e.g. , Ref. 17)
the main problem of this approach is the proposed linearity
of Xp, lnp, versus ln8'. At least at and close to the MIT this is
fulfilled. It is clear, however, that far away from the MIT the
linearity is destroyed. This will occur whenever the charac-
teristic length scale becomes smaller than the system size.
For disorders close to but not exactly at the mobility edge in
3D the singularity spectrum changes characteristically with
the system size. Only exactly at the MIT the singularity
spectrum remains unchanged. Correspondingly in the limit
of infinite system size multifractality is expected to hold only
exactly at the MIT, all other states are either localized or
extended.

We have calculated the singularity spectra for systems
with 20 = 8000 sites for several disorders R' and energies E.
All eigenstates in a given energy range of DE=0.01 at a
specific disorder W were determined in one run of the Lanc-
zos algorithm. For each eigenstate we derive the values of
u(q) and f(q) according to Eq. (1) and average over this
energy range and additionally over five different realizations
of the disorder (i.e., five different Lanczos runs). In that way
we average typically over about 20 different states (depend-
ing on the density of states) for one parameter combination.
At the band edge the energy interval was increased up to
DE=0.05 because of the low density of states there. The
calculations could be done on a PC in a few hours.

In Fig. 1 we present the results at the MIT for E = 0 for all
probability distributions used in this study. Here we took for
granted the critical disorder values from the TMM mentioned
above. The discussed criterion that f(n) does not change
with the system size only at the MIT (Ref. 8) yields critical
disorders which are in agreement within the numerical accu-
racy, which is, however, not very high for this criterion.

The coincidence of the three curves in Fig. 1 is remark-
able. It demonstrates that the singularity spectrum takes a
specific shape at the MIT, independent of the employed prob-
ability distribution. We note that this critical spectrum agrees
with the analytical result derived in the nonlinear o. model
performing the e expansion to first order which is also
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FIG. 4. Same as Fig. 3 but for the Gaussian distribution, TMM
data from Ref. 11.

FIG. 2. Behavior of n(0) and n(1) at W= 12 with changing E
and N for the box distribution. Different symbols denote different

system sizes according to N =20 (O), 30' ( ), 40 (6), and

60 (X).
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FIG. 3. The mobility edge trajectory in 3D as calculated by the
TMM (O) (from Ref. 11) and the multifractal analysis via

n(0) (X) and n(1) (+) for the box distribution.

shown in Fig. 1. We propose that this specific shape is inde-
pendent of energy and disorder, too.

Before we proceed to corroborate this claim with our re-
sults, it is useful to recall a few general features of the sin-

gularity spectrum which can be observed in Fig. 1, too. The
singularity spectrum is bound from below by zero, it is con-
vex, its maximum is obtained for q = 0 and reflects the di-
mension of the support of the measure which in our case is 3,
i.e., f[n(0)]=D(0)=3. This is the similarity dimension.
Important is also the information or entropy dimension
reached for q = 1. At this point the relation

f[n(1)]= n(1) =D(1) is fulfilled. One can show that in the
limit of infinite system size the entire measure is concen-

trated into a fractal set with this dimension.
We concentrate the subsequent analysis to these two

points of the singularity spectrum (q = 0 and q = 1) not only
because they reflect significant dimensions but also because
the evaluation of Eq. (1) is numerically more accurate for
small values of ~q~. Specifically we obtain at the MIT the
critical values of n, (0)= 4 and n, (1)= 2 from Fi . 1 ap-
proximately and from the analytical formula exactly. These
values are now employed to distinguish localized and ex-
tended wave functions for various parameter combinations
(E,W). As an example we display in Fig. 2 the dependence
of n(0) and n(1) on E for fixed disorder W= 12 for the box
distribution. We expect n(0)~n, (0) and n(1)(n, (1) for
localized states but n(0)(n, (0) and n(1)) n, (1) for ex-
tended states. Accordingly we derive E,=7.5 by extrapolat-
ing the n(0) data for N = 20 and E,=7.6 from the respective
n(1) values, in good agreement with the TMM results indi-
cated in Fig. 3. We note that the data for larger N will yield
slightly larger E, values in even better agreement with the
TMM results.

This procedure is now performed for various E and W,
yielding W, (E) or E,(W), respectively, which are shown in

Figs. 3—5. The agreement with the TMM is very good for the
Gaussian disorder whereas for the box distribution the coin-
cidence is not so good for large W at the band edge. How-
ever, the reentrant behavior of the mobility edge (the change
from localized to extended and back to localized behavior
upon increasing disorder for certain fixed energies) is clearly
reproduced.

In order to check for the size dependence we have also
calculated systems with N =30 =27000, N =40
= 64 000, and N = 60 = 216 000 sites for W = 12 (cf. Fig. 2)
and other parameters, but found no significant change in the
reentrant behavior of the mobility edge. However, the char-
acter of the eigenstates in that region changes very fast with
E which renders the analysis delicate. For the system size
N =20 and low disorder W~5 even the state at highest
energy remains extended, only for larger systems localized
states appear.

For the binary distribution in the center of the band the
critical disorder W, =9.1 (Ref. 10) is also correctly repro-
duced. For higher energies the value of the critical disorder
increases as expected. At E= 6 a second mobility edge ap-
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FIG. 5. Same as Fig. 3 but for the binary distribution, TMM data
from Ref. 10.

pears, its starting point at E= 6, 8'= 0 corresponds to the
(extended) Bloch state with highest energy in an ordered 3D
system. For nonzero disorder localized states occur at this
band edge. Together with the other edge (starting at E=O,
W, =9.1) in Fig. 5 the band of extended states around
E= W/Q3 can be seen clearly. Arising from the percolating
network formed by the sites with s;= W/+3, the width of
this band is consistent with the average number of three near-
est neighbors in this network. Figure 5 demonstrates that in
the binary case these extended states exist for arbitrary large
disorder.

Finally we would like to comment on the connection be-
tween the multifractal behavior of the wave function and the
critical exponent. It has been shown in 2D (Ref. 19) that
from the correlation dimension D(2) = 2n(2) fact(2)] one-
can obtain a lower bound for the critical exponent v as
v~ 2/D(2). We have calculated D(2) for all parameter com-
binations and probability distributions used. By using the
W, values from the analysis of ct(0), i.e., the respective data

(X) from Figs. 3—5, for energies in the range O~E~6 we
find that v= 1.32~0.02, 1.31~0.02, and 1.25~ 0.04 for box,
Gaussian, and binary distribution. Using respective W, val-
ues from the n(1) analysis, i.e., the respective data (+) from
Figs. 3—5, we determine v~1.37~0.01, 1.37~0.02, and
1.33~0.01. The statistical errors arise from averaging D(2)
in the range. These values are in very good agreement with
the value v= 1.35 found recently. It remains a puzzle how-
ever, why the lower bound is reached almost exactly. For
energies close to the band edge the value of D(2) fluctuates
very much due to the very sensitive dependence of the criti-
cal disorder on energy but obeys 1.45~D(2) ~ 1.8 in all pa-
rameter combinations used.

In summary we have shown, that the very fluctuations of
the eigenstates which hitherto were considered a nuisance in
the numerical investigations can be profitably exploited by
means of a multifractal analysis. The resulting singularity
spectrum can be used to distinguish localized and extended
states thus enabling us to calculate the mobility edge for
systems with different probability distributions for the ran-
dom site energies. The results were compared whenever pos-
sible with TMM calculations and gave reasonable agreement.
Already for very small systems the accuracy of the method is
sufficient to obtain a good qualitative description of the mo-
bility edge. If one increases the system size one can hope for
an even more accurate picture. We note that the system size
for the mentioned TMM calculations was three orders of
magnitude larger.

The present investigation was concentrated on two points
ct(0) and n(1) of the singularity spectrum. but in principle
one can apply the method to any other point ct(q) or f(q).
An interesting open question is whether finite size scaling of
the ct(q) or f(q) data for different system sizes is feasible
thus enabling us to determine a critical exponent from the
spatial Auctuations of the eigenstate in a similar way as it
was possible from the energetic fluctuations of the eigen-
value spectrum.

For an overview, see Anderson Transition and Mesoscopic Fluc-
tuations, edited by B. Kramer and G. Schon [Physics A167
(1990)].
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