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We carry out an extensive Monte Carlo study of phase transitions in two-dimensional (2D)
superconducting networks, in an applied magnetic field, for square and honeycomb geometries. We
consider both systems with a dilute vortex density 1/q, and dense systems near full frustration with
vortex density 1/2 —1/q. The dilute case gives the continuum limit as q —+ oo, and serves as a model
for a uniform superconducting film. For this dilute case, we find a transition temperature T, 1/q,
at which the vortex lattice unpins from the network and forms a "Qoating solid" phase. At a higher
temperature T, this Boating solid melts into a vortex liquid. We analyze the transition at T
according to the Kosterlitz-Thouless theory of dislocation mediated melting in 2D. While we find a
discontinuous jump in the vortex shear modulus at T which is consistent with this theory, we find
(in opposition to this theory) that the transition is weakly first order, and we find no evidence for a
hexatic liquid phase. For the case near full frustration, we find that the system can be described in
terms of the density of defects in an otherwise fully frustrated vortex pattern. These dilute defects
result in similar behavior as that found in the dilute vortex system, with pinned, Qoating, and liquid
defect phases.

I. INTRODUCTION

Two-dimensional (2D) periodic superconducting net-
works, and in particular arrays of Josephson junctions,
have served as a convenient theoretical and experimen-
tal model system in terms of which one can study, in
a well-controlled way, the efFects of thermal fluctuations
and pinning, on vortex structures and phase coherence
in 2D superconductors. Such 2D superconductors have
received renewed attention recently with the observa-
tion that many of the high-temperature superconductors
consist of weakly coupled layers, and so for some range
of parameters may display electively two dimensional
behavior. ' One focus of this renewed interest has been
concerned with the melting of the 2D vortex lattice, in-
duced by an applied magnetic G.eld, in a uniform con-
tinuous superconducting film. Controversy has resulted
as to whether such a vortex lattice even exists at any 6-
nite temperature, or whether a vortex liquid is the only
thermodynamically stable state. In this work we address
the thermodynamic behavior of vortex structures in 2D
superconducting systems. Our focus will be on their be-
havior in discrete periodic networks; however, our results
will also yield conclusions concerning the behavior of uni-
form Alms.

Despite a decade of theoretical work, many fundamen-
tal questions remain unresolved concerning the nature of
the phase transitions in 2D superconducting networks.
When a uniform transverse magnetic field is applied, it
induces a Axed density of vortices into the network, as in
the mixed state of a type-II superconductor. However,
unlike a uniform superconductor, for which the ground
state is a periodic triangular lattice of equally spaced
vortices, the discrete network structure serves as an ef-
fective periodic pinning potential, which at low temper-

atures confines the vortices to sit at the centers of the
unit cells of the network. This can result in novel vor-
tex structures at low temperature, determined by the
competition between the repulsive vortex-vortex interac-
tion, and the periodic pinning potential induced by the
network. Finding the ground state vortex structure
for an arbitrary value of vortex density, for a given peri-
odic network, remains an unsolved problem. The phase
transitions at finite temperature have remained largely
unexplored except for a few of the simplest cases.

An early conjecture by Teitel and Jayaprakashs (TJ)
argued that the superconducting transition in such net-
works would be governed by commensurability eKects. If
one measures the dimensionless vortex density f as the
number of magnetic-Beld-induced vortices per unit cell
of the network, they predicted that for rational f = p/q,
the transition temperature would vary discontinuously
as T, (p/q) 1/q. While experimental evidence for
high-order commensurability e8'ects has been reported
in Josephson junction arrays, simulations by Halsey
have challenged this conjecture for large q. A similar
conjecture by TJ (Ref. 5) concerning the behavior of the
ground state critical current i,(f) has since been dis-
proved in simulations by Lobb and co-workers, ' and
by Straley, is who argue that as f varies, i, (f) has a lower
nonzero limit determined by the single-body e8'ects of a
noninteracting vortex in a periodic pinning potential; this
conclusion has also been arrived at analytically by Vallat
and Beck. However, the validity of the TJ conjecture
with respect to T, (f), which is intrinsically determined
by many-body e8'ects, has remained unresolved.

In this paper we attempt to study the TJ conjec-
ture systematically, by carrying out Monte Carlo (MC)
simulations of superconducting networks for two special
classes of vortex density. We erst consider the dilute case
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of vortex densities f = 1/q, q integer, for both square and
honeycomb networks. This dilute case, as q —+ oo, can
equivalently be viewed as the continuum limit, in which
the lattice spacing of the periodic network decreases to
zero for a fixed areal density of vortices. Our results for
this case therefore also address the problem of vortex-
lattice melting in a uniform continuous superconducting
film. Second, we consider vortex densities f = 1/2 —1/q,
close to full frustration, on the square network.

Our results may be summarized as follows. For the
dilute case with large q, the low-temperature state is a
Bravais lattice of vortices, with long-range translational
order, pinned commensurably to the periodic network.
At a critical temperature T, (1/q) 1/q, there is a sharp
first-order phase transition to a floating triangular vortex
lattice, which is depinned from the periodic potential of
the network. This Hoating lattice displays the algebraic
translational correlations characteristic of a 2D vortex
lattice in a uniform continuum. The depinning transi-
tion T, (f) satisfies the TS conjecture, and marks the loss
of true dc superconductivity in the network, due to the
flux How resistance which will result from drift of the un-
pinned vortex lattice. At a higher T, which becomes
independent of q as 1/q ~ 0, this floating vortex lat-
tice melts into an isotropic vortex liquid. We analyze
this transition according to the theory of dislocation-
mediated melting in 2D, due to Kosterlitz and Thouless
(KT), Nelson and Halperin, and Young i (KTNHY).
While we find good agreement with certain predictions
of this KTNHY theory, we Gnd evidence that the second-
order melting transition predicted by KTNHY is pre-
empted by a weak Grst-order transition.

For the close to fully frustrated case, f = 1/2 —1/q,
the ground state is everywhere like that of f = 1/2 (a
checkerboard pattern of vortices on alternating sites), ex-
cept for a superimposed commensurate Bravais lattice of
missing vortices, or "defects, " so as to give the desired
density J' ( 1/2. The transitions in this system are then
governed by the behavior of these defects. Upon heating,
there is first a depinning transition T,(f) of the defect
Bravais lattice into a floating triangular defect lattice;
this depinning follows the TJ conjecture, T,(f) 1/q,
and marks the loss of true dc superconductivity. At
a higher T, the Hoating defect lattice melts into an
isotropic defect liquid. Finally, at a higher T I, there is
an additional sharp transition representing the disorder-
ing of the vortices forming the f = 1/2 like background.

The remainder of our paper is organized as follows. In
Sec. II we present the theoretical model used to describe
the superconducting network, and its relation to a uni-
form superconducting film. We review the KTNHY the-
ory of 2D melting, and discuss the observables we mea-
sure and the methods we use to analyze our data. Finally
we describe our Monte Carlo procedure. In Sec. III we
present our results for the dilute case f = 1/q on a hon-
eycomb network. This corresponds to vortices on the
dual triangular lattice of sites. We use finite-size scaling
to test in detail the predictions of KTNHY. In Sec. IV
we present our results for the dilute case f = 1/q on a
square network. In Sec. V we present our results for the
dense case of f = 5/11 on a square lattice, and infer the

behavior for more general densities f = 1/2 —1/q. In
Sec. VI we present our discussion and conclusions.

II. MODEL AND METHODS OF ANALYSIS

A. Model for a superconducting network

A two-dimensional superconducting network in a mag-
netic field is described by the Hamiltonian

where 0; is the Huctuating phase of the superconducting
wave function on node i of a periodic network of sites.
The sum is over pairs of nearest neighbor sites, repre-
senting the bonds of the network, and

A;, = (2m/Cp) A dl (2)

are fixed constants, giving the integral of the magnetic
vector potential across bond (ij) (C'p ——hc/2e is the mag-
netic flux quantum). U(0) is the interaction potential
between neighboring nodes, and its argument is just the
gauge-invariant phase difference across the bond. U(0)
is periodic in 0 with period 2', and has its minimum at
0 = 0. We will be interested here in the case of a uni-
form applied magnetic Geld V' x A = B, transverse to
the plane of the network. In this case, the sum of the A;~
going counterclockwise around any unit cell of the net-
work is constant, and determined by the magnetic Hux
through the cell,

cell

where A is the area of a unit cell of the network. f
therefore is the number of Hux quanta of applied magnetic
Geld, per unit cell.

For an array of 3osephson junctions, the interaction
potential in Eq. (1) is taken as U(0) = —Jp cos(0). For
a superconducting wire network, in the London approxi-
mation, a more appropriate interaction is given by the
Villain function, defined by

e
—U(0) /T ~ —Jp (g —g~m) 2/2Te

where we take A:~ = 1.
For the Villain interaction, one can show by duality

transformation24 that the Hamiltonian of Eq. (1) can be
mapped onto the 2D classical Coulomb gas

(5)

where the sum is over all sites i, j of the dua/ lattice of
the periodic network [i.e. , the sites i in Eq. (5) lie at the
centers of the unit cells of the network]. n; = 0, +1,+2, ...
are integer "charges" representing vortices in the phases
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A V(r) = —2~b, p, (6)

0, , and the magnetic field Aux density is represented by
the uniform background charge f—V(r) is the lattice
Coulomb potential in 2D, which solves the equation

If we define N, as the total number of charges in the
system, then Eq. (9) gives

where L is the discrete Laplacian for the network.
For large separations, V(r) ln [r~. In mapping from
the network Hamiltonian given by Eqs. (1) and (4), to
the Coulomb gas Hamiltonian of Eq. (5), we have fol-
lowed convention by rescaling the temperatures so that
Tc~ = Txv /2x Jp, where Tc~ refers to the temperature
in the Coulomb gas model, and T~y refers to the tem-
perature in the network (also referred to as a "uniformly
frustrated" XY model ). Henceforth, we will denote TCG
as simply T.

Our simulations will be carried out in terms of this
Coulomb gas problem, rather than in terms of the phases
0;. Although the Villain interaction may give quanti-
tative differences when compared to the cosine interac-
tion of a Josephson array, since the two functions have
the same symmetry, we expect that they will display the
same qualitative critical behavior.

For our simulations, we work with a finite L x I grid
of sites, and apply periodic boundary conditions to the
Laplacian, Eq. (6), defining the Coulomb potential V(r).
In this case, V can be explicitly calculated in terms of
its Fourier transform. For a square network of lattice
constant ao, one finds

V(r) = —).N 2 —cos(k . ai) —cos{k a2)
'

where N = I, (ai, a2)= (apx, apy) are the ba-
sis vectors, and the summation is over all wave vec-
tors consistent with the periodic boundary conditions,
i.e., the set (k) = ((mi/L)bi + (m2/L)b2), with
mi, m2 —— 0, 1,2. . . L —1, and with (bi, b2)
((2m/ap)x, (2m'/ap)y) the basis vectors of the reciprocal
lattice.

For a honeycomb network, the charges n,. sit on the
dual triangular grid of sites, and the Coulomb potential
is given by

V() = ).2N 3 —cos(k ai) —cos(k az) —cos(k a3)
'

k

(8)

where (ai, a2) =(apx, ap(x/2 + ~3y/2)) are the ba-
sis vectors, a3 —— a2 —ai, and the wave vec-
tors are determined by (bi, b2) = ((2vr/ap) [x
(1/~8)y] (2 /«)(2/v 3)y).

The k = 0 terms in the summations of Eqs. (7) and
(8) will cause a divergence in V(r). In real space, this is
a re8ection of the infinite self-energy of a point charge.
Configurations with infinite total energy will carry zero
weight in the partition function sum, and may therefore
be excluded. To keep the energy of the Coulomb gas
finite, we therefore impose the condition of overall charge
neutrality

N, =) n, = fN (10)

Thus the density of magnetic flux quanta f is equal
to the density of charges (vortices) N, /¹ In the neu-
tral system, the infinite self-energies will exactly cancel,
and in place of U(r) we can use only the nonsingular
part of the Coulomb potential (7) and (8) defined by
V'(r)—:V(r) —V(r = 0). For a given system size, we
evaluate V'(r) by numerically performing the summa-
tions indicated in Eqs. (7) and (8).

The ground state will therefore be a periodic vortex
structure consisting of N, sites with n, = +1 (all other
sites having n, = 0), spaced as equally apart as allowed
by the network geometry. Understanding the behavior of
this vortex structure at finite temperature will be one of
the Inain goals of this work.

B. Relation to a uniform superconducting film

'RGL[@] = P 0! +
2

A/Q+2m (i c )
with V'x A = B a fixed constant. The mean field solution
that minimizes 'R~i, [g] is similar to that found in three
dimensions: (i) There is a triangular lattice of equally
spaced vortices in the phase 0(r); (ii) the areal density
of vortices is B/@p, with an average separation of a„
/4p/B; (iii) the size of the normal core of a vertex is
determined by (p 1/~n, where o. = 0 determines the
B = 0 mean field transition temperature; and (iv) the
mean field phase transition at finite B occurs when (pa„.

To include fluctuations, one should now sum the par-
tition function over all fluctuations of g(r) about the
mean field solution. In doing so, one common approach
has been to make the London approximation. Here one
assumes that, outside of the normal vortex core, the am-
plitude of the superconducting wave function is kept con-

The Coulomb gas model of the preceding section can
also be used to describe the melting of the vortex lat-
tice in a uniform continuous superconducting film. For a
superconducting film, the states of the system can be de-
scribed by a complex wave function, @(r) = ~g(r) ~e' ~'l.
As shown by Pearl, for a of film of thickness d, provided
the sample size is smaller than the transverse magnetic
penetration length A~ = A /d, the magnetic field will be
essentially uniform and constant throughout the film. In
this case, the states g{r) will be weighted in the parti-
tion function sum according to the Ginzburg-Landau free
energy
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stant, and only the phase Auctuates, i.e. , i/i(r) = ]@Ie' ~'l.
The London approximation is expected to be good when-
ever the bare vortex core radius is very much smaller than
the average separation between vortices, (p && a„;by (iv)
above, this corresponds to temperatures well below the
mean field phase transition.

Substituting g(r) = ~@Ie' ~'l into Eq. (11) results,
within additive constants, in the simpliGed free energy

1 2 27r
%[0] = —Jp d r V'0 — A

2 @0
(12)

1'R =—
2

d rd r'[n(r) —B/4p]V(r —r')[n(r') —B/4p].

(13)
Here n(r) = (1/27r)z . V' x V'0 is the vorticity in the
phase of the superconducting wave function, determined
by singular integer vortices n; at positions r, , n(r)
P,. n, h(r —r;). V(r) solves the 2D Laplace equation,
V'2V = —2~b(r).

The Coulomb gas of Eq. (5), introduced in the pre-
ceding section as a description for a network, can now
be viewed as a discrete approximation to the continuum
problem of Eq. (13). For a fixed areal density of vortices,
B/4'p we recover the continuum equation (13) from the
discrete equation (5) as we take the network lattice con-
stant ap ~ 0. Since the number of vortices per unit cell
in the network is f apB/Op, we see that the contin-
uum is equivalent to the f ~ 0 limit. Thus by study-
ing the melting of dilute vortex lattices in a network,
we can also learn about the melting of a vortex lattice
in a uniform superconducting film. As in the previous
section, the mapping between the Coulomb gas and the
superconductor is obtained by measuring the Coulomb
gas temperature Tc~ in units of 2vr Jp ——4p/87r A~, i.e. ,

Tsuper —2'7l JOTcG ~

Finally, we note that the melting of the 2D vortex lat-
tice, described by the continuum Coulomb gas Hamilto-
nian of Eq. (13), has been treated within the general 2D
melting theory of KTNHY. Within this theory, Fisher

I

where Jp ——C p/16vr A~, and the integral is implicitly cut
o6' at the vortex cores. Equation (12) is just a contin-
uum version of the network Hamiltonian, Eq. (1). Fol-
lowing Halperin and Nelson who considered the B = 0
case, and Huberman and Doniach and Fisher who
considered the finite-B case, we note that Eq. (12) can
be mapped onto a continuum Coulomb gas of logarith-
mically interacting charges. For finite B', this can be
written in the form of a one-component plasma on a
uniform background charge density B/@p,

has estimated that the melting transition occurs more
than an order of magnitude below the mean Geld transi-
tion. This observation completes the self-consistency of
the argument for using the London approximation.

C. Review ef the theory of 2D melting

The analysis of our results will be guided by the ideas
of the theory of defect-mediated melting in 2D, developed
by KTNHY. Although our results are, in many as-
pects, in opposition to this KTNHY theory, it still repre-
sents a useful starting point in exploring the phenomenon
of 2D melting.

For the 2D harmonic crystal on a smooth substrate
(i.e. , in the absence of any one-body potential) it is well
known that fIuctuations in the long-wavelength phonon
mod. es lead to a logarithmic divergence in the displace-
ments of the particles, destroying translational long-
range order at any Gnite temperature. This is a conse-
quence of the rigorous Mermin-Wagner theorem con-
cerning long-range order in 2D. The standard theory
of elasticity shows, however, that despite the absence
of translational long-range order, the low-temperature
phase of such a crystal is characterized by a slow power-
law decay of translational correlations, ' very difI'erent
from the fast exponential decay that one would expect in
the liquid. This phenomenon has been termed "quasi-
long-range" order, and we shall refer to such a phase
as a "2D solid. " Based on the ideas of Kosterlitz and
Thouless, that the melting of such a 2D solid would be
nucleated by the unbinding of topological lattice defects,
Nelson and Halperin and Young formulated a the-
ory (KTNHY) which predicted that 2D melting would
occur via two separate second-order KT-like transitions.
In particular, they predicted that the 2D solid with alge-
braic translational correlations would become unstable to
the unbinding of dislocation defect pairs at a temperature
T, and melt into a new phase called the hexatic liquid.
This hexatic phase would be characterized by short-range
translational order, but quasi-long-range sixfold orienta-
tional order. As the temperature is increased, KTNHY
predicted that this quasi-long-range orientational order
would eventually be destroyed by the unbinding of discli-
nation defect pairs, and at T; ) T, the hexatic liquid
would melt into a normal (isotropic) liquid with short-
range orientational order. We summarize this scenario
by writing down the long-range limiting behavior pre-
dicted for the translational and orientational correlation
functions.

For translational correlations,

' 1 in perfect crystal (T = 0),
(e' '" ") & r " in2Dsolid(0&T&T ),

, e *~~~+ in hexatic or normal liquid (T ) T~),
(14)

where r;~ = ~r; —r~
~

is the separation between particles i
and j, and G is a reciprocal lattice vector of the perfect
(triangular) crystal at T = 0. g~(T) is a temperature-
dependent exponent, which for the 2D harmonic crystal
can be expressed in terms its shear modulus p and bulk

I

modulus A as

k~TIG~2(3@+ A)

4vrp(2@+ A)
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In the 2D vortex lattice, the bulk modulus A is infinite
because of the long-ranged nature of the Coulomb inter-
action. The expression for g~(T) thus simplifies to

k~T/G /'
'gc

47r p

A key prediction of the KTNHY theory is that if Cq
is a shortest reciprocal lattice vector, then g~ (T) takes
a discontinuous jump at T to zero from the universal
value

In what follows, we will directly test this prediction. We
wish to stress, however, that the behavior of translational
correlations in the 2D solid phase, as given by Eq. (14), is
a general result of continuum elastic theory, independent
of all assumptions concerning the mechanism of the melt-
ing transition. It is only the universal jump in q~ (T ),
and the existence of the hexatic phase, which are specific
predictions of KTNHY.

The sixfold orientational correlation function, accord-
ing to KTNHY, behaves as

' ne "'&~~& + ps in 2D solid (0 & T & T ),
(e ' '*l " ~) & r, "' . in hexatic liquid (T & T & T;),

—v, ~ jf6 in normal liquid (T ) T;),

where 6(r;) is the angle of the bond from particle i to its
nearest neighbor, relative to some fixed reference direc-
tion. o. is a proportionality constant of order 1, and y6
gives the value of the long-range orientational order ex-
pected in the 2D solid phase. The exponent qs (T), de-
scribing the quasi-long-range order of the hexatic phase,
is predicted to have a universal jump to zero at T; from
the value gs (T, ) = 4.

In the 2D solid, a relation between p6 and the vortex
shear modulus p can be derived from continuum elastic
theory,

exp
9kIBTA2

8'p
where A 2m/a„ is an ultraviolet cutoff (a„is the aver-
age separation between particles). Since we will indepen-
dently measure y6 and g~ in our simulation, we will use
this relation as a check of the consistency of our results.

For a periodic superconducting network, we have dis-
cussed how the discrete substrate of the network serves
to induce a periodic pinning potential for the magnetic-
field-induced vortices. To treat this case, we are therefore
interested in how the above 2D melting scenario is altered
by the presence of a periodic substrate. We shaH be inter-
ested in the situation where the period of the substrate is
suKciently small compared to the spacing between parti-
cles, so that the essential features of the defect-mediated
melting theory remain intact. This problem has been
treated by Nelson and Halperin. The main result of
such a "fine-mesh" periodic perturbation is the appear-
ance of a new phase at low temperatures, in which the
2D solid is commensurably pinned to the substrate. This
phase has true long-range translational order, and we
shall refer to it as the "pinned solid. " At a certain de-
pinning temperature T ( T, there is a transition to a
2D "Boating solid" phase, where the solid decouples from
the substrate, and translational correlations behave iden-
tically to those of a 2D solid on a uniform substrate; this
triangular Boating solid may in general be incommensu-
rate with the periodic substrate. Increasing temperature,
the Boating solid is expected to melt at T, via the dis-

location unbinding mechanism, into a liquid phase. On
a triangular substrate, this liquid will have a small (but
finite) long-ranged sixfold orientational order induced by
the substrate, at all temperatures. There should, how-
ever, be a temperature T; where ys (T) shows a signifi-
cant drop, reminiscent of the disclination unbinding tran-
sition on the smooth substrate. This drop should become
increasingly sharper as the ratio of substrate period to
particle separation becomes smaller. On the square sub-
strate, Nelson and Halperin predict that there will be a
sharp Ising transition at a T, ) T, where quasi-long-
range sixfold orientational order in the liquid vanishes,
and only the long-range fourfold orientational order in-
duced by the substrate remains. This Ising transition can
be viewed as a "ghost" of the hexatic to normal liquid
transition, which would occur in the absence of the peri-
odic substrate. The fourfold orientational order, induced
by the substrate, again persists at all higher tempera-
tures.

To conclude, we note again that the properties of the
2D Boating solid, described above, follow solely from con-
tinuum elastic theory, independent any particular theory
of melting. It is the existence of the hexatic liquid phase
that is a specific prediction of the KTNHY melting the-
ory. However, as pointed out by Nelson and Halperin,
it is always possible that a "premature" unbinding of
disclination pairs may lead to a direct melting of the 2D
solid into the normal liquid. Such a transition is then
expected to be first order. In this case, the KTNHY pre-
diction, Eq. (17), for the universal value of g& at melt-

ing, becomes a lower bound, g~ (T ) ) 3. Results from

various numerical simulations and experiments indicate
that this erst-order behavior might indeed be prevailing
in the various 2D systems studied so far.

D. Observables and finite-size scaling

We now show how the predictions of the preceding sec-
tion translate into the behavior of observables which can
be directly measured in our MC simulation. There are
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two key issues that we wish to investigate in the super-
conducting networks: (i) the transition from the super-
conducting to the normal state and (ii) the melting of the
magnetic-field-induced vortex lattice. For (ii), our goal
is to test the KTNHY theory of 2D melting, and so we
will be interested in studying both the translational and
the orientational order of the vortex lattice.

The superconducting to normal transition, marked by
the loss of superconducting phase coherence, is measured
by the vanishing of the helicity modulus, T(T), which
measures the response of the system to applying a net
twist, or phase gradient, to the phases 0, in the Hamilto-
nian, Eq. (1). For the Villain interaction of Eq. (4), the
helicity modulus can be shown to be identical to the
inverse dielectric function of the corresponding Coulomb
gas of Eq. (5), T/Jo ——e, where e is defined in the
usual way,

(20)

Here nk = g, n, exp( —ik r, ) is the Fourier-transformed
charge density. The vanishing of e signals an insulator-
to-metal transition in the Coulomb gas. The free charges
characteristic of the conducting phase correspond to
freely diR'using vortices in the superconducting network,
which are responsible for the loss of phase coherence. In
the simulation, the k ~ 0 limit is approximated by aver-
aging e over the smallest allowed nonzero wave vectors.

I

Information on the translational order in the vortex
lattice can be extracted &om the structure function

1 1
S(k) = (nkn k) = ) e' 'l'* "l(n,nz), (21)X X

which we evaluate for all allowed wave vectors k
(mi/L)bi + (m2/L)b2 in the first Brillouin zone (BZ) of
the reciprocal lattice to the real space dual lattice of the
superconducting network. A 2D intensity plot of S(k)
serves as a simple tool for visualization of the different
phases in the system. In analogy to the conventional
x-ray scattering images, we expect S(k) to display a pe-
riodic array of sharp b-function Bragg peaks in a state
with long-range translational order, and a set of smooth
concentric rings in a normal liquid phase. A phase with
quasi-long-range translational order, characterized by al-
gebraic translational correlations, will be distinguished
by a regular array of algebraically diverging peaks of fi-

nite width. A hexatic liquid phase should appear as a
set of concentric rings with sixfold angular modulation.

Apart from providing the simple visualization de-
scribed above, the scaling of the heights of the peaks in
S(k), as a function of system size L, will serve as a good
quantitative indicator of translational correlations in the
system. Combining the definition of S(k) in Eq. (21)
with Eq. (14) [note that, in Eq. (21), n; = 1 on a site
containing a vortex and n, = 0 on a site without a vor-
tex] one easily obtains

'
1 in pinned solid (T & T,),
L ~~l ~ in Hoating solid (T, & T & T ),
((+/L) in hexatic or normal liquid (T ) T ) .

(22a)
(22b)
(22c)

The finite-size scaling analysis of the translational order,
which we present in Sec. III, will be based on the above
relations. In particular, a comparison of Eqs. (22) with
our MC data will allow us to extract the temperature-
dependent exponent rI~(T) and test the KTNHY predic-
tion regarding the universal jump in q~ (T ). We shall
also determine the correlation length (+ (T) in the liquid
phase.

There is an independent way to extract the exponents
rI~ (and thus the vortex shear modulus p, ) without hav-
ing to use finite-size scaling. One can instead, for a given
system size, fit to the heights of the peaks S(G), as a
function of ~G~. For the low-order peaks, this depen-
dence is roughly Gaussian, as can be seen by combining
Eq. (22b) with the expression for g~ in Eq. (16). For
the higher-order peaks, however, we need to rederive this
dependence, since the prefactor [which is not shown in
Eq. (22b)] becomes important. Substituting Eq. (14)
into the definition of the structure function, Eq. (21),
and approximating the summations by integrations, we
get

and c is determined by the requirement that S(0)/L
1. One can see that for rt~ && 2 formula (22b) remains
valid, but for g~ 2 it breaks down. In practice, since
rt~, & 1/3 by the KTNHY bound, and any exponent g~
at a given fixed temperature can be written as

n~ = n~, (I&I'/IGil'), (25)

formula (22b) will approximately hold for the three short-
est reciprocal lattice vectors G only. To draw quantita-
tive conclusions regarding the exponent g~, one must use
the more accurate relation of Eq. (24).

Information on the bond orientational order will be
obtained by measuring the fourfold and sixfold orienta-
tional correlation

I

where R I is a long-distance cutoff, a„is the average
separation between vortices, and c is a proportionality
constant of the order 1. The integral is easily evaluated,

S(C) = c d2r(r/a, „)" 2vrca„" drr' "
,

(26)
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where the sum is over sites with nonvanishing charges
n; = +1, and 8; is the bond orientation angle defined
in the previous section. For a finite system, one expects
to see a sharp drop in p~(T) at the transition &om an

orientationally ordered phase, to a disordered or possibly
hexatic phase. One can deduce the scaling of the orienta-
tional correlation ys(T) with system size L, by combining
Eq. (26) with the KTNHY prediction of Eq. (18),

' 2m'((sl/L)2 + ys in pinned or fioating solid (0 & T & T ),
&ps ~ L «l+l in hexatic liquid (T & T & T;),

, (4/L)' in normal liquid (T ) T, ) .

(27a)
(27b)
(27c)

Relations (27aa) and (27ac) hold for I )) (s [otherwise
one must include corrections exp( —L/( s)]. These scal-
ing relations for y6 will be used extensively in our anal-
ysis, to test for the existence of a hexatic phase in our
model.

E. Monte Carlo algorithm

For the purpose of developing a fast MC algorithm,
it is important to realize that the physical phenomena
described in the previous section occur at temperatures
which are about one order of magnitude lower than
the ordinary Kosterlitz-Thouless transition in the zero
magnetic field, f = 0, case. This implies that the role
of vortex-antivortex pair excitations is negligible in the
temperature range that we study, and that in the simula-
tion we can restrict ourselves to the excitations caused by
movement of the vortices induced by the external mag-
netic field B. We have explicitly verified that the energy
of an isolated vortex-antivortex pair [in the Coulomb gas
language a pair of (+, —) charges] is always E~;, )) kgyT,
and thus in practice such an excitation would never be
accepted in the MC simulation. Consequently, our up-
dating scheme is as follows. In each step, one charge is
selected at random and moved to a different site within
a radius ro, which is chosen so as to maximize the accep-
tance rate. We find that values ro a„/2 are optimal.
The energy change LE = E„,—E ~g is then computed,
and the excitation is accepted or rejected according to
the standard Metropolis algorithm:

accep~ if e- /' ) x,

where x is a random number uniformly distributed on
the interval [0, 1). Here and henceforth, we work in
units in w'hich k~ = l. N such attempts we will re-
fer to as one MC sweep. At low temperature, we also
made global moves, by attempting to shift entire rows of
charges by one space. Such moves are meant to model
long-wavelength shear excitations, and help to accelerate
equilibration near the vortex-lattice melting transition.

Due to the long-ranged nature of the Coulomb poten-
tial, the most time-consuming operation is the evaluation
of AE. From Eq. (5) we find that the energy change for
moving a charge from the site R~ to the site R2 is

AE = —) V'(Ri —r~)n, + ) V'(R2 —r,.)n
2 2

—V'(Ri —R2), (28)

where we have used the fact that V'( —r) = V'(r) and
V'(0) = 0. In this form, each evaluation of AE is a
computation of the order N, as j sweeps through all the
sites with nonvanishing charge n~ = +1. To speed up
this process, we use an algorithm developed by Grest.
At each site of the lattice we define a potential due to all
charges in the system,

F(r;) = ) V'(r, —r, )n, . (29)

Now each evaluation of

AE = —F(Ri) + F(Rz) —V'(Ri —R2) (30)

requires computation of only O(1). Naturally, each time
the excitation is accepted, it is necessary to update F(r;)
at all sites,

F„.(r, ) = F ig(r;) —V'(r; —Ri) + V'(r; —R2),

i = 1, 2, . . . , N. (31)

This is a computation of order ¹ However, since the
acceptance rate in the interesting temperature range is
very low (typically below 1%), this method is faster than
the direct approach of Eq. (28).

Data are collected by heating the system up from the
ground state. At each temperature we discard 30 000
MC sweeps to equilibrate the system. Then, starting
from this equilibrated configuration, we perform several
(typically 4—6) independent runs of 100 000 sweeps each
to sample physical quantities. In some cases, when eval-
uating quantities at the temperatures close to the critical
point, substantially longer runs are carried out. Errors
are estimated from the standard deviation of these inde-
pendent runs. To verify the consistency of our results,
we also perform cooling from a random configuration at
high temperature; no substantial hysteresis is found.

All simulations were carried out on Spare 10 worksta-
tions. The time needed to equilibrate the system and
sample the physical quantities at a given temperature
T was typically several hours (depending on size) using
100% of the single processor power. For example, it took
approximately 3 h to carry out 100000 MC sweeps at a
temperature close to melting, for a medium-sized system
N = 81 with density f = 1/49. Our longest run, to sam-
ple the energy distribution near the depinning transition,
took 189 h for 4 x 10 MC sweeps on the largest system
of N, = 169 and f = 1/49.
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III. SIMULATIONS
ON THE TRIANCULAR CRID: DILUTE CASE

A. Results

pinned
solid

Aogting
solid

isotropic
liquid

FIG. j.. Phase diagram of the suKciently dilute system, as
found by our Monte Carlo calculation.

In this section we report our results from simulations
of the Coulomb gas Hamiltonian (5) on a triangular grid
of sites (corresponding to a honeycomb superconduct-
ing network), for the dilute limit f « 1 (or equivalently
(Lp « G ) . Iil t ills case, we expect that oui' discretlzed
model will well approximate the continuum. Some of
these results have been reported by us previously. The
advantage of choosing a triangular grid is that, for a given
system size I, one can always choose f in such a way so
as to accommodate a perfect, commensurate, triangular
vortex lattice in the ground state. By contrast, this is
never possible on a square grid. It is convenient to choose
f = 1/m2, with m integer, since then each system size of
the form L = sm (s integer) will accommodate a triangu-
lar ground state with N, = fL = s vortices. We have
studied systematically densities f = 1/m, with m=3—
12, and fixed % 100. The results of our investigation
are summarized in Fig. 1: For sufFiciently dilute systems
(f & 1/25) we find three distinct phases. At low tem-
peratures the vortex lattice is in a "pinned solid" phase,
locked to the underlying grid. Above a sharp depinning
temperature T,(f), the vortices are in a "floating solid"
phase, which then melts at T into a normal vortex liq-
uid. The properties of these phases will be discussed
below. For denser systems with f ) 1/25, the two tran-
sitions at T and T~ merge, and there is only a single
transition from a pinned solid into a liquid.

For a simple visualization of the three phases, we show
in Fig. 2 intensity plots of S(k) at various T, for the
specific case of f = 1/49 and N, = 63. We also display
the amplitude of S(k) along the symmetry axis k„.For
T = 0.003 [Fig. 2(a)], just below T,(f), we see a regular
array of b-function Bragg peaks, indicating long-ranged
translational order induced by pinning to the triangular
grid. The width of these peaks corresponds to the finite
resolution of wave vectors allowed by our finite system.
At T = 0.0065 [Fig. 2(b)], just below T, we see a regular
array of peaks, but they are now of finite width. We will
show that these peaks are consistent with the power-law
singularities characteristic of the algebraic translational
correlations expected for a 2D floating solid phase. The
heights of the peaks along the symmetry axis are well
described by a Gaussian, as expected from Eqs. (24) and
(25). Thus, for T,(f) & T & T we do have a Boating
vortex lattj,"e, as in the continuum limit. For T = 0.0075
[Fig. 2(c)], slightly above T we see a rotationally invari-
ant structure, typical for a liquid with short-range corre-

lations. Thus, for T )T, the floating vortex lattice has
melted into a normal liquid. It is interesting to note that
we see no sign of angular modulation in the rings above
T . One might expect such a modulation due to the
long-ranged sixfold orientational order induced in princi-
ple by the underlying triangular grid; if the grid was too
fine for this efFect to be significant, modulation might still
be present if a hexatic phase existed just above T

In Fig. 3, we plot versus T the inverse dielectric func-
tion e (T), and the orientation order correlation ps(T),
for f = 1/49 and N, = 169 (one of the largest systems
that we have studied). We see that e (T) vanishes at the
depinning transition T,(f), signaling the loss of super-
conducting phase coherence in the floating solid phase.
This is just a reflection of the fact that an unpinned vor-
tex lattice, in the presence of any applied dc current (no
matter how small), will be free to drift transversely to
the current, resulting in a finite linear "flux flow" re-
sistance. Our results explicitly show that the absence
of phase coherence in this k ~ 0 sense does not imply
the absence of a well-defined vortex lattice. Considering
the orientation order, we see that p6 sharply drops at
T,(f), but remains finite up to the melting temperature
T, where it drops again sharply to nearly zero values.
The smallness of y6 above T indicates that the sixfold
orientational long-range order, which is induced in prin-
ciple by the triangular grid, is indeed a negligibly small
efI'ect at the densities we are concerned with. We shall
discuss this point in more detail in the following section.
In Fig. 4, we show the dependence of T,(f) and T on
the vortex density f, as estimated from the behavior of

(T) and ps(T), and checked against the behavior of
the structure function S(k). We see that only for suK-
ciently dilute systems, f & 1/25, is there a Hoating solid
phase; for f ) 1/25 there is only a single transition from
a pinned solid to a liquid. As f decreases, T (f) vanishes
linearly with f, consistent with the TJ conjecture for the
loss of superconducting coherence. T, however, quickly
approaches a finite constant T = 0.0070 + 0.0005. In
terms of the superconductor temperature, this means a
vortex lattice melting at T = 0.00704'o/8vr A~. This is
well within the bounds 0.0046 ( T ( 0.0086 estimated
by Fisher from the KTNHY theory.

B. Melting transition: Bnite-size sealing analysis

To investigate if the melting transition at T is in-
deed consistent with the KTNHY theory, we have carried
out a detailed finite-size scaling analysis for the density
f = 1/49. This density has been chosen for two reasons.
First, the estimated T is well separated from the depin-
ning temperature T, and hence the Boating solid phase
exists in a relatively wide interval of temperatures. Sec-
ond, the density is not too small, and thus we are able to
study systems with as many as N = 169 vortices. More
dilute systems, with comparable N would require sizes
that are currently out of reach of the computer power
available to us. We have carried out extensive simula-
tions for the system sizes L = 28, 35, . . . , 91, and we have
analyzed the size dependences of various physical quan-
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mated from the width in the apparent drop in e (T) and
y6(T). Solid and dashed lines are guides to the eye only.

tities at several temperatures below and above T . Our
results are as follows.

In Fig. 5 we plot S(Ci)/L as a function of L, on a
log-log scale, for several difFerent temperatures. Data for
each temperature fall on a straight line, confirming the
expected power-law behavior of Eq. (22). These straight
lines fall into three distinct groups. For T & T 0.0045,
S(Gi)/L 1, indicating the long-range order of the
pinned lattice. For T, & T & T 0.007, we find alge-
braic decay, S(Ci)/L2 L "o(+). For T )T, we find

S(Ci)/L L, with x ~ 2 as T increases, consistent
with the short-range order of a liquid.

Thus, our data for the floating solid phase are consis-
tent with the predictions of the continuum elastic the-
ory, given by Eq. (22b), and in particular we may fit our
data to this expression to obtain the translational corre-
lation exponent g~, . We show our results in Table I. We
can now make quantitative comparison with the KTNHY
theory, by noting that g~, first exceeds the KTNHY uni-
versal value of 1/3 [see Eq. (17)] at T = 0.0065, very close
to the melting temperature T 0.0070 as estimated
from the behavior of the orientational correlation ps(T)
of Fig. 3. The slopes of the lines in Fig. 5 also show an
apparent discontinuous jump at this same T

As a consistency check, we have also computed gc, ,

where G 2 ——2G i. Using similar fits to S(G 2) as in Fig. 5,
we determine the exponent qc, , and show the results in
Table I. We see that gc, 4gc, as expected, since,
according to Eq. (19), qc ~G~

As an alternative way of calculating gc, , we fit to the
heights of the peaks in S(k) at all the available G, for
a fixed size system, as described in Eqs. (23)—(25). We
found that the results are only weakly dependent on the
precise value of the cutofF R of Eq. (24); we therefore take
R = I, which results in an excellent fit. We show one
example of such a fit in Fig. 6. The exponent iI~, (T),
obtained in this way, is shown in Table II for the sizes
L = 63, 77, 91, with f = 1/49. We note that despite a
certain tendency to overestimation, these exponents are
in reasonable agreement with those obtained from the
finite-size scaling. This method of extracting the shear
modulus should be useful in situations where a finite-size
scaling analysis is difIicult to handle, such as in systems
with a large unit cell in the ground state.

Let us now consider the orientational order. In Fig. 7
we plot the orientational correlation ps(T) as a func-
tion of L for several temperatures. In the pinned solid,
T ( T, ps(T) ~ 1 as L increases, confirming the
expected long-ranged orientational order of the perfect
pinned triangular lattice. More interestingly, ps(T) also
approaches a finite value pz in the floating lattice phase,
T, & T & T, in agreement with continuum elastic the-
ory. The solid lines in Fig. 7 are from least squares fits to
Eq. (27a). The resulting fitted values of ps are shown
in Table I. Above T we attempt to fit to the power
law of Eq. (27b) for a hexatic liquid, but we always find
that using Eq. (27c) for an isotropic liquid results in a
distinctly better fit. Since the underlying triangular grid
will in principle result in long-range sixfold order at all
temperatures, we have also fit our data above T to the
form of Eq. (27a), which difFers &om Eq. (27c) only in the
constant y6 . As shown in Table I, however, we always
find pz 0. Thus the discrete grid is playing a negli-
gible role in the orientation order. To compare our fits
above T, we note that in most cases the y parameter
of the fit to Eq. (27a) is 5—10 times smaller than that of
Eq. (27b). The former fit is also much more stable in the
sense that fitted parameters do not change significantly
when the data are restricted to difI'erent ranges of L. We
may therefore conclude that, in agreement with our in-
vestigation of the structure function, the Boating solid
melts directly into a normal liquid. The hexatic phase
is either absent in our system, or it occurs only in some
extremely narrow interval of temperatures, which makes
it difFicult to detect by numerical simulation.

In order to see this another way, in Fig. 8 we plot ver-
sus temperature our values of ys (T) and T/g~, (T), ob-
tained from our finite-size scaling analysis. From Eq. (16)
we see that T/iI~, (T) is just proportional to the vortex
lattice shear modulus p. We see that ps (T) starts to
drop at the same temperature that T/q~, (T) first drops
below the KTNHY universal value of 3T [see Eq. (17)],
i.e., the temperature at which the floating solid starts to
melt. The temperature range over which y6 decays to
zero is identical to the range over which T/iI~, (T) de-
cays. This suggests that the small but finite values of
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which we find above T are just a finite-size eKect,
rather than a signature of the hexatic phase. Let us also
note that the exponent q~, (T) has a physical meaning
only below T . Above T it is strictly infinite and we use
it here, with some abuse of notation, simply as the expo-
nent resulting from the fit of our data to the power-law
form of Eq. (22b).

Having obtained the values of rI~, (T) and ps (T), we
can now test the relation, Eq. (19), between the orienta-
tional long-range order and the vortex-lattice shear mod-
ulus p that should hold in the Hoating solid phase. Ex-
pressing p in terms of the exponent il~, , Eq. (l.9) gives

with sixfold bond orientational order. We are able to de-
termine these from finite-size scaling only up to an overall
multiplicative factor. %'e determine this factor by assum-
ing that at high T the correlation lengths are equal to the
average spacing between vortices, i.e. , ((T ~ oo) = a„.
With this assumption, (+(T) and (s(T) are displayed in
Fig. 10. We see that both correlation lengths rapidly in-
crease around T 0.007. It is also evident from Fig. 10
that orientational correlations persist out to longer dis-
tances, up to higher temperatures, than translational cor-
relations.

C. Order of the melting transition

TABLE I. Temperature dependence of the exponents
il~, (T) and inc. 2 (T) for f = 1/49 on the triangular grid, as ob-
tained from 6nite-size scaling. Also displayed are the limiting
values ps of the orientational correlation ps(T) for L ~ oo.

T
0.00475
0.00500
0.00525
0.00550
0.00575
0.00600
0.00625
0.00650
0.00675
0.00750
0.01100
0.01500

n~. (T)
0.188 +0.008
0.207 +0.007
0.211 +0.007
0.248 +0.005
0.255 +0.008
0.296 +0.006
0.319 +0.010

0.4 +0.16
1.4 +0.31
3.4 +0.37
2.8 +0.23
2.2 +0.12

il~, (T)
0.704 +0.055
0.806 +0.032
0.852 +0.028
0.998 +0.019
0.999 +0.029
1.065 +0.028
1.191 +0.016

1.4 +0.22
2.0 +0.31
3.4 +0.44
2.9 +0.30
2.1 +0.22

'P6

0.571 +0.007
0.529 +0.005
0.504 +0.004
0.476 +0.003
0.458 +0.003
0.426 +0.007
0.403 +0.004
0.33 +0.030
0.20 +0.041
0.03 +0.046

-0.01 +0.032
0.00 +0.020

with K = 2~C
~

/9A, where A = A(2ir/a„), and A is a
dimensionless constant of order unity. In Fig. 9 we plot

(T) and —I/Kin[ps (T)] versus temperature. For
K = 0.33, which corresponds to A = 0.94, the two data
sets lie on top of each other for all T below T, providing
yet another consistency check for our calculation.

By fitting our data above T to Eqs. (22c) and (27c)
we have also extracted the correlation lengths (+(T), as-
sociated with translational order, and (s(T), associated
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FIG. 6. Heights of the peaks S(G) versus ~Gr~ for f = 1/49
and L = 63. Dashed lines represent the best fit to Eq. (24),
and are used to extract the exponent il~, (T).

The absence of the hexatic phase, as deduced from
our analysis of the orientational correlations, suggests the
possibility that the transition is not of the KTNHY type,
but is due to some other mechanism, such as domain
wall proliferation. It might also be that the unbinding of
disclinations occurs simultaneously with the unbinding
of dislocations. Such a possibility has been suggested in
Ref. 20. In any case, it is useful to determine the order of
this melting transition. To examine the possibility that
the transition is first order, we have used the histogram
method due to Lee and Kosterlitz. For various system
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sizes at f = 1/49, we measure the energy distribution
P(E) e ( )/ near the melting temperature T . In
Fig. 11 we plot the resulting free energy F(E) versus
E. Although our data are somewhat noisy, we see a clear
double-well structure with an energy barrier AE between
two coexisting phases. The inset to Fig. 11 shows the
dependence of AF on the system size L. The energy
barrier LE grows with L, strongly suggesting a first-
order transition. Our system sizes remain too small to
see clearly the predicted scaling AF L.

For all sizes, the data have been taken at T = 0.0065,
and then the energy distribution is extrapolated, using
the method of Ferrenberg and Swendsen, to that tem-
perature which gives two minima of equal depth. This
criterion gives an improved estimate of the melting tem-
perature, T = 0.0066. A total of 10 MC sweeps were
performed for each size to measure the energy distribu-
tion P(E). We have checked the consistency of these
measurements by calculating the energy of the system
at various temperatures (above and below T ) using the
extrapolated distributions P(E, T). We then compared
these with energies obtained by direct simulation at those
temperatures, and found good agreement for all temper-
atures not too far from T

To conclude, the histogram method provides strong
evidence that the melting transition is first order. This
is consistent with our observation that the 2D solid melts

directly into an isotropic liquid. The transition is weakly
first order, however, as can be seen from our result that
the jump in itic, (T ) (and hence the vortex lattice shear
modulus p, ) at melting remains very close to the KTNHY
universal value.

D. Depinning transition

Finally, we consider the order of the depinning tran-
sition at T,(f). In their work on 2D melting on a peri-
odic substrate, Nelson and Halperin studied this "com-
mensurate to floating" transition using renormalization
group techniques. They concluded that the transition is
most likely second order, with properties very similar to
the floating solid to liquid melting transition discussed in
Sec. IIC. To test this prediction, we use the histogram
method applied at the depinning transition T, (f), just
as we did in the preceding section for melting at T
Measuring the energy distribution P(E) at T,(f), for

f = 1/49 and various L, we show the free energy F(E)
versus E in Fig. 12. As was seen at T, we now simi-
larly see a pronounced double-well structure with barrier
AE growing with the size of the system (see the inset).
Again, this is a clear indication that the transition is erst
order. Due to the low acceptance rates at these low tem-
peratures, we had to perform as many as 4 x 10 MC

0.00475
0.00500
0.00525
0.00550
0.005?5
0.00600
0.00625
0.00650
0.00675

!l~. (T)
L =63 L =77 L =91 FSS

0.164+0.026 0.161+0.025 0.195+0.018 0.188 +0.008
0.216+0.012 0.221+0.009 0.219+0.007 0.207 +0.007
0.249+0.009 0.235+0.009 0.247+0.006 0.211 +0.007
0.282+0.007 0.272+0.006 0.275+0.007 0.248 +0.005
0.298+0.008 0.292+0.009 0.290+0.006 0.255 +0.008
0.326+0.008 0.326+0.007 0.329+0.007 0.296 +0.006
0.351+0.014 0.350+0.017 0.352+0.016 0.319 +0.010
0.677+0.342 0.473+0.223 0.568+0.131 0.4+0.16
1.755+0.789 1.678+0.453 2.458+0.911 1.4+0.31

TABLE II. Comparison of the exponents iso, , (T) obtained
using two different methods. Columns 2—4 show results from
fitting of S(G) to Eq. (24), for system sizes L = 63, 77, 91.
Column 5, labeled FSS, restates the results from the finite-size
scaling analysis. All exponents are for density f = 1/49.
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FIG. 8. T/q~, (T) (proportional to the shear modulus p, )
and orientational correlation p6 versus T, as extracted from
finite-size scaling. The intersection of T/go„(T) with the
dashed line 3T determines the KTNHY upper bound on the
melting transition T/re„(T)) 3T.
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expected for a 2D harmonic lattice. Dashed line determines
the KTNHY upper bound il~ (T) ) 3.

sweeps for each system size, in order to get reasonably
accurate energy distributions. By finding the tempera-
ture that produces minima of equal depth, we estimate
that T,(f = 1/49) = 0.0046.

IV. SIMULATIONS ON THE SQUARE GRID:
DILUTE CASE

A. Ground state

In the present section we shall investigate the di-
lute limit (f « 1) of the Coulomb gas, on a square
grid of sites. This corresponds to a square periodic
superconducting network, which has been the predom-
inant geometry in experimental and theoretical studies
of networks. ' Qualitatively, we find similar behavior
as found in Sec. III for the triangular grid: a depinning
transition T,(f), from a commensurate pinned solid to a
Boating solid, followed at higher temperature by a melt-
ing transition T to a liquid.

While the case of a square grid is more relevant to the
physics of superconducting arrays, it is somewhat more

FIG. 11. Free energy distribution F(E) versus E, at melt-
ing T, for f = 1/49 and several system sizes L. The growth
in the energy barrier AI" with increasing L (see inset) indi-
cates a first-order transition. Curves for different L are offset
from each other by a constant, for the sake of clarity.

dificult to study theoretically than the triangular grid
of Sec. III. The main reason for this is the rich variety
of ground state configurations that one can encounter
for various system sizes and vortex densities f The.
most extensive enumeration of such ground states, for
both dilute and dense f, has been carried out by Stra-
ley and Barnett. This richness in ground state struc-
ture is due to the intrinsic competition between the re-
pulsive vortex-vortex interaction, which prefers the for-
mation of a perfect triangular lattice, and the geomet-
rical constraints implied by the presence of the square
grid. Since a triangular lattice is incommensurate with a
square grid, for small f the resulting ground states form
high-order commensurate approximations to a triangular
lattice that vary substantially as f varies. Thus, while
in the triangular grid a density f = I/m can always

h, F(L)
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FIG. 10. Translational and orientational correlation
lengths g+(T) and (s(T) versus T for f = 1/49, as extracted
from finite-size scaling. Both correlation lengths sharply in-
crease at the melting temperature T 0.0070.
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FIG. ]2. Free energy distribution F(E) versus E, at the
depinning transition T„for f = 1/49 and several system sizes

The growth in energy barrier AI" with increasing L (see
inset) indicates a first-order transition. Curves for different L
are offset from each other by a constant, for the sake of clarity.
The abrupt ending of the distributions at the low-energy side
of the graph is because the lower minimum represents the
ground state energy.
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fit commensurably in a lattice of size L = sm (s inte-
ger), for the square grid, a density of f = 1/q (q integer)
will require a lattice of at least I = 8q to contain the
commensurate ground state. It thus becomes too difB-
cult to carry out detailed Gnite-size scaling calculations
at small f, as the lattice sizes needed quickly become too
large to simulate. We therefore must be content with a
more qualitative analysis based on simulations at a Axed
size system. A second problem, related to the high-order
commensurability of the ground state, is the existence of
excited states that are nearly degenerate in energy with
the ground state. This can sometimes cause equilibration
problems, or leave uncertainty as to the configuration of
the true ground state. Fortunately, these diKculties oc-
cur only at low temperatures, below the depinning tran-
sition T,(f), where commensurability efFects are crucial.
In sufFiciently dilute systems, the melting of the Boating
solid phase at T is largely unaffected by such difFiculties,
and we find results familiar to the preceding section.

We have performed simulations for systems with a
wide spectrum of densities f = 1/q (q integer) with
10 ( q ( 90. From inspection of the inverse dielectric
constant e (T) and the orientational correlation ys(T),
for a Axed size I, we estimate the depinning and melting
transition temperatures, T,(f) and T, and we plot these
values versus f in Fig. 13. We see that above f 1/30
the depinning and melting transitions merge, and there
is only a single transition from pinned solid to liquid.
Due to the varying commensurability of the ground state
as f varies, the values T,(f) and T no longer decrease
monotonically with f, as was found for the triangular
grid. Nevertheless, we see that T,(f) still tends linearly
to zero as f decreases (dashed line), in agreement with
the TJ conjecture. T appears to saturate around 0.007,
in agreement with the melting temperature found for the
triangular grid.

In order to find the ground state of the system for a
given density f and size L, we have devised a simple
program that scans all possible periodic vortex config-
urations, consistent with periodic boundary conditions,
and evaluates their energy. When translational and in-
version symmetries are accounted for, the total number

B. Systems with "nearly triangular" ground state:
f = 1/60

Not very surprisingly, systems with an almost triangu-
lar ground state, such as f = 1/60 shown in Fig. 14(a),

60
a) f=1/60
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50.
h) f=1/51

of distinct configurations is relatively small, and even for
the largest of the systems that we considered it took only
few minutes to execute the program. The lowest-energy
configuration obtained in this manner was then taken
as a candidate for the ground state. In many cases we
have verified that this indeed was a true ground state by
performing a slow MC cooling from a random con6gu-
ration at high temperature. In all cases we found that
for f = 1/q the ground state has a q x q periodicity. In
Fig. 14 we display two typical examples of these ground
state configurations. The almost perfect triangular lat-
tice (~68 x ~68 x ~72) in Fig. 14(a) is for f = 1/60.
Figure 14(b) shows the example of a nearly square vor-
tex lattice (v 50 x ~53 x v 89) with f = 1/51. In what
follows we shall concentrate on these two special cases
as representatives of two classes of systems with slightly
different physical properties.
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FIG. 13. Dependence of T, and T on vortex density f for
the dilute system on a square grid. Dashed and solid lines are
guides to the eye only.
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FIG. 14. Two types of ground state con6gurations for a
dilute system on the square grid: (a) nearly triangular vortex
lattice f = 1/60, (b) nearly square vortex lattice f = 1/51.
Solid squares denote positions of vortices.
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behave in a fashion similar to systems on the triangu-
lar grid studied in Sec. III. We display the behavior of
the inverse dielectric function e i(T) for f = 1/60 and
L = 60 in Fig. 15(a). In Fig. 15(b) we show the sixfold
and fourfold orientational correlations ys(T) and p4(T).
A sharp drop in e (T) around T,(f) 0.0045 signals the
loss of superconducting phase coherence. Above T (f),
e i is zero, but ps(T) stays finite. Based on our expe-
rience from the triangular grid, we take this as a signa-
ture of a Boating triangular solid with long-range orien-
tational order. T, (f) is thus a transition from a commen-
surate pinned solid, to an incommensurate Boating solid.
Around T 0.0075 we see that ys(T) drops again to
very small values; we take this as a signal that the float-
ing solid has melted into a vortex liquid.

In order to confirm this scenario, we calculate the
structure function S(k) at various temperatures, and
display the resulting intensity plots in Fig. 16. We
clearly see the pinned solid [Fig. 16(a)], the Boating solid
[Fig. 16(b)], and the liquid [Fig. 16(c)] phases. It is in-
teresting to note that the rotational symmetry of the
pinned and Boating solids breaks the fourfold rotational
symmetry of the square grid, leading to two possible de-
generate orientations. In the liquid, however, we see that
the fourfold symmetry of the square grid is restored, with
a strong fourfold angular modulation of the circular in-
tensity peaks. This observation is also confirmed by a
direct measurement of p4(T) [see Fig. 14(b)], which is
close to zero in the floating solid phase, but then rises
sharply at the melting transition and only slowly van-
ishes with increasing temperature. The small values of
y4(T) for T,(f) ( T & T are an indication of the extent
to which the commensurate, slightly distorted triangular
lattice of the ground state, beomes an incommensurate
perfect triangular lattice in the Boating solid phase.

Since we are unable to carry out finite-size scaling, we
are unable to search in detail for the hexatic phase, or

for the predicted Ising transition from the hexatic to
the normal liquid. However, as the fourfold symmetry
appears to be restored at the same temperature as the
melting transition, we suggest that, as was found for the
triangular grid, the hexatic phase is absent and the melt-
ing transition is erst order.

Although finite-size scaling is not possible, we can nev-
ertheless still obtain the translational correlation expo-
nent gc„byanalyzing the decay of the peaks in the struc-
ture function, using the method discussed in connection
with Eqs. (23)—(25). In the present case the implementa-
tion of this method is somewhat trickier than it was for
the triangular grid, since, due to the incommensurabil-

a) T=0.0030

b) T=0.0060
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FIG. 15. (a) Inverse dielectric constant e (T) and (b) ori-
entational correlations p6(T) and p4(T) versus T, for the sys-
tem with nearly triangular ground state with f = 1/60 and
L = 60.

FIG. 16. Melting of a nearly triangular vortex. lattice on
the square grid. Intensity plots of S(k) for f = 1/60, L = 60,
and several temperatures: (a) T = 0.003 in the pinned solid,
(b) T = 0.006 Qoating solid, (c) T = 0.009 in the liquid.
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ity of the floating solid, the peaks in S(k) do not have
well-defined positions G on the square reciprocal lattice.
We overcome this difficulty by numerically scanning S(k)
for local maxima at a given distance from the center of
the reciprocal lattice, and averaging over the heights of
peaks of the same order. The peak heights estimated in
this way are shown in Fig. 17 for several temperatures
T in the floating lattice phase. Dashed lines are least
squares fits to the formula (24), and the extracted expo-
nents roc, (T) are summarized in Table III. The accuracy
of the fit appears to be as good as in the case of the trian-
gular grid, and we therefore have good reason to believe
that our determination of rj~, (T) (and thus the vortex
shear modulus p) is reasonably accurate. Once again we
see from Table III that roc, (T) first exceeds the universal
KT value of 1/3 at T 0.007, very close to the melting
temperature T 0.0075 estimated from the behavior
of ~.(T).

C. Systems with "nearly square" ground state:
f = 1/51
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We now briefly describe our results from simulations on
a system with density f = 1/51, which possesses a nearly
square ground state [Fig. 14(b)]. Our results are for a sys-
tem of size L = 51. The temperature dependence of the
inverse dielectric function e (T) is shown in Fig. 18(a).
From the data, we estimate the depinning temperature to
be T,(f) 0.0035. We note that even though f = 1/51
here is larger than the f = 1/60 studied in the previous
section, we find 0.0035 = T, (1/51) ( T, (1/60) = 0.0045,
thus illustrating the nonmonotonic behavior of T, (f) for
small f. The significantly lower depinning temperature
in the present case may be qualitatively understood as a
result of the larger distortion of the ground state away
from the perfect triangular lattice favored by the vortex-
vortex interaction. This large distortion, which is favored
by the pinning energy, comes at a cost in vortex-vortex
interaction energy. The result is a reduced free energy
difference between the pinned "distorted triangular" solid
and the perfect triangular floating solid, and hence a
reduced depinning temperature. A similar observation

TABLE III. Temperature dependence of the exponents
tlc. , (T) of the floating vortex lattice on the square grid as
obtained by fitting the height of peaks in the structure func-
tion, for f = 1/60 and I = 60.

T
0.0040
0.0045
0.0050
0.0055
0.0060
0.0065
0.0070

tl~, (T)
0.0024+0.001
0.111 +0.016
0.198 +0.012
0.224 +0.009
0.270 +0.011
0.33 +0.04
0.49 +0.10
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holds for the other values of f we have studied: Systems
with relatively lower T,(f) compared to other nearby val-
ues of f are those with greater distortion of the ground
state from a triangular lattice.

In Fig. 18(b) we plot the temperature dependences of
the fourfold and sixfold orientational correlations &p4(T)
and ps(T). In contrast to the previously considered
cases, the melting transition is barely visible here: One
sees only a small kink in &p4(T) and an inconspicuous dip
in ys(T) near T = 0.005. For a clearer picture of melt-
ing, we show the structure function S(k) in Fig. 19. We
see again the pinned solid [Fig. 19(a)], the floating solid
[Fig. 19(b)], and the liquid [Fig. 19(c)]. Note that the
peaks in the floating solid occur at distinctly diferent
wave vectors k than in the pinned solid; this emphasizes
the fact that T, (f ) is truly a transition from a commensu-
rate "nearly square" lattice, to an incommensurate float-
ing triangular lattice. Inspection of these intensity plots
gives a melting transition of T 0.005, in agreement
with the value hinted at in Fig. 18(b). We note that this
value is significantly lower than the value of 0.007 found
in other cases. Thus commensurability effects can also
significantly lower the melting temperature. Such com-
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FIG. 17. Heights of the peaks S(K) versus ~K~ for f = 1/60
and L = 60. Dashed lines represent the best fit to Eq. (24),
and are used to extract the exponent tlat, (T).

FIG. 18. (a) Inverse dielectric constant e (T) and (b) ori-
entational correlations y6(T) and p4(T) versus T, for the
system with nearly square ground state with f = 1/51 and
A=51.
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mensurability eKects presumably become less significant
as f decreases and the ground state becomes increasingly
closer to a triangular lattice. We thus expect that the
melting temperature becomes T 0.007 in the asymp-
totic f -+ 0 limit, as is indeed suggested by Fig. 13.

V. SIMULATIONS ON THE SQUARE GRID:
NEAR FULL FRUSTRATION

The square superconducting network with f = 1/2
has been the focus of extensive theoretical study in re-
cent years. 'i ' As the Hamiltonians, Eqs. (1) and (5),

a) T=0.0030

are periodic in f with period 1, f = 1/2 represents the
strongest magnetic field, and most dense vortex con6g-
uration, discernable by the network. Thus this case is
usually referred to as "fully &ustrated. " The ground state
of this configuration is in some sense the simplest of all

f ) 0, consisting of a checkerboard pattern of vortices,
with n, = 1 and n; = 0 on the two alternating sublat-
tices of the square grid. This dense vortex lattice melts
directly into a vortex liquid at T (1/2) 0.13. Super-
conducting coherence vanishes at T, (1/2) T (1/2).

We now wish to study how the system behaves as f
is varied slightly away from 1/2, in order to test the dis-
continuous behavior predicted by the TJ conjecture. We
study in particular systems with f = 1/2 —I/q, with inte-
ger q large. While the ground states for densities of this
form have been studied by Straley and co-workers, '

finite-temperature properties have remain unexplored.

PB.

!ac Ice. '

c

c

b) T=0.0045

We first consider the particular case of f = 5/ll, which

may be written as f = 1/2 —1/22. The correct ground
state for this case, which we show in Fig. 20, was first
found by Kolachi and Straley. It consists of a periodic
superlattice of vortex vacancies superimposed on an oth-
erwise uniform f = 1/2 like background, and is periodic
with a 22 x 22 unit cell. Our motivation is to see whether
or not this superlattice of vacancies (or "defects") can
melt independently of the f = 1/2 like background, and
if so, whether the resulting liquid of vacancies destroys
superconducting coherence. Our analysis is similar to
that in the previous section.

Heating from the ground state, we show sample in-
tensity plots of the structure function S(k), at difFer-
ent temperatures, in Fig. 21. Figure 21(a) shows the
low-temperature phase at T = 0.010. The bright Bragg
peaks at k = (+sr/ao, +7r/ao) originate from the vortex
ordering in the f = 1/2 like background, while the pe-

c) T=0.0060
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FIC. 19. Melting of a nearly square vortex lattice on the
square grid. Intensity plots of S(k) for f = 1/51, I = 51, and
several temperatures: (a) T = 0.003 in the pinned solid, (b)
T = 0.0045 in the Iloating solid, (c) T = 0.006 in the liquid.

FIG. 20. Ground state for f = 5/11 on a 22 x 22 unit cell.
Solid squares represent vortex positions. Crosses (+) indi-
cate vacancies (defects) in the otherwise perfect checkerboard
pattern of f = 1/2.
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riodic Bravais lattice of less intense Bragg peaks is due
to the defect superlattice, which at this low temperature
is pinned to the substrate. Thus we have a "pinned de-
fect solid" phase. As the temperature is increased, we
find that the defect superlattice melts at T 0.015.
In Fig. 21(b) we show the system at T = 0.018, just
above this melting. The de fects no longer give rise
to Bragg peaks, but instead we see the circular rings
(with strong fourfold angular modulation) characteristic
of a defect liquid. However, the bright Bragg peaks at
k = (her/ap, +sr/ap) remain, indicating that the f = 1/2
like vortex background remains ordered. Upon increas-
ing the temperature further, the ordered f = 1/2 back-

a) T=0.0100

b) T=0. 0180

%i
"~Y'.

::-

II@%

c) T=0.0550

ground is also eventually destroyed at T 0.040. In
Fig. 21(c) we show the system at T = 0.055, above T
The peaks at k = (+m/ap, +sr/ap) have broadened to fi-
nite width, indicating the disordering of the f = 1/2 like
background.

To see the melting transitions more clearly, in Fig. 22
we plot versus temperature the peak heights S(q*) and
S(Gi), with q* = (vr/ap, ~/ap) giving the ordering of the
f = 1/2 like background, and Gi the shortest recipro-
cal lattice vector of the defect superlattice. We see that
S(Gi) vanishes sharply at T 0.015, where the pinned
defect superlattice melts into a defect liquid. S(q*), how-
ever, remains at its T = 0 value of unity for all temper-
atures up to T 0.020, clearly demonstrating that the
f = 1/2 like vortex background remains ordered through-
out the defect melting transition. S(q*) starts to drop
to zero around T 0.04, where, based on the struc-
ture function intensity plots, we have estimated that the
f = 1/2 like background melts.

To investigate superconducting coherence, in Fig. 23
we show the inverse dielectric function versus temper-
ature. We see that e vanishes at the defect melting
transition T . The diffusing defects above T induce
a diffusion of vortices, which must move to fill in the
"hole" left behind by the defect as it moves. The diffus-
ing vortices are then responsible for the destruction of
superconducting phase coherence.

To summarize, we have found clear evidence that the
introduction of a small concentration of defects into the
fully frustrated system results in a dramatic decrease of
the superconducting transition temperature from its f =
1/2 value. The Huctuations of the defect superlattice, on
an essentially frozen f = 1/2 like background, result in
behavior which is in many respects like that of the dilute
vortex lattices studied in Sec. IV. In the present case,
we find that the defect superlattice melts directly from a
pinned solid into a liquid. In the following section we will
argue, following the analogy with Sec. IV, that a more
dilute defect superlattice would first unpin at a T,(f) into
a Qoating defect superlattice, which would then melt at
a higher temperature T into a defect liquid.

The sharp melting transition of the f = 1/2 like back-
ground at a temperature T distinctly higher than the
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FIG. 21. Melting of f = 5/11 for I = 22. S(k) is shown
for (a) T = 0.010 in the pinned defect solid, (b) T = 0.018 in
the defect liquid, (c) T = 0.055 in the completely disordered
high-temperature phase.

FIG. 22. Peak heights S(q') with q' = (7r/ap, 7r/ao), and
S(&i) where Ci —(2m/L)(1, 5) is the shortest reciprocal
lattice vector of the defect superlattice, plotted versus T for
f = 5/11 and L = 22.
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FIG. 23. Inverse dielectric constant e (T) versus T for
f = 5/11 and L = 22.

B. General case: f = 1/2 —1/q

In this section, we strengthen the analogy between the
melting of the defect superlattice seen in the previous
section, with the melting of the dilute (small-f) vortex
lattices studied in Sec. IV, in order to discuss the general
case of f = 1/2 —1/q. Our goal is to establish that for
a more dilute density of defects one will have a floating
defect solid intermediate between a pinned defect solid
and a defect liquid.

As seen for the f = 5/11 case, throughout a tempera-
ture range including the defect lattice melting transition
T, the f = 1/2 like background vortices remain per-
fectly ordered as at T = 0; domain excitations, which
would reduce S(g*) &om its T = 0 value of unity, be-
come important only above T . In this case, one can
focus solely on excitations which are due to the motion
of the defects. At T = 0, these defects are seen to sit on
the same sublattice of the square grid as do the n; = 1
vortices of the f = 1/2 like background (see Fig. 20);
equivalently, one never has two vortices on two nearest

defect melting at T is a new phenomenon, with no ana-
log in the dilute small f systems (at small f there is only
a smooth crossover remnant of the vortex-antivortex un-
binding transition of the f = 0 case). From symmetry,
one would expect that the transition at T is of the
Ising type. Undersanding whether the melting transition
in the pure f = 1/2 case is Ising like or not has been
the subject of much work, with the most recent simula-
tions suggesting that it is not; if it is not Ising, this
is most likely due to the long-range nature of the vor-
tex interactions. For the f = 5/11 case, however, the
melted defect liquid will serve to screen the interactions
of the vortices in the f = 1/2 like background, resulting
in effectively short-ranged interactions. An Ising transi-
tion is therefore most probable. We are unable to test
this prediction, as we are unable to carry out a detailed
finite-size scaling analysis, for the same reasons as dis-
cussed in Sec. IV. However, the strong screening efFect of
the defect liquid is evident in the substantial reduction of
the background melting temperature, T ~ (5/11) 0.04,
as compared to the melting transition T (1/2) 0.13 of
the pure f = 1/2 case.

neighbor sites. We assume that this restriction contin-
ues to hold at Gnite temperatures up to and including
T; i.e. , the cost in energy to have two vortices on near-
est neighbor sites is so high compared to T, that such
excitations may be ignored.

With this assumption, we have reduced our problem at
f = 1/2 —1/q to that of a density 1/q of logarithmically
interacting defects, which are restricted to move on only
one of the two sublattices of the original square grid.
This sublattice is itself a square lattice of lattice constant
~2ao. As the sublattice has half the number of sites as in
the original grid, our problem is thus effectively the same
as a dilute density f' = 2/q of vortices on a square grid.
This mapping would be exact (within our assumptions)
except for the fact that the interaction potential V(r)
between the defects is still defined with respect to the
original square grid, and not the sublattice to which the
defects are constrained. However, as q gets large, and the
average spacing between defects becomes much greater
than ao, we expect that this difFerence will be a negligible
effect.

The assumption that the defects move only on one sub-
lattice can be checked for the f = 5/11 case of the pre-
vious section. Restricting the defects in real space to a
sublattice whose unit cell has twice the area of that of the
orginial square grid, means that the first Brillouin zone
of the effective reciprocal lattice is reduced by a factor of
2. Instead of the square-shaped BZ shown in Fig. 21, the
effective BZ is now an inscribed diamond whose vertices
bisect the edges of the squares of Fig. 21. The structure
function S(k), as plotted over the full square-shaped BZ
of the original square grid, should now just be obtained
by a periodic repetition of the diamond-shaped BZ cor-
responding to the sublattice. Such periodicity is clearly
seen in Figs. 21(a) and 21(b), for both the pinned de-
fect solid and the melted defect liquid. It is absent in
Fig. 21(c), where T ) T, and the f = 1/2 like back-
ground has melted.

Having checked the validity of our assumption for
f = 5/11, we note that it should be even better sat-
isfied for more dilute defect densities f = 1/2 —1/q,
q ) 22. As q increases, the density of defects decreases,
resulting a reduced screening of the interactions between
the background vortices. The background melting tem-
perature T r should therefore increase and approach its
higher f = 1/2 value. At the same time, the defect su-
perlattice unpinning temperature T should decrease as

1/q, while the defect superlattice melting temperature
T saturates to a lower Axed value. Thus we expect that
the window of temperatures in which our assumption is
valid becomes wider as q increases.

We can now understand the behavior found in the pre-
ceding section. For f = 5/ll = 1/2 —1/22, we have

q = 22, and so the defects behave like an effective vortex
density of f' = 2/q = 1/11. Comparing to our results of
Fig. 13 in Sec. IV, we see that f' is large enough that we
expect only a direct melting of the pinned defect solid to
a defect liquid, consistent with our observation in the pre-
ceding section. In order to observe a Boating defect solid,
we will have to consider an f' ( 1/30, or an f = 1/2 —1/q
with q ) 60.
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To simulate a system with f = 1/2 —1/60 directly,
would require a grid size of at least I = 60, with

1740 vortices. This is beyond our present com-
putational ability (f = 5/ll, with L = 22 and K, = 220,
is about the largest system we can manage). However,
our conclusion, that at temperatures low compared to
T the defects move in the presence of an effectively
frozen f = 1/2 like background, allows us to construct a
much more efBcient algorithm which will be suitable for
describing behavior up to and above the defect melting
transition T, provided we stay below the background
melting transition T I. We do this by fixing the f = 1/2
like background and allowing only the vacancies to move
around. This significantly reduces the number of degrees
of freedom in the simulation, and we shall thus be able
to treat systems with a much smaller fraction of defects
1/q, than we could by direct MC simulation.

In order to implement the algorithm suggested above,
we formally decompose the charge at site r; into two parts

n; =s, —bn;, (33)

where

(34)

is the staggered pattern of the background vortices [q*—:
(~/ao, vr/ao)] and bn, are new integer variables represent-
ing the defects in the background. Neutrality requires
that P,. bn, = L /q. Substituting Eq. (33) for n, in the
Hamiltonian (5), we get

created by the background; the last term is just an ad-
ditive constant. Substituting Eq. (34) for the 8; into
Eq. (36) above, gives the potential 4; in terms of the
Fourier components of the interaction, Vg,

/1
@' = —V~.e"' ~ —

I

——f I ).Vi
) i o

(37)

where from Eq. (7) we have Vz. ——vr/4. Thus 4, oscil-
lates with the saine checkerboard pattern of the f = 1/2
like background. Comparing with Eq. (34), we see that
the Hamiltonian of Eq. (35) can now be rewritten in the
following simple form

where V,':—V'(r, —rz). The first term in the Hamilto-
nian (35) gives the interaction between defects; the sec-
ond term represents the interaction of the defects with a
one-body potential,

where Eo is an additive constant.
So far, the formulation above is exact. Our approxi-

mation that the background is frozen, and that defects
only move on the sublattice defined by s; = 1, occurs
when we consider only the case where N sites have the
value bn, = 1, and all other sites have bn; = 0. In
this approximation, the Coulomb gas near full lustra-
tion, f = 1/2 —1/q, is equivalent at low temperatures
to the dilute Coulomb gas of defects with integer charges
bn,. = 0, 1, moving in a staggered potential of magnitude
h4 = m/4 = 0.7853. . . . As this magnitude is about
two orders of magnitude greater than the relevant exci-
tation energy scale, set by temperature T, the sites with
bn, = 1 are essentially restricted to the sublattice where
s, = 1; in this case they represent the vacancies in the
f = 1/2 like background. The case where 8n; = 1 on the
opposite sublattice where s; = 0 represents a (+1,—1)
vortex-antivortex excitation, which can be ignored on en-
ergtic grounds as we had shown in earlier sections.

To check the consistency of the above procedure, we
have redone our simulation of f = 5/ll using the new
algorithm based on the Hamiltonian (38). In a fraction
of the CPU time needed for the original simulation using
the full Hamiltonian (5), we have recovered our original
results for all quantities, at all temperatures up to about
T 0.040, where fluctuations in the f = 1/2 background
become significant.

Having verified the consistency of the new algorithm in
this way, we now proceed to simulate systems with more
dilute concentrations of defects. In Fig. 24, we display
the structure function S(k) for the case f = 22/45 =
1/2 —1/90. As expected from the discussion above,
we observe a clear signature of the floating solid phase
[Fig. 24(b)] in the temperature range 0.005 & T & 0.008.
This range is identical to the range in which we found
the floating solid phase for f' = 1/45 (see Fig. 13). The
low-temperature phase is a familiar "pinned defect solid"
[Fig. 24(a)]; the high-temperature phase is a defect liquid
with strong fourfold correlations [Fig. 24(c)]. The above
scenario is confirmed by a direct measurement of e (T)
and the sixfold orientational correlation ps(T) of the de-
fects bn;, shown in Fig. 25. Both quantities behave in
a way similar to those measured for dilute vortex sys-
tems, showing a sharp drop in e (T) at the depinning
transition, and a plateau in ps(T) in the floating phase.

To summarize, we conclude that for f = 1/2 —1/q,
with q ) 60, there will be the following sequence of tran-
sitions. At low temperature there is a pinned superlattice
of defects of density 1/q, which unpins at T, (f) 2/q
into a floating superlattice of defects. This floating lat-
tice melts at T 0.007 into an isotropic defect liquid.
Finally, at T, which approaches the value of 0.13 as
q increases, the f = 1/2 like background melts via an
Ising transition, resulting in an isotropic vortex liquid of
density f

VI. SUMMARY AND CONCLUSIONS

(38) We have carried out extensive Monte Carlo simulations
of the Coulomb gas Hamiltonian (5) as a model of a 2D
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superconducting network in an external transverse mag-
netic field. One of the goals of our work was to systernati-
cally study, for the special cases of vortex density f = 1/q
and f = 1/2 —1/q (q )) 2), a conjecture put forward by
Teitel and Jayaprakash, that for f = p/q the supercon-
ducting transition temperature scales approximately as
T, (f) 1/q Fo. r the dilute case, f = 1/q, we have found
good agreement with this conjecture, provided one inter-
prets the superconducting transition temperature to be
the vortex-lattice unpinning temperature T, (f), where
the ground state vortex lattice decouples from the super-
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FIG. 25. Inverse dielectric function e (T) and orienta-
tional correlation ps(T) versus T, for f = 22/45 and L = 90.
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FIG. 24. Melting of the defect superlattice for f = 22/45
and L = 90. Intensity plot of S(k) for (a) T = 0.0040 in
the pinned defect solid, (b) T = 0.0065 in the defect float-
ing solid, (c) T = 0.0085 in the defect liquid. Intensities at
(+7r/ao, +sr/ao) and (0, 0), which arise from the fixed stag-
gered background, have been substracted for the sake of clar-
ity.

conducting network, and is free to slide transversly to any
applied dc current, thus producing "Aux Aow" resistance.

A new result of our work is the realization that above
T, (f), for sufficiently dilute systems, a depinned "ffoat-
ing" vortex solid will exist. This Boating vortex solid has
essentially the same properties as a vortex lattice in a
uniform superconducting film, and it melts (as q -+ oo)
at T 0.007 into an isotropic vortex liquid. While the
true onset of finite linear dc resistivity will be T, (f), the
melting at T is presumably accompanied by a sharp rise
in resistivity. The distinction between T and T, how-
ever, may be dificult to observe experimentally, due to
the existence of large energy barriers for the hopping
of a vortex between neighboring cells of the supercon-
ducting network. As discussed in the Introduction, the
discrete nature of the network introduces an effective pe-
riodic pinning potential for vortices. For a square Joseph-
son array, Lobb et al. have estimated the energy barrier
of this pinning potential to be Eb 0.199/2' = 0.0317
(in our energy units ). This is almost 5 times the vortex-
lattice melting temperature T 0.007. Thus, for the
square network, one is most likely to observe upon cool-
ing only a vortex liquid, in which the vortex mobility
decreases exponentially as e '/; the true phase transi-
tions at T and T, will be masked by the extremely slow
relaxation over the energy barriers Eb at these low tem-
peratures. Such behavior has in fact been reported ' in
experimental studies of square Josephson arrays, where
for small f near f = 0, only exponentially decreasing re-
sistive tails are observed at low temperature; no evidence
for the melting or depinning transitions at T and T has
been found. For the triangular Josephson array, however

(a case we have not explicitly studied here), the energy
barrier is estimatedi4 to be Es 0.0427/2m = 0.0068
(in our energy units). This is comparable to T, and
so there might be some slight chance of experimentally
observing the melting transition. Recent experimental
studies of this system at small f have found surprising
dynamical behavior, indicating anomalously slow diffu-

sion of vortices. However, the temperature of these ex-
periments, T 0.5T (f = 0), appears to be too high for
these results to be explained by any of the melting or
depinning effects we have found here. For a honeycomb
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Josephson array (vortices on a triangular grid) we esti-
mate the highest barrier, with Eb 0.751/2' = 0.119.

For dense systems close to full frustration, f = 1/2—
1/q, we have argued that, at temperatures low compared
to the melting temperature of the pure f = 1/2 system,
the physics is dominated by defects moving on top of
a quenched f = 1/2 like vortex background. We have
shown how this system of defects can be mapped onto
the dilute Coulomb gas of vortices with density f' = 2/q.
The resulting behavior is then obtained from knowledge
of this dilute limit. The TJ conjecture again holds, with
T,[f = (q —2)/2qj 2/q marking the transition from
a pinned defect superlattice to a Boating defect super-
lattice, in which true dc superconductivity is lost. At a
higher T 0.007, the Hoating defect solid melts into an
isotropic defect liquid. At yet a higher T ~, the f = 1/2
like background disorders. As in the f = 0 case, the
transitions at T and T may be diKcult to observe ex-
perimentally, due to the energy barrier for a defect to
hop between nearest neighbor sites of the relevant sub-
lattice. For a square lattice, Dang and GyorfFy have
estimated this barrier to be Eb 0. 368/2 r7(in our en-
ergy units), even larger than that found for f = 0. Ex-
perimental studies s of square Josephson arrays for f
near f = 1/2 have again found only exponential resistive
tails as the temperature decreases.

In contrast to the transitions at T and T, we expect
that the sharp disordering transition of the f = 1/2 like
background at T should be experimentally observable.
This follows since for f = 1/2 —1/q, we expect that as
q i oo, T I -+ T~(1/2) 0.13, well above the energy
scale of the barriers. This transition would presumably
manifest itself as a singular increase in the linear resis-
tivity at T ~ (from an already Finite value). The phase
boundary T (f) near f = 1/2 is presumably a smooth
funtion of the defect density, 1/2 —f; however, we are
unable to estimate it due to our inability to simulate suf-
ficiently large systems.

Our mapping between a dilute density of defects near
f = 1/2, and a dilute vortex density near f = 0, may
be extended to the more general case. Using the same
arguments as in Sec. V, we would expect that the system
with f = 1/2 —p/q, with p/q sufficiently small, should
have the same low-temperature behavior as the density
f' = 2p/q. For p/q sufficiently small, we would expect
that the dilute vortex lattice of density f' = 2p/q be-
haves qualitatively like those of density 1/q studied here;
i.e. , there is First a depinning transition at T, (f) which
decreases as p/q decreases (whether it vanishes as 1i/q or
as 1/q remains to be investigated) followed by a melting
transition at T 0.007. Thus for any rational fraction
sufFiciently close to either f = 0 or f = 1/2, we would ex-
pect behavior similar to the cases explicitly studied here.

We thus see that the T3 conjecture appears to hold,
according to the following scenario. Consider a vortex
density f close to some simple fraction fp = pp/qp,
f = fp —1/q, with qp « q. The ground state is one
which is almost everywhere like that of fp, except for a
pinned periodic superlattice of defects of density 1/q. If
q is suKciently large, this superlattice wil1 unpin into a
Boating defect solid at T,(f) 1/q. Defects which are

free to move lead to Aux How resistance, and destroy the
superconducting phase coherence of the system. Thus
an arbitrarily small concentration of defects added on
top of the fp like background (i.e. , for f arbitrarily close
to fp) dramatically decreases the superconducting tran-
sition temperature, when compared to the pure fp sys-
tem. We have explicitly tested this scenario for the cases
fp ——0 and fp ——1/2. We speculate that this behavior
will be characteristic of systems near any simple &ac-
tion fp ——pp/qp. We further speculate that this behavior
may be characteristic for any sufEciently small rational
&action of defects away from a simple &action fp, i.e. ,
f = pp jqp —p/q with qp && q.

A second goal of our work was to study in detail the
melting transition of the 2D vortex lattice. This prob-
lem has been addressed previously only in the context
of uniform superconducting films. Here we have ad-
dressed this issue in the context of a superconducting
network. We believe, however, that our results for the
dilute case we have studied in Sec. III are representa-
tive of the continuum limit, as treated within the Lon-
don approximation. Melting within this London approx-
imation has been treated theoretically by Huberman and
Doniach, and Fisher, who applied the KTNHY the-
ory of defect mediated melting in 2D. This theory pre-
dicts a second-order melting transition at a T well below
the Ginzburg-Landau mean Geld transition temperature
TMp, as well as an intermediate hexatic liquid phase. We
have carried out the first detailed finite-size scaling anal-
ysis to check this KTNHY theory as applied to vortex-
lattice melting. We find a value T 0.007 + 0.0005
in good agreement with the value estimated by Fisher.
We also find that the vortex-lattice shear modulus jumps
discontinuously to zero at T, with a value close to the
KTNHY prediction. However, we find that the melting
transition is weakly first order, and we find no evidence
for a hexatic phase. Our value for T and our conclu-
sion concerning the order of the melting transition are
in agreement with earlier simulations of the continuum
one-component plasma model of Eq. (13).

This problem of 2D vortex-lattice melting has been
the focus of much renewed work recently, due to its
potential connection with behavior in anisotropic high-
temperature superconductors. The very existence of a
vortex lattice at any finite temperature has been chal-
lenged by Moore, who argued that Huctuations in the
phase of the order parameter @(r), due to shear excita-
tions of the vortex lattice, will cause the order parameter
correlation function {@*(r)@(0))to decay exponentially
at any finite temperature. From such decay, Moore ar-
gued first for the absence of a superconducting state, and
then concluded as a result of this absence of supercon-
ductivity that the vortex lattice should not exist. Sup-
port for this scenario is suggested by high-temperature
perturbative expansions, which also find no evidence for
freezing into a vortex lattice, even when evaluated to high
order. 4'

Recently, simulations have been carried out to address
this question. In contrast to our work in the London
approximation, these works have been carried out in
the so-called lowest-Landau-level (LLL) approximation,
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which is based on the Ginzburg-Landau (GL) free en-
ergy 'RGL of Eq. (11). In this approximation, the com-
plex order parameter @(r) is expanded in terms of the
lowest degenerate eigenstates of the Gaussian part of
the Ginsburg-Landau free energy, and the coeKcients of
this expansion (or alternatively the complex positions
of the vortices) are used as fluctuating variables in a
Monte Carlo simulation with 'Rcz, as the Hamiltonian.
Using such simulations, and modeling a 2D system by
the surface of a sphere, O' Neill and Moore failed to
find evidence for a vortex lattice. Other simulations in
a 2D plane, however, reported clear evidence for
the melting of a vortex lattice at a finite temperature.
Hu and MacDonald and Kato and Nagaosa find that
this melting transition is weakly erst order, in agreement
with our London result. Sasik and Stroud similarly
find a erst-order transition; they further compute the
vortex-lattice shear modulus p and And behavior at T
in agreement with our result. Most recently, Herbut and
Tesanovic have developed a density functional theory of
the vortex lattice melting transition, based on the LLL
formalism. They again find results consistent with the
above, for the order of the transition, and the shear mod-
ulus p.

Thus, with the exception of Ref. 50, results from the
London and LLL approximations seem to be in agree-
ment. This is as one might expect from the principle of
universality in phase transitions. Although the London
approximation at the "microscopic" level ignores Buctua-
tions in the amplitude of g(r) (such as are included in the
LLL formalism), upon coarse graining the London model,
phase fluctuations at the microscopic length scale will
generate amplitude Huctuations on the coarse-grained

length scale. On this coarse-grained scale, the system
will be described by some effective Ginzburg-Landau free
energy, complete with amplitude Auctuations, although
higher-order terms in g beyond those given in Eq. (11)
may be present. In contrast to the London approxima-
tion, the Ginzburg-Landau free energy of Eq. (11) in-
cludes amplitude Huctuatons at the "microscopic" scale,
and it is thus often viewed as a more fundamental de-
scription. However, the GL form of Eq. (11) represents
only the lowest terms in an expansion of the &ee energy in
powers of ~g~, and hence is valid only near the mean field
transition TMF where ~g~ is small. Since vortex-lattice
melting occurs at T (( TMF, higher-order terms in

g may well be important for a quantitative description.
These higher-order terms, however, are presumably ir-
relevent in determining the critical behavior, thus leading
to agreement between the London and LLL simulations.

Note added in proof: Recent simulations for small

f within the 0 representation of Eq. (1) have been re-
ported by Hattel and Wheatley. Their results are consis-
tent with those reported here. These authors have also
reported a theoretical argument for the linear depen-
dence T, (f) f, at small f. Similar results were earlier
found by Martinoli et al. 9 for a 2D vortex lattice in a
one-dimensional periodic pinning potential.
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