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EfFective Lagrangians for BCS superconductors at T = 0
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We show that the low-frequency, long-wavelength dynamics of the phase of the pair Beld for a
BCS-type s-wave superconductor at T = 0 is equivalent to that of a time-dependent nonlinear
Schrodinger Lagrangian (TDNLSL), when terms required by Galilean invariance are included. If the
modulus of the pair Beld is also allowed to vary, the system is equivalent to two coupled TDNLSL's.

The classic Ginzburg-Landau (GL) theory is very
successful ' in describing a large class of static super-
conducting phenomena near the critical temperature T,
and its form was established by Gorkov shortly after
the microscopic BCS theory. Subsequently, a number of
attempts ' ' were made to obtain a generalized GL the-
ory for time-dependent phenomena, and for temperatures
well below T, but a consensus has still not been reached
on the form of such a theory at T = 0. In this paper
we shall show that the low-frequency, long-wavelength
dynamics of the phase of the pair field for a BCS-type
8-wave superconductor at T = 0 is equivalent to a time-
dependent nonlinear Schrodinger Lagrangian (TDNLSL).
At first sight, this result might seem almost obvious: af-
ter all, the energy density in GL theory looks formally
like that of a nonlinear Schrodinger theory so that it
seems natural to extend it to the corresponding time-
dependent theory as, indeed, Feynman assumed in his
discussion of the dynamics of superconductors and of the
Josephson effects. Yet neither the earlier discussions, ' '

nor recent work based on the effective action formalism
of quantum field theory, ' appears to lead to this conclu-
sion. This is in contrast to the case of a Bose superfluid,
such as He, which is well described by a TDNLSL near
T = 0. Indeed, there is considerable current interest in
probing the relationship and "crossover" between BCS
and Bose super8uidity. Our result implies that both
are fundamentally the same, at least near T = 0 in the
clean limit; in particular, the existence of the Magnus
force for a vortex line in a superconductor follows nat-
urally. The last point is pertinent to the discussion of
vortex dynamics in superconductors within the effective
theory formulation.

Three of the present authors have, in fact, recently
shown that the motion of the condensate is described
by a nonlinear Schrodinger equation at T = 0, using a
density matrix approach and the Born-Oppenheimer ap-
proximation. But this left open the question how this
could be reconciled with the earlier work, ' ' ' ' which
was generally based on field theory (or Green function)

techniques, and apparently led to a quite different result.
The solution of this problem is contained in the present
paper, and it is essentially very simple. In Ref. 13 the
further approximation was made that the modulus of the
energy gap (or pair field) is constant. If this approxima-
tion is made in the field theory approach, one can derive
from BCS theory an efFective action for the phase 0(x) of
the pair field (i.e. , the Goldstone mode), which one then
expands up to a certain order of derivatives. The result-
ing Lagrangian I,tr(0) is the same as that previously pro-
posed on symmetry grounds, and also corresponds pre-
cisely to the early results of Kemoklidze and Pitaevskii,
who started from Gorkov's equations. We shall show
that the dynamics of 0(x) as given by L,&(0) can be
rewritten in terms of a TDNLSL, which is equivalent to
a particular case of the general nonlinear Schrodinger the-
ory derived in Ref. 13 under the same approximation.

We also extend this to include variations in the modu-
lus of the pair fields, and show that the dynamics is then
that of two coupled TDNLSL's. The thread that unites
all these approaches is ultimately Galilean invariance.
Since the microscopic starting point is always Galilean
invariant, one expects any theory based on an effective
action to preserve this symmetry, a point emphasized in
Ref. 15, and the Schrodinger Lagrangian is the simplest
such available.

We begin with the BCS Lagrangian for 8-wave pairing
and in the absence of external fields:

(. V'I =).4.*(x)
I
'~t+ +~ l 4-(x)

2m )
+g@1(*)&g (x)&i(x)&~ (x)

where g describes electrons with spin o = (g, $), p =
k&~/2m is the Fermi energy in the normal state, and x =
(x, t). Introducing the auxiliary (pair) fields A(x) and
A*(x), and integrating out the electron fields, one obtains
the effective action

(2)
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where the Nambu Green function satisfies

l
G(x, x') = 8(x —x')0, ~(x) l

with Oi ——iraq + V /2m+ p, 02 ——iraq —V /2m —p, and
Tr includes internal and space-time indices. To obtain
from (2) an efFective Lagrangian in terms of the degrees
of freedom represented by 4, a possible procedure" is to
set A(x) = Ap + A'(x) where Ep is the position of the
minimum of S for space-time independent 4, and where
4' is assumed to be slowly varying in both space and
time. One then expands Tr lnG in powers of deriva-
tives of b, '. There are, however, two (related) objections
to this. First, we are dealing with the spontaneous break-
ing of a local U(l) phase invariance, which implies that
at a temperature far from the transition temperature,
the most important degree of freedom is the phase of
L, which is the relevant Goldstone field. It is this field,
rather than the real and/or imaginary parts of A, which
should carry the low-&equency and lang-wavelength dy-
namics. Second, the ansatz A(x) = Ap + b, '(x) violates
the Galilean invariance possessed by (1), which implies
that

~.&[0, ~l~l] = 'T ) —'(G.z)" —-'

= n

where we note that Z contains just hlA(x)l and deriva-
tives of 0(x), in terms of which (assumed small) quantities
a useful expansion can be conducted, following standard
techniques.

We now concentrate on 0(x), and set hlAl = 0 for the
time being. Carrying out the calculation to the indicated
order in derivatives we obtain

I,ir(0) = —pp[0/2+(V'0) /Sm]+&(0)[0/2+(VB) /8m]

(io)

where pp
——A;+s/3vr is the electron density at T = 0,

K(0) is the density of states (for one spin projection)
at the Fermi surface and we have adopted a convenient
normalization; note that N(0) = pp/2mv, where v

v~/~3 is the velocity of propagation of the Bogoliubov-
Anderson mode. Equation (10) is the same as Eq. (4) in
Ref. 9 if 0 is replaced by 2P [see also Eq. (2.6) of Ref. 14].
The equation of motion for 0 which follows from (10) is

A(r —vt, t) exp(2imv r —imv t) (4)

should satisfy the same equation of motion as A(r, t). We
shall return to the question of Galilean invariance below.

We therefore set

where

p = pp —K(0)[0+ (V'0) /4m]

and

(12)

and lA(x)] = lApl + hlA(x)l, where we are interested
in the low-frequency and long-wavelength fluctuations of
0(x) and h

l E(x) l. However, although b
l
A (x) l/l Ap

l
is ex-

pected to be small, and a simple expansion of the sort
mentioned above for Tr ln G could easily be set up in
terms of derivatives of Sly(x)l if 0(x) were zero, it is cru-
cial to recognize that 0(x) is not small in general, so that
the phase factor in (5) cannot be expanded, but must
be treated as a whole. This prevents a straightforward
expansion of Tr ln G when (5) is substituted into (2).
Fortunately, this difBculty can be easily circumvented. '

Defining U(x) = exp[iB(x)vs/2], we can write

j = pV'0/2m. (13)

bp --—K(0)0, j = ppV'0/2m, (14)

Equations (11)—(13) are, in fact, precisely those obtained
(to this order in derivatives) by putting blAl = 0 in
Eqs. (21)—(23) of Ref. 15. We now show how the dynam-
ics contained in (ll) —(13) can be reinterpreted in terms
of a TDNLSL.

We first remark that the forms of (11)and (13) strongly
suggest that the quantities p and j have the physical sig-
nificance of a number density and of a number current
density, respectively. In fact, simple linear response the-
ory (assuming, as always, a derivative expansion) gives

TrlnG = TrlnG UU = TrlnUG U
= TrlnG

where

G = Gp (1 —GpZ),

(6)
where bp is the departure of the density from the equi-
librium value po, and j is the number density current.
We now consider the implications of Galilean invariance.
For densities p and j obeying (11), Galilean symmetry
requires

p( t) = p( t) j( t) =j( t) — p( t)

and

(lApl 02 ) '

E = i V' B/4m —i V'0 7'/2m-
+[0/2+(«)'/8 ] ~ -~l&l ' 0'(r', t') = 0(r, t) + mv t —2mv . r, (16)

where r' = r —vt, t' = t; that is, p and j transform as t
and r, respectively. From the discussion around Eq. (4)
above, the behavior of 0 under Galilean transformations
is given by

Minimizing (2) with 0 = Slb,
l

= 0 yields the usual gap
equation for leap l. The dynamics of 0 and lAl is contained
in

from which it follows that bp as given by (14) is not
invariant, and that j transforms incorrectly. However,
although 0 is not a Galilean invariant, the combination



EFFECTIVE LAGRANGIANS FOR BCS SUPERCONDUCTORS AT T=O 6533

0 + (V'0) /4m is. [This is actually the justification for
singling out the terms given in (10) from the total n = 2
contribution in (9).] Thus the requirement that Sp be
Galilean invariant leads precisely to the expression (12)
for p —po, which can now be identified as bp. Similarly,
if we replace po in the expression (14) for j by p, we find
that j transforms correctly and the expression for j is
that in (13).

Vfe are therefore led to seek a theory involving two
fields p and 0, such that the equation of motion for 0 is
(11) and that for p is (12), with p, 0 and j related by
(13). Consider the TDNLSL

L@ ——ig*g — Vg* Vg —V
4m

(17)

where the mass has been chosen to be 2m, and V will be
assumed to be a function of ~g~ only. Let us set

g = ~p exp(ig). (18)

Then inserting (18) into (17) and discarding a total
derivative, Ly becomes

V = (p —po)'/2N(0)

and solve (20) by expanding in derivatives, we recover
precisely (12) at the relevant order.

Thus the introduction of the auxiliary variable p, which
can be expressed in terms of 0 via its equation of motion,
has allowed us to rewrite the dynamics of the Goldstone
field 0, as given by L,ir(0), in terms of the TDNLSL
(17). The variable p is interpreted physically as the num-
ber density. It must be stressed, however, that the wave
function vP introduced in this way [see (18)] is quite dis-
tinct from the pair field L, despite the fact that they
have the same phase 0. In our development thus far, the
modulus ~A~ has been held fixed, whereas p varies; there
is no simple relation between ~A~ and i/p.

The dynamical theory described by (17) is a special
case of the general time-dependent nonlinear Schrodinger
theory for the condensate wave function derived in
Ref. 13 in which the form of the potential V was not
explicitly calculated. Here, it has been necessary to fix
V in order to carry out the elimination of the variable p,
to the required order in derivatives. (We remark that in
Ref. 13 @ is normalized to the density of Cooper pairs,
rather than, as here, to the electron density. )

Before discussing the modifications caused by the in-
clusion of the field 8~4(x) ~, we make one further com-
ment on the Lagrangian (10). A simple alternative route
to (10) is to start from a Lagrangian which describes just
the Bogoliubov-Anderson mode, viz.

Lg = —pg —p(V'0) /4m —(Vp) /16mp —V(p).

The equation of motion for 0 is then (11), with j given
by (13), while that for p is

dV

dp
= —[0+(Vg) /4m] —(V'p) /16mp +V' p/8mp .

(20)

If we now choose

L = —0 ——v (V'0) .
2 2

(22)

E= —p v„Q=j
I

—v, +by ~,
1, . (1
2 (2 )

(24)

and we have dropped a quantity of order bpbp in E. Fi-
nally, since L g is translation invariant we have the mo-
mentum conservation relation

Bjm,

Bt
+ V' II = 0, (25)

where the momentum flux density tensor is

IIij —pm Usi Usj + ~p ~ij ~ (26)

Equation (25) is equivalent to Euler's equation. In
Ref. 14, the proportionality between the momentum den-
sity and the number current j [defined by BL/B(V0)],
which is included in (25), was taken as a constraint on
possible Lagrangians L. If L is a function solely of the
Galilean scalar g = 0 + (Vg) /4m, then

BL BL BI
gg Og

' B(V0)
BL V'0

Bg 2m

Since 0 is a phase variable, we can interpret BL/00 and
OL/B(V0) as being proportional to a conserved num-
ber density p and number current density j, respectively,
so that (27) becomes just (13). The inomentum den-
sity is then automatically proportional to j. Once again,
Galilean invariance is the essential principle.

We now turn to the inclusion of the field b~&(x) ~.

Now (22) is clearly not invariant under (16). But, as we

have seen, the combination 0 + (V'0) /4m is invariant.
Hence if in (22) we replace 0 by [0 + (V'0) /4m] and
(V'0) by 4mg + (V'0) we will have a Galilean invariant
Lagrangian; and the result of these replacements is just
proportional to L,ir(0). Actually, the (V'0) term in (22)
is of course invariant by itself, up to constants and a
total derivative. Indeed, the term 0 introduced above,
and present in L,~(0), is also a total derivative and does
not acct the equations of motion. Nevertheless it is
important physically, as it ensures that the density p has
the equilibrium value po.

In view of its relative unfamiliarity, it may be worth
noting that L ff(0) (or equivalently Ly) embodies the
usual phenomenology of superfluid dynamics at T = 0
(see, for example, Refs. 19 and 20). We identify V'0/2m
with the superfluid velocity v„and multiply p and j of
(12) and (13) by m to convert them to mass density and
Hux, p and j . Equation (11) is then the law of mass
conservation, following from the fact that I g does not
depend explicitly on 0. Equation (12) is equivalent to
Bernoulli's equation, if we make use of Sp 2N(0)bp
and bp = pobp. Since L ~ does not depend explicitly on
t, we have the energy conservation relation

BE
Bt

+ V. Q = 0,

where using the canonical definitions (with suitable nor-
malization), one finds
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+N(0) 0/2 +
8m 8m

V'eV0
+N(0) e/2 +

4m
—3N(0)IAoI e,

(28)

where e(x)—:AID, (x)I/(~3IAoI) and we have retained
corresponding terms in e and 0. The quadratic terms
in e yield the amplitude collective mode with a finite
gap found in Ref. 18 (and are also in agreement with
the result of Ref. 7); we have omitted higher powers of

The term in e/2 is made Galilean invariant by the
addition of V'e V'0/4m, since e(x) is a scalar. We now find
that in order to rewrite (28) in "Schrodinger" form we
have to introduce a second auxiliary density feld, which
we call p„ in addition to the earlier density p, which
now becomes ps. Thus four fields (0, e, ps, and p, ) are
required, and (28) is actually equivalent to two coupled
Schrodinger equations. That is, the equations of motion
for 0 and e which follow from (28) are identical to those
arising from

'
v&,*@@,—(I@,I' —p, /2)/N(0)LOi A'~

+&4'2 42 +@2+4 2 (I @2I' —po/2)/N(0)

+—N(o)
I
&o I'[lm ln(@i/@2)]'

where

~i = V'(ps+ p.)/2 exp[t(0+ e)]

$2 = Q(pg —p, )/2 exp[i(0 —e)].

For example, corresponding to (12), we have

(30)

I a(0, bIAI) can be extracted from (9), up to a given
order in derivatives, but calculations rapidly become la-
borious. For our present purpose, we will simply use the
result of Ref. 15 which, using the normalization of (10),
gives

(«)' («)'
L,g(0, e) = —pp 0/2+ +

8m 8m

Equation (29) represents a system of two TDNLSL's cou-
pled via the "mass" term in (28). Expressions for all the
conserved quantities can be found as before, and will in-
clude quantum corrections to the semiclassical results of
(23)-(26).

The inclusion of electromagnetism in the above formal-
ism is straightforward. Consider the formulation in terms
of L,~(0, e). Since 0 is the phase of a field with charge
—2e, gauge invariance implies that 0 and V'0 must ap-
pear in the combinations 0 —2eAo and jv'0+ 2eA (e ) 0),
where Ao and A are the electromagnetic potentials. The
Geld e, on the other hand, is electromagnetically neu-
tral. The leading order electromagnetic charge and cur-
rent densities are obtained by multiplying 8p and j in
(22) by —e and making the above replacements for 0 and
Vo. One then obtains the usual results. In terms of the
Schrodinger formulation, one simply makes the expected
minimal coupling substitutions: iraq ~ ioq + 2eAO and
—iV' ~ —iV' + 2eA in (14) or (29) [note from (30) that
both @i and @2 have charge —2e].

When the above analysis is extended to higher-order
derivative terms, it is clear on dimensional grounds that
some characteristic scale must enter. In fact, such higher
terms enter in the form ojt/IAo and v~9'/IAoI (V' [see,
for example, Eq. (35) of Ref. 9, where ( is the coherence
length. The basis of the expansion is therefore the usual
assumption that the characteristic frequency u, and
wave number Ic, of variations of 6 (x) satisfy M (( IEpI,
k (( ( . Indeed, (28) already yields a static solution
for e which decays exponentially over a characteristic
distance (/6. Such a solution is of the type expected
far from a vortex core. Inclusion of appropriate higher
derivative terms should make possible some predictions
about the vortex core structure.

The TDNLSL formulation provides, we believe, a sim-
ple and unifying framework for the discussion of dy-
namical efFects in BCS superconductors at T = 0. Re-
sults which have been known for many years, ' ' ' as
well as those obtained by quite difFerent methods only
recently, ' are all seen to be in agreement with each
other, and with the TDNLSL formulation.

Note added: After completion of this work we received
an unpublished paper by Stone, in which a similar con-
clusion is reached concerning the efFective TDNLSL when

I
~

I
is constant.

and

f. V'eV'01 BL,~(0, e)
p, = —N0

2m ) Oe
(32)

( (V'0) (V'e) & OL, tr(0, e)
pg=pp —NO 0+ +

4m 4m ) cl0
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