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Suppression of the order parameter in homogeneous disordered superconductors
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We calculate the first-order correction to the order parameter 6 in a disordered superconductor, using
a formalism that treats electron-electron repulsion and order parameter fluctuations on an equal footing.
We find that this correction is plagued by the same low-momentum singularities from the screened
Coulomb potential as the correction to the transition temperature, and that these singularities are can-
celled between terms in both cases. The cancellation of leading-order terms means that we must consid-
er all terms of the same perturbation order in the calculation of 6 and T, if we are not to obtain qualita-
tively incorrect results. High momentum and frequency fluctuations then dominate, leading to a
suppression of 6 proportional to ln (A~). We therefore expect that the ratio 5/T, will be roughly con-
stant, which is confirmed by detailed numerical evaluation. We show the general utility of our formal-
ism in the evaluation of physical quantities in the disordered superconductor. Finally we comment on
the appropriateness of the dirty-boson approach in the region where our calculations are applicable.

I. INTRODUCTIQN

The suppression of superconductivity in disordered
thin films has been the subject of much interest' in the
past few years, due to some interesting experiments on
thin homogeneous superconducting films, and to the
growth of our understanding of localization phenomena
in disordered metals. The majority of experiments mea-
sure the resistance per square of a family of films as a
function of temperature, R~(T), the film thickness being
progressively increased (and R consequently decreased)
by the vapor deposition of more material. The transition
temperature T, is then seen to be suppressed as the resis-
tance per square in the normal state R~, a measure of the
disorder in the system, is increased. In fact, in recent ex-
periments ' T, goes to zero (i.e., superconductivity is
completely destroyed) when R ~ is of order the quantum
of resistance, Ro=h/4e =6.45 kQ. Films of higher
resistance show insulating behavior as T~0, and all R z
curves can be collapsed onto two curves, one for super-
conducting and one for insulating behavior, by the choice
of appropriate reduced variables. Much less data exists
on the suppression of the order parameter at zero temper-
ature, 60, another measure of the superconducting state.
These experiments ' obtain Ao by measuring the tunnel-
ing current of a normal-insulating-superconductor junc-
tion, with the thin film as the superconductor as the film
thickness is increased. 60 is seen to be suppressed as nor-
mal state R is increased in a similar manner to T, —A~
and T, appears to vanish at the same value of R&, with
the ratio 60/T, remaining roughly constant" as this hap-
pens.

The existence of a well-defined many-body theory for
the dirty metal and superconductor suggests that theor-
ists should calculate both T, and Ao as a function of R ~,
and see if their results can be reconciled with experiment.
These calculations will be in the perturbative (weak local-
ization) regime, and so will not allow one to get close to

the superconductor-insulator transition, but should be
able to explain the weak disorder region. The appropri-
ate disorder parameter in the perturbation theory in both
the exact two-dimensional (2D) and quasi-2D cases is the
ratio of R ~ to the quantum of resistance, Ro =h /4e,

R
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X(0)(A.—p*)

(1.2)

where k is the effective attractive interaction between
electrons mediated by phonons of frequency less than the
Debye frequency coD, p* is the repulsive Coulomb pseu-
dopotential, ' and X(0) is the single-particle density of
states at the Fermi surface per spin. coD and A, are not ex-

where kF is Fermi wave vector, I is elastic mean free
path, and t is film thickness. Much work, ' has been
performed on the calculation of T,(R~) as this is the
easier quantity to evaluate —one starts from the metallic
state and looks for the superconducting instability in the
electron pair propagator. The evaluation of ho is more
difficult since one must now sit in the superconducting
state and treat the pair correlations consistently, and con-
sequently this problem has received less attention. ' '
The main technical difficulty is that the extra correlation
between electron pairs leads to a 2X2 matrix structure
for the electron Green functions, and to greater algebraic
complexity in any calculation.

Although there have been many works on the effect of
disorder on T„ it is only comparatively recently that the
first-order perturbation theory has been correctly under-
stood. To see why this is so, let us start by recalling the
mean-field (BCS) formula for T„
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pected to be strongly affected by disorder, so one focuses
on the effect of disorder on N(0) and p'. It is known'
that N(0) is strongly suppressed due to the effect of disor-
der on the screening of the Coulomb repulsion between
electrons. At finite frequency in the dirty metal the
screened Coulomb interaction has the same I/q
singularity at low momentum q in a d-dimensional system
as the bare Coulomb potential due to the diffusive motion
of the electrons. Most work therefore focused on the
effect of the Coulomb interaction on T„and has ignored
the effect of electron-pair fluctuations. As discussed in
detail in Sec. IV, a term involving both Coulomb and pair
Auctuations was not considered in most calculations.
Normally the omission of a term of the same order as
those being considered would lead only to a change in nu-
merical coeKcient, but here the omitted diagram leads to
cancellation of the low-momentum singularity of the
screened Coulomb potential, and a qualitative change in
the result. This cancellation shows us that we must in-
clude all diagrams of the same perturbation order in any
calculation of T„and alerts us to the possibility of simi-
lar problems in any evaluation of 50. Although the de-
tails of the first-order perturbation correction to T, are
known to theorists in this area, we will provide what we
believe is the first detailed derivation in the literature to-
gether with new work on Ao.

Here we calculate the first-order correction to the or-
der parameter, h(T), for all temperatures T, making sure
that all contributions are included. In Sec. II we derive
the matrix formalism used in our calculation, which
treats all bosonic fluctuations on an equal footing. We
derive the diagrammatic rules of this formalism, and ex-
pressions for the impurity ladder, the ladder-dressed ver-
tices, and the effective propagators in the random-phase
approximation (RPA). Density and order-parameter
phase Quctuations are shown to be coupled, and this leads
to the same low-momentum singularities in these propa-
gators that occur in the normal state. In Sec. III we per-
form the actual calculation of the first-order correction to
the BCS self-consistency equation for order parameter
b, (T). In Sec. IV we obtain the first-order correction to
T, by linearizing the equation for b.(T), and show that
this result is identical to that obtained by looking for the
singularity in the pair propagator in the normal state.
We show that the low-momentum singularity in the
screened Coulomb potential is cancelled, ' and that the
correction to T, can be split into a Coulomb repulsion
and a pair-fluctuation term, with the former dominating.
In Sec. V we analyze in detail the first-order correction to

We show that the low-momentum singularities in
density and phase propagators are cancelled except for a
single term that can be shown to be due to the Goldstone
mode. The similarity of behavior in the T, and bo results
means that Ao/T, should be roughly independent of dis-
order. In Sec. VI we perform detailed numerical evalua-
tions of T, (R~) and b,o(R~) to make sure we have not
made any invalid approximations in Secs. IV and V. The
numerical results verify the results derived analytically.

The basic conclusion of this work is that the depen-
dence of 60 and T, on disorder is basically the same, and

that this is mirrored in a similarity in possible pitfalls in
calculation. We show that low-momentum singularities
in screened potentials occur, and are cancelled, in both
the normal and superconducting states, demonstrating
the importance of keeping all terms of the same order in
such a calculation. We recover not only the low-
frequency, low-momentum fluctuation terms obtained by
dirty-boson theories, but also the high-frequency, high-
momentum Auctuations. The latter arise from the fact
that we are dealing with pairs of electrons rather than
single bosons, and moreover are seen to be dominant in
the perturbative region. Accordingly in the regime where
both approaches are valid, the dirty-boson approach
misses the dominant term.

II. DERIVATION OF THE 4X4 MATRIX FORMALISM

The model Hamiltonian

We consider a system of electrons that scatter off static
nonmagnetic impurities and interact with each other via
the long-range Coulomb repulsion and the (phonon-
mediated) BCS contact attraction. The scattering of elec-
trons from static impurities is described by the Hamil-
tonian

H, ,
= g fdxg+(x)

p2
+ gu(x —x;) g (x),

I

(2.1)

where g (x), 1t (x) are the electron creation and annhi-
lation operators, and u (x—x;) is the impurity potential
at x due to an impurity at x;. The impurity scattering
leads to a lifetime ~k for a state of fixed momentum k of

1==2~N(O)n; lu (k) I',
+k

(2.2)

where n; is the impurity density, and N(0) is the density
of states per spin at the Fermi surface. Here we will
make the usual assumption of 5-function impurity poten-
tials so that lifetime ~ is independent of momentum.

The Coulomb repulsion between electrons is described
by the Hamiltonian

q

4 2

I'3D(c) =
q

4me 2

V 2D(9~~, 9j )=
z [ I —(

—1) e ]
qll+q

(2.4)

where in the quasi-2D case
qual

is the continuous momen-

Hc= g fdx f dx'g+(x)g (x), P+(x')g, (x'),
I0, CT

(2.3)
which leads to a bare Coulomb propagator that is just the
Fourier transform of the potential above. For 2D„3D,
and quasi-2D systems we obtain

2
o
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turn parallel to the film, and q~ =2~n /t,
n =0,+1,+2. . . , is the discrete momentum perpendicu-
lar to the film of thickness t. Experimentally we will al-
ways have a quasi-2D system, and so should always use
the quasi-2D potential Vq 2D. However the mathemati-
cal difficulties associated with having to both integrate
over the continuous

q~~
and sum over the discrete q~ leads

us to consider the limiting 2D and 3D cases. For
0 &

q~~
& 2m/t only qz =0 is important, and Vq

reduces to V2D, and the sum over q is 2D; for
2~/t &

q~~
& I/I, ql can be considered effectively continu-

ous, and Vq 2D reduces to V3D, and the sum over q is
3D. Note that for any finite thickness t the quasi-2D po-
tential has a 1/q singularity at q=0.

The BCS attraction is described by the Hamiltonian

ing expressed in terms of the Nambu operator by

(2.9)

Go(k, z) =
z —gk'r3 b

z +gkr3+ b,r,
(2.10)

and the diagram of Fig. 1(a) gives self-energy,

~3(z + l, r3+ b r, )r3X= AT—g .N(0) f dgk
CO k

The pairing correlations in the clean superconductor
can be taken into account self-consistently as shown in
Fig. 1(a). With the ansatz X=hr, for the self-energy, the
Green function for the pure superconductor becomes

IIBcs = —l(, g f dxtil+(x)Q (x)Q+, (x)g,(x), (2.5)
O', CT

1=N(0)A, brlT g
co +5

(2. 1 1)

which corresponds to an instantaneous contact interac-
tion —A,5(x—x'). The fact that this interaction is de-
rived from the electron-phonon interaction causes us to
introduce an upper frequency cutoff at the Debye fre-
quency ~~. This leads to an interaction line contributing
factor —

A, . The contact nature of the interaction leads to
the restriction 0. = —o. which is due to the Pauli princi-
ple restriction that one cannot have two identical fer-
mions at the same point in space.

Nambu-Gor'kov approach

Having introduced the model Hamiltonian, let us re-
call how the standard Nambu matrix field theory' ' of
the superconductor is derived. The 2 X 2 matrix struc-
ture is needed to include two types of correlation between
electron operators —the usual particle-hole correlation
( ltltltlt+ &, and the anomalous pairing correlation ( gtltj& &.

We introduce the vector Nambu operator

+ ' (2.6)

(2.7)

whose matrix propagator now includes both types of
correlation:

In the above we have linearized the momentum sum
around the Fermi surface,

Q=N(0) fdg„dQ, (2.12)

where d 0 is the angular integral, and we have noted that
~o and ~3 components vanish due to oddness of integrand
in co and gk, respectively. We therefore obtain the BCS
consistency equation for 6

I =N(0)A, T g 1

~2+ Q2
(2.13)

If we also include the Coulomb repulsion in Fig. 1(a) we
find that A, is replaced by A,

—p*, where p' is the
Coulomb pseudopotential'

p"=,lM=N(0)( Vc(kF —kp) &Fs .1+p ln( EF /coD )
'

(2.14)

Henceforth k will now include p*.
We can treat the presence of nonmagnetic impurities

by including an extra self-energy diagram to describe the
dressing of the electron line by impurities as shown in
Fig. 1(b). We then make the ansatz that the pairing self-

In the normal state the temperature Nambu-Green func-
tion is

G(k, iso) =
1

l CO+ gk

1
(2.8)

(b)
where z =iso, co=(2n +1)AT is a Fermi-Matsubara fre-
quency, and the ~; are Pauli matrices. The diagrammat-
ic rules are then the same as in the normal state, except
for the matrix structure of the electron Green function,
and the presence of Pauli matrix ~3 at each interaction or
impurity vertex due to the electron-density operator be-

FIG. 1. Diagrammatic equation for mean-field electron
Green function in (a) pure superconductor and (b) disordered
superconductor. The double solid line is the mean-field electron
Green function, the single straight line is the electron Green
function for the pure metal, the wavy line is the BCS interac-
tion, and the dashed line is the impurity interaction.
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energy has the form X =A~&, and the impurity self-

energy the form X; = (z—z—)+(b, h—)rt, so that the
Green function for the dirty superconductor is

(2.15)

which is just the Green function for the clean supercon-
ductor with z, 6, replaced by z, 6, respectively. The di-
agrammatic definition of X; then allows us to write z, 5
in terms of z, h,

—leo 1+ 1
; z/z=S/X.

27- t/C02+ Q2
(2.16)

The diagrammatic definition of the pairing energy X
leads to the same self-consistency equation or 6 except
that z, 6 are replaced by z, and A. The relation
z/b, =z/b, means that this equation is exactly the same
as before, no superconductivity is unaffected by nonmag-
netic impurities at the mean-field level —a result known
as Anderson's theorem. '

We note that the z and z defined above are purely
imaginary —we make this choice as a way of keeping
track of factors of i. Other notations we will use exten-
sively are W=+ai +b, , e=3/z —5, z'=iai'=i(co
+0), where 0 is a bosonic Matsubara frequency from an
external potential. For the new frequency z' we define z',
8", 6', and c' in the same manner as for z, 8' 6, and c, ,
with z =icu replaced by z'=iso'. We summarize all the
notations used in Table I for ease of reference.

= ——,'A[%+(x)~,%(x)][%+(x)i,+(x)]
—

—,
'

A [4+(x)~2%(x)][%'+(x)r2'1'(x)], (2.17)

which can be written diagrammatically as in Fig. 2(b).
The diagrams in Fig. 2(a) are then equivalent to the usual
screening diagrams for the electron-electron interaction
except that they have ~& or ~2 at their vertices, as shown
in Fig. 2(c). We are therefore led to a matrix theory in
which 'T] 72 and ~3 are also allowed at vertices, and the
bare matrix potential is

T3

differently than the other fluctuations in the system —the
order-parameter amplitude and phase fluctuations. To
include the latter Auctuations in the Nambu theory, one
needs to include diagrams in which a pair of electrons re-
peatedly interact with each other as shown in Fig. 2(a).
The electron-electron interactions shown in the ladder in-
clude both BCS and Coulomb parts so that A, includes p'
as previously discussed. In calculations of T, such pairs
of electron lines can be rewritten as an electron pair prop-
agator, leading to the Coulomb interaction and pair Auc-
tuations being treated identically. In the superconductor
the matrix structure makes such a rewriting less easy, but
it can be done in the case of contact interaction

—A [4+(x)r3%'(x)][%+(x)~3%(x)]

The 4 X4 matrix formalism
t3 C3 1

The Nambu field theory above is a complete theory of
the pure or disordered superconductor, but suffers from
the problem that the electron-electron interaction, which
is due to electron-density fluctuations, is treated

z —l co z'=ice'=i (co+0)

zz'+b 5'
a+ =cz+ —2= 1—

BC

z'/z' =6'/b, = 1+ 2rV'z'- S'
W'=+co'+62

Q—i2 pic

z'6+z 6'
EE

TABLE I. A summary of the notation used in the calcula-
tions of Secs. II and III. co=(2n+1)mT is a Fermi-Matsubara
frequency, while 0=2m ~T is a Bose-Matsubara frequency. We
define the imaginary quantities z =iso and z'=iso' to make it
easier to keep track of factors of i in calculations. The overlined
quantities are those appearing in the electron Green function
after it has been renormalized by disorder. 8'and 8" are pure-
ly real, and the square root in their definition has positive real
part; c. and c' are purely imaginary and the square root in their
definition has positive imaginary part. The a+, c7+, and P+ are
coherence factors.

(c)

~j 7 Cj

FIG. 2. (a) A typical correction to the self-energy of a super-
conductor due to order-parameter fluctuations. (b) Diagram-
matic rewriting of the BCS contact interaction in terms of order
parameter amplitude and phase operators. (c) Order-parameter

fluctuation diagram (a) after the rewriting in (b). We see that
the fluctuation diagram now has the same form as the screening
diagram for the electron-electron interaction. (d) Screening of
electron-electron interactions in a superconductor by density
and order parameter fluctuations. All fluctuation terms can be
now be treated in a single screening diagram in which all Pauli
matrices ~&, ~&, and ~3 may occur at vertices. This defines the
screened interaction V;,
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2

2

0 0 Vc(q)

(2.18)

that our formalism is equivalent to the path-integral
description of superconductivity, where the BCS con-
tact interaction and Coulomb interactions are split up us-
ing the Hubbard-Stratonovich transformation.

where the rows and columns of the matrix correspond to
the 7

~ 7z and ~3 vertices. The order parameter Auctua-
tions are then included in the screening of the matrix po-
tentials

V=V +V IIV, (2.19)

as shown in Fig. 2(d). We find it more convenient to
work with 2V since then we have potential —

A, in the 11
and 22 channels, and 2V& in the 33 channel, which can
be regarded as the Coulomb repulsion for both spins. We
therefore shufBe factors of 2 in the screening equation to
get

r=r, +rp'r, +rprpr, +

where I o is the impurity line

(2.21)

Ladders vertices and polarization bubbles

Having derived our matrix formalism, we proceed to
evaluate the impurity ladder for the superconductor
shown in Fig. 3(a), the impurity dressed vertices shown in
Fig. 3(b), and the RPA polarization bubble shown in Fig.
3(c), all of which are needed for the calculations of Sec.
III.

The impurity ladder is given by the geometric series

(2l )=(2V )+(2l' )( —,'ll)(2&), (2.20) 1I o= r3r3 (2.22)

so we will need to include an extra factor of —,
' in the

definition of II, and overall factor —,
' to reduce 2V to V.

We note that essentially similar techniques have previ-
ously been used ' ' in work on dirty superconductors.

So far all of the above has been purely algebraic manip-
ulation to enable us to perform perturbation theory in a
more systematic manner. Physically the matrix formal-
ism derived above corresponds to viewing the electron-
electron interactions as the exchange of bosonic collective
modes between electrons. There are four possible bosonic
operators in the system that are made by forming bilinear
combinations of two Nambu electron operators. A good
physical choice is to use the four Pauli matrices, ~~ 'Tz

and k7"p which lead to the operators for order-parameter
amplitude 6, order parameter phase P, electronic density
p, and electronic current j, respectively, as shown in
Table II. The current Auctuations lead to electromagnet-
ic interactions, and including these leads to the so-called
relativistic formulation, so the final potential will be a
4X4 matrix. We shall ignore these Auctuations here as
they are less important than the other terms. We note

I

and S is the momentum sum of a direct product of Green
functions

S = g G(k, iso)G(k+q, ico+iQ) .
k

(2.23)

Performing the sum over momentum leads to the expres-
sion for 5

S =mX (0)rI r38 7 3—
(z b,r, )g(z' ——b, 'r, )

(2.24)

where I is the integral

I= ' jag„an (g„—E )[(g„—q v )
—E' ]

=1 (Dq + W+—W')r, (2.25)

where the approximation above is valid in the limit
QT ql, A~ && 1, which we call the dirty-limit approxima-
tion. The geometric series for I can then be summed to
yield

1 1r= 73 W3+ V373—2irX(0)r 4wN(0)r (Dq + W+ W')
(z —br, )I3 (z' —b'ri)

(2.26)

TABLE II. The bosonic propagators in a disordered superconductor, and the Pauli matrices that
occur at their interaction vertices. One can make four bosonic operators from bilinear combinations of
the Nambu operator with the Pauli matrices. Each of these has a physical meaning as shown, and
possesses a coupling in the model Hamiltonian. Since the electronic current is coupled to the vector
electromagnetic interaction, which is relativistically weaker than the scalar interaction of the electronic
density, we will ignore its effect.

Physical meaning

Order parameter amplitude
Order parameter phase
Electron density
Electron current

Symbol Operator, 0;=4
+~i+0

4~'iAi+0+

Pauli matrix, ~;

7

i2
'T3

k~0
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A=rp+rprp+ . . =(r—r, )r (2.27)

from which we can obtain the dressed vertex A; by insert-
ing v.; between the two terms of the direct product,

where we note that although the first term is O(hr)
smaller than the second, it cannot be ignored as it has a
diff'erent matrix structure, and so may yield a nonzero re-
sult when the larger term gives nothing.

The impurity ladder dressed vertices A; can then easily
be evaluated from the impurity ladder I . For these ver-

tices we need to calculate the geometric series

2r(Dq + W+ W')A (co, co')

(z —br) )(z'+ 5'r
1 )

EE,
73

=(a +f3 r, )r3,

where from now on we replace the labels i=1,2,3 by the
physical quantities b„, P, and p, respectively, that they
represent, as described in Table II. The a and P terms
that occur in these vertices are coherence factors

A;= 1

2r(Dq + W+ W')
zz'+Ah'

(x+ 1
FC

z'5+z 4'
a+=a+ 2;13+—=

EE

+33' 33
(z —Zr, )r3r, r3(z' —Z'r, )

(2.28)
(2.30)

This leads to the expressions for the three dressed ver-
tices,

We note that the vertices A;(co', co), which are obtained
by swapping primed and unprimed quantities, are the
same as above except that the order of the matrix prod-
uct is reversed, for example,

2r(Dq + W+ W')Az(co, co')
2r(Dq + W+ W')A~(co', co)= —r2(a +P r, ) . (2.31)

(z —b,r, )(z' b, 'r,)—
= —(a++P+r) )r(,

2r(Dq + W+ W')A&(co, co')

(z —b,r, )(z'+ Z'r, )
1+

EE,

= —(a +P r, )r, , (2.29)
I

To evaluate the polarization bubbles H,. shown in Fig.
3(c) we need to evaluate the geometric series

ll=s+srp+srprp+ . =r (r —r, )r
(2.32)

and then insert the vertices ~; and ~z between the two fac-
tors of the direct product and take the trace. Finally we
need the factor —1 for a closed fermion loop, the extra
factor —,

' discussed in Sec. II, and the sum over co to get

1 1 r3(Z k1 ] )731 '1 3(Z 5 V] )%3&J
II; (q, Q) = — ~N (0)Tg- Tr ~3~3737 ' 737 3737SJ

Dq + 8'+8" E,E
(2.33)

In the above derivation we have made the assumption that we can change the order of summation over frequency and
momentum and perform the momentum sum first. This is not true for the first term in the diagrammatic series of Fig.
3(c) when we evaluate II . When we treat this term with more care we find that we obtain an extra term +N(0) upon

interchanging the order of the sums. The nonzero H; are then given by

Q2
Il~a(q, Q)=~N(0)T g 1+ 1

Dq +8 +8"
'+6

Il~p(q, Q)=mN(0)T g 1+ 1

Dq +8'+ W'
(2.34)

II (q, Q)= nN(0)T g 1——, +N(0),
Dq'+ W+ W

Ilp (q, Q)= ~N(0)T g—BQ 1 II„(q,Q—) .„~~' Dq'+W+W

We can then derive the screened potentials V;. ,

where

( —X-'+ ll„)-' 0

I'(2&c(q) ) '+ ll ]/2) —ll~ /2)

11„/n ( —A, '+ II~~)/2)

(2.35)
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2)=( A +II«)l(2Vc(q)} +II ~+II

The coupling between the phase and density Auctuations is a manifestation of gauge invariance.

(2.36)

Properties of the screened potentials

The first thing we can check is that setting 6=0 reproduces the normal-state results. H& is zero as it is proportional
to 5, so the H matrix becomes diagonal. IIPP reduces to

II =N(0) —2~N(0)T g Dq'+ Inl

D 2

=N(o)
Dq + In

the familiar polarization bubble for the dirty metal. We note that H satisfies the sum rules

lim lim II (q, n)=N(0); lim lim II (q, n)=0 .
q~0 Q~O Q-+0 q —+0

(2.37)

(2.38)

Both II&& and II&& reduce to the same function

11„=2~N(0)Ty ", ' +"".Dq'+12~+nl

1

2co
+ 2' (0)T g—1

~&o ~
=4mN(0)T g 1

)0 Dq +2'+ Inl

Dq'+ lnl
T 2 2 4' T

(2.39)

so that V&z and V&& are given by

v~q(q, n) = v«(q, n)
r

T 1 Dq'+lnl
To 2 4~T 2

= —Lo(q, Q), (2.40)

where Lo(q, n) is the BCS electron-pair propagator, as
discussed in Sec. IV.

Having shown that the effective potentials for the dirty
superconductor reduce to those for the dirty metal, let us
now look in detail at their properties in the superconduc-
tor. We note that we can use the BCS self-consistency
equation (2.13) to replace A,

' by n.N(0)T g I/Win the
RPA results for V, . In the formulas below we absorb the

' into the II&& and II&& terms. We first show that there
is no singularity in the order-parameter amplitude propa-
gator V&& at zero frequency and momentum for any
nonzero 6,

The presence of the nonzero order parameter has led to
fluctuations along this order-parameter direction becom-
ing massive.

We next show that the propagators V&&, V&, and V
PP

all have a singularity at zero momentum for all nonzero
frequency and all temperatures. This is the analog of the
singularity of the screened potential in the normal metal,
which singularity is known to strongly affect that
system's properties. To show the existence of this singu-
larity we need only show that the denominator 2) van-
ishes at q=o for all QAO and T. Since Vc(q)-q" ', we
need only prove that

Vaq(0, 0) '=mN(0)T g 1

co +b, 2V'~ +g
1

V co~+b,

II«(o, n)II„(o,n)+ II„(o,n)'=0,

since then we know that

II«(q, n)II (q, n)+II~, (q n)'=O(q') .

(2.42)

(2.43)
Q2

mN(0)T g 2 2 3~—2 %0 .
( 2+ g2)3/2 (2.41)

This is shown in Appendix A, in fact that
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—x'II„(0,Q) =x II„(O,Q)

= II~~(0, Q)

=2Q mN(0)T g 1

(4' —Q )W
(2.44)

momentum singularity means that in any calculation we
perform we must be careful to keep all the singular terms
in case cancellations occur. If we next expand the
II,.J(q, Q) around q=O to O(q ),

II; (q, Q)=II; (O, Q)+Dq II';J(O, Q) (2.45)

where x =Q j2b, in Table I. The existence of this low-
I

we see that Eq. (2.36) for 2)(q, Q) can be written using Eq.
{2.45) to relate II&&, II&, and II

(2.46)

(2.47)

2)= —II (O, Q)[ V '(q)x +Dq [x II' (O, Q)+2xII& (O, Q) —II&~(O, Q)]] .

The singular parts of the potentials V&&, V&, and V in Eq. (2.35) are then related by V (q, Q)= —x V&&(q, Q),
V& (q, Q)=xV&&(q, Q), and V&&(q, Q) is given by

V&&(q, Q)= —
[ V& '(q)x +Dq [x II' (O, Q)+2xII& (O, Q) —II&&(O, Q)]] .

V (q, Q) '=(2V&(q)) '+II' (q, Q) (2.48)

so that the effective polarization operator for the
electron-electron interaction, II', is given by

II~ (q, Q)II' (q, Q) =II (q, Q)+ (2.49)
[—A, '+ll ( Q)]

the usual sum rules for this polarization operator are
obeyed

From Eq. (2.35) we see that although V&&, V&, and V
are all singular at q=O for QWO, only V&& is singular at
q=O when A=O —the other two potentials have factors
of 0 that send the singular part to zero at Q=O. This is
to be expected since V&& represents the Goldstone mode
of the system which must have a 1/q singularity at
0=0.

Another thing we may note is that if we rewrite V in
the form,

lim lim II' (q, Q)=N(0); lim lim II' (q, Q)=0 .
q~O Q~O Q~O q —+0

(2.50)

This explains the apparent paradox that II does not
satisfy the usual sum rule —the mixing of phase and den-
sity fluctuations means that it is the effective polarization
operator II', defined directly from the physical potential,
that satisfies these relations.

We finally note that the vanishing of the denominator
2) at q=O has been demonstrated using the V~ we ob-
tained by making the dirty-limit approximation. If we
keep the full dependence of the V; on A~ will the denom-
inator still vanish, or will it be finite but of size O(hr)?
To get the exact expressions for the II; it can be shown
that we need simply make the replacement

1

Dq'+ W+ W' V'[1+r( W+ W')]'+2Dq'& 1—
{2.51)

(0+0
k+q p+q

r
k» p(0

k+q, (0+0

k, o)

X + x x + x x
I I I
I I J' I I

(a)

+ ~ ~ ~ ~
I

+ ~ ~ t ~

i

and we see that putting q=O yields the same result in
both cases. The vanishing of the denominator is there-
fore not just an artifice of the dirty-limit approximation.

III. DIAGRAMMATIC CAI.CUI.ATION
OF FIRST-ORDER CORRECTION

TO ORDER-PARAMETER
SEI F-CONSISTENCY EQUATION

We evaluate the self-energy diagrams shown in Fig. 4.
The self-consistency equation for the order parameter is

k+q, co+Q

k, (0

(c)

+ 0 ~ ~ ~

Tj

6 =A, g T g —Tr[~,G (k, co)],1

k co

which when 6 is expanded to first order becomes

b, =i, g T g —Tr[r, [GD(k, co)
1

k co
2

(3.1)

FICx. 3. Diagrammatic definition of (a) the impurity ladder I,
(b) the impurity dressed vertices A;, and (c) the RPA polariza-
tion functions II;, .

+G0(k, co)X(k, co)G0(k, ~)]] .

(3.2)
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In what follows we will evaluate gk GoXGo for each
self-energy contribution, from which the corrected self-
consistency equation can then be derived.

First let us consider the self-energy diagrams with two
I

impurity dressed vertices shown in Fig. 4(a), and start by
computing the V&& term, which we denote as X&&, the
superscript (2) indicating two dressed vertices. The dia-
gram rules enable us to write down the expression

g GoXP&Go= ——T g g g Go(k, co)A&(co, co+A)Go(k+q, o1+A)A&(co+A, o2)Go(k, co)V~&(q, Q) .
1

(3.3)

An idea of the complexity of this term can be obtained by writing out the full matrix structure of each component to
give

8v n q (Dq + W+ W')

(z+hr, +gk13)(a++P+r )1.,(z'+5'1., +gkr3)1&(a++P+1&)(z+b1&+jk13)
X d k

(g2 2)2(g2 I2)
(3.4)

where we have set q=0 in the second Green function as we expect the major contribution to come from small q due to
the form of the vertex functions. The major difhculty comes in performing the matrix product in the numerator of the
above expression. We have developed a general technique for simplifying such expressions, which we demonstrate in
Appendix A. The final expression is relatively simple,

g GoX~qGo = T g g a+X(0)
k 4 n

1
E'E' 2Ekk+—EVk

Vqq(q, 0) d k
(D +W+W') (g —E ) (g —E' )

(3.5)

We can make the approximation E =E =i /2', valid in the dirty limit, to evaluate the latter integral. After some alge-
braic manipulation we obtain

1g GoXPqGo= 1rN(0)T g—g
k 0 q

' ~+~~1 con' —51+, Vq~(q, 0) . (3.6)

The other two-vertex terms corresponding to different effective propagators V; have the same matrix structure
iso+ b,1.„and differ from Eq. (3.6) only in having the appropriate V;, and a new coherence factor in front of it.

We next show that the three-ladder diagram of Fig. 4(c) is identically zero. This diagram can be obtained from the
two-vertex diagrams of Fig. 4(a) which were evaluated above. The final ladder can be made up impurity by impurity,
the nth term T„being obtained by induction

1T„= d kk Go+3 Tn —1r3GO2'~
with To being the two-vertex result. Noting that To has matrix structure z +A~&, T

&
has the matrix structure

( +Z6 )+1/ 3k)(1Z 51 ] )(2+51 ]+gk1 3) g„+E
dgk 22($2 E2)2 (g2 E2}2

(3.7)

(3.8)

where the final integral equals zero. Therefore T& and all other T„are zero, and the three-ladder diagram is thus zero.
Put another way, the matrix structure forbids this diagram, just as the requirement that the two lines of a ladder must
have opposite frequency forbids it in the normal metal.

Let us now evaluate the one-vertex diagram shown in Fig. 4(b). We will first evaluate the diagram without the exter-
nal ladder, which we know will be 0 (h1) smaller than the two-vertex diagrams of Fig. 4(a), and we will then add the
external ladder impurity by impurity as above. The diagram rules give

P GoX~sw~Go= 2T P X X Go(k ~)Aa(~~~+A)Go(k+q ~+0)1 iGo(k~~)Vaa(q~~)
k 0 q k

(3.9)

the factor 2 arising as there are two places to put the dressed vertex, each yielding the same result. The matrix product
is simplified in Appendix 8 to give

X Go&2~Go=—X(0) 1
V2,2, (q, 0)

k q DP +8'+8'
Z+ 61., E E' —2Eg'„+E'g'„(Z +61., )1., E E' —E'gk

X a+ d k($2 2)2($2 k2) k
(g2 2)2(g2 i2)

(3.10)

We see that there are two types of matrix structure present —the z+ A~, also found in the two-vertex diagrams, and a
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new form (z+hr, )r&. We know that the term with matrix structure z+hr& yields zero upon putting the external
ladder back, so we can ignore this term as the only nonzero result it yields is 0 (b,r) smaller than the two-vertex terms.
We put back the external ladder around the term proportional to (z+hr, )r, one impurity line at a time, as in Eq. (3.7).
Here since Tp has the matrix structure (z+Zr, )r„T& has structure

1 (z+ 6 7)+'gk 7 3)r3(z+ 67 ])1 ]73(z+61 f +)kr3)
27T7 (g2 E2)2

1 1=C(z+br, )r, Idgk
27T7- kk

—&'

C (z + b,r))r, ,
2'TE,

so that repeating this process leads to "amplification" by a geometric series

(3.11)

1+ +
2VE,

+ ~ ~ ~
1

E i /—2r 2Wr
(3.12)

Including this fact, which makes the one-vertex terms have the same order of magnitude as the two-vertex term, and
making the dirty-limit approximation c,= c,

' =i /2& leads to the expression

$1 ( i5 g+g'
V~~(q, Q) . (3.13)1 1y Gpr,",'Gp= ——~X(O)T y y.

k q DP +8'+8"
The other one-vertex diagrams corresponding to different effective propagators V;. have the same matrix structure
cur, id„and diff—er from Eq. (3.13) in having the appropriate propagator V;, and a new coherence factor in front of it.

If we add up all the two-vertex and one-vertex terms, and substitute them into the order parameter self-consistency
equation, we get

1—T'V = AT T'V—V-„-, (aq2+ w+ w')2w

X — 1—,V (q, Q) ——1, V~~(q, Q) , —Vp (q, Q)1 coco'+ b, 1 coco'+ b. ( co' co )b, —
2 8'8"

1 676)

2 88"

1 (co' —co)b,
( Q)

1 (co' —co)h
)

a(D '+w+w')w'

coco'+ b, 1 (co'+co)A
V~ (q, Q)+—,V~~(q, Q)8'8 '

(3.14)

which, together with the definition of the V;., is the final

result of the calculation.
If we keep just the left side in Eq. (3.14), we recover the

BCS result, which can be written in the form

where the just denotes the first-order correction
terms on the right-hand side (RHS) of Eq. (3.14). We can
obtain a very similar result for T, by setting 6=0 in the
RHS of Eq. (3.14) to yield

coD 6p( T)

N (0)A, b,p( T) T
+I' (3.15)

which means the Eq. (3.14) can be rewritten in the form

T.
ln

Tco
mT$ $T$-

Q q

(3.17)

ln = mTg gTg . —.~(T)
b,p( T)

(3.16) where the . are the first-order correction terms with
5=0.
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k, co k, m
(a)

q, Q

Pl Plb Plc

P3 P3b P3c P4

Psa Psb Psc

(c)
FIG. 4. The first-order corrections to the self-energy of a

disordered superconductor. (a) is the two-vertex diagram,
whilst (b) is the one-vertex diagram. Both of these diagrams
have two impurity ladders I defined in Fig. 3(a). (c) is the
three-ladder diagram which is shown to be identically zero in
the text. The double wavy line is the screened interaction line
defined by Fig. 2(d) with the RPA polarization function defined
in Fig. 3(c).

P7

FIG. 5. (a) Diagrammatic definition of the electron-pair
propagator L (zig-zag line), and the pair-polarization operator
P. (b) Zeroth-order (BCS) contribution to the pair-polarization
operator. (c) First-order contributions to the pair-polarization
operator. The wavy line is the Coulomb interaction between
electrons, while the zig-zag line is the BCS electron-pair propa-
gator Lo.

IV. FIRST-ORDER CORRECTION
TO THE TRANSITION TEMPERATURE

L '(q, Q) =A, '+P(q, 0), (4.1)

where P ( q, 0 ) is the pair polarization bubble. The
zeroth-order polarization bubble Po(q, A) is shown in
Fig. 5(b), and leads to the mean-field result

D +fLL (q, n)=N(0) 1 +@ —'+
T, 2 4 T

(4.2)

In Sec. II we showed that the propagators for order-
parameter amplitude and phase, V&& and V&&, both
reduce to Lo(q, 0) whe—n b, is set to zero. We note that

The first thing we can do with the order-parameter
self-consistency equation derived above is to linearize
with respect to 5 to obtain the equation for the first-order
correction to the transition temperature. The latter can
also be obtained directly from the normal state by calcu-
lating the pair propagator L (q, Q) as shown in Fig. 5(a),
and looking for the supe rconducting instability at
q =0=0. I. is given by

the extra factor of —1 that is associated with L (q, Q) is
due to the fact that we can interchange the two particle
lines in any diagram containing the pair propagator to
obtain both a direct and an exchange term, giving the ex-
tra factor —2+1=—1. A correction to the polarization
operator 5P(0, 0) leads to a change in T„which is
defined as the temperature at which the denominator be-
comes zero, given by

Te 5P (0,0)
ln

To N(0)
(4.3)

The first-order diagrams for the correction to P(0,0) are
shown in Fig. 5(c), and can be evaluated using the many-
body theory of the normal metal. Diagrams P, —P4 con-
tain only the Coulomb repulsion, whilst P5 and P6 con-
tain only pair fluctuations. The final diagram, P7 con-
tains both Coulomb and pair propagator, and must be
kept if the singularity in the Coulomb potential is to be
removed. As it was already mentioned" this is the dia-
gram that has often been overlooked in work on the
correction to the transition temperature. We note its
superficial resemblance to the Aslamazov-Larkin con-
tribution to fluctuation conductivity. The results of the
evaluation are
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P, = ~N(0)T+TQ g 1 1

co Dq+Q

2 1

I
~

I
Dq'+

I
Q

I

X Vc(q, Q}8( co—(a)+Q)),

Pq=mN(0)T g T Q g
co Dq + 2co+Q

X Vc(q, Q)8(co(co+Q)),

P3= ~N(0)T g T g g 1 1

l~ll~+QI Dq'+ IQI

X Vc(q, Q)8( —co(co+Q)),

P4= ~N(0)T T 1 1~ l~ll~+QI D '+I2~+Ql

X Vc(q, Q)8(co(co+Q)), (4.4)

P~ = mN(0)—T g T g g 1 1

Ical' Dq'+ I2co+Ql

2 1

(Dq + I 2'+ Q
I }

XL (q, Q)8(co(co+Q)),

Ps=mN(0)T g T g g 1 1

co Dq+Q

We can now perform our consistency check by setting
6~0 in the order-parameter self-consistency equation
derived above. The potentials then become V —+2VC,
Vzz, V&&~ L, —

V&~ ~2II&~L Vc. Since W~
I
co I,

W'~
I
co+ Q I, the coherence factors become Heaviside

functions that set the relative signs of frequencies

NN +5
1—,~28( —co(co+ Q ) )8'8"

I ++21+, ~28(co(co+ Q) ) .8'8"
(4.5)

6)CO
[8(co(co+Q) )—8( —co(co+ Q) )],1

w w' It'll

(4.6)
CO 1

[8(co(co+ Q ) ) +8( —co( co+ Q ) ) ] .w'w'
I
~

I l~+ Q
I

The denominator Dq + W+ W' becomes Dq + IQI for
co, co+Q of opposite sign, Dq + I2co+Ql for co, co+Q of
the same sign. Making all these substitutions we find that
we can reproduce the equation for T, suppression term
by term. Diagram P7 derives from the one-vertex V&4p
term, which shows that its origin is due to coupling be-
tween order-parameter and density Auctuations. The
1/(Dq +IQI) term in P, and 1/(Dq +I2co+Ql) term
in P5 are the only one remaining from the two-vertex
part of Eq. (3.14). All the other terms come from the
one-vertex part by using the substitutions

XL (q, Q)8( —co(co+Q)),

P7=4~ N(0) T g g T g Q. I~ll~+QI

1

Dq'+
I
~ I+ I ~+Q

I

X Vc(q, Q)L(q, Q) .

2

Having shown that the two methods of calculation pro-
duce the same expression for the correction to T„we
now proceed to evaluate it. We will split the result into
two parts: the Coulomb part consisting of those terms
that contain a Coulomb propagator, (P, P&,P7), and-
consequently require special attention at q=O, and the
fluctuation part consisting of the terms with only a Quc-
tuation propagator (P5,P6). If we perform the co sum
first we get the Coulomb part

T.
ln

Tco
= —TXX

Q q

Dq , 1 IQI 2Dq [Q +(Dq } )
2~T Q& (Dq&)& 2 27pT Q[Q~ —(Dq~) ] 2 2~T

L

4(Dq ) [P(1/2+IQI/2vrT) f(1/2)]-
[Q' —(Dq')']' [y[1/2+(Dq'+ I

Q
I ) /4~T] —q( I/2) ]

Since the worst singularity possible in Vc(q, Q) goes as 1/q, we see that the overall q factor multiplying Vc in the
Coulomb part means that this singularity is removed. ' The removal of such a singularity seems to be a general feature
when we evaluate a physically measurable quantity such as T, as opposed to a property such as the density of states
which is not measurable. We note also that there is no pole in the expression at Dq = IQI, as may be seen by expanding
out the last term around this point to second order.

As was stressed in Ref. 17, the appearance of the overall factor q in Eq. (4.7) means that the correction to the transi-
tion temperature is universal in the sense that it is not sensitive to the low-mornenturn structure of the Coulomb poten-
tial, therefore one can use 3D or 2D form of the Coulomb potential.

Equation (4.7) is still an exact expression, from which we will now extract the largest term by approximation. If we
use the 3D screened Coulomb potential and define s =Dq, noting that g = jds/4mD, we note that the largest contri-
butions to the s integrals come from the first and second terms, which fall o6' as 1/s for large s. Since these 1/s terms
are cut off by 1/r at the upper limit and I Q I

at the lower limit this gives
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Tc
ln

Tcp
T — g' —+ + —+

&~N (0)D n 2~T 2 2~T
I
&

I
2 2m'T 2

(4.8)

The main contribution to the 0 sum comes from large co where g(x) =ln(x). We can ignore the g'(x) term as it is less
singular at large x —tP'(x) = 1/x. Putting 0=2m. Tm gives

T
ln

Tcp

1
In —ln(m)

ln(m) 1

4m N(0)D ~ )o m Tr (4.9)

Approximating this sum by an integral and cutting off at 0—I /r gives the leading order term,

T.
ln

Tcp

1 3 1
ln

24mN(0. )D T,r
(4.10)

Changing the numerical factor of the cutoff in the log-cubed term does not affect the leading order log-cubed term, but
alters any log-squared terms. In the asymptotic limit T,~&& 1 this does not matter, but when we put in actual experi-
mental numbers, the log-squared terms can be important. We can therefore identity two sources of error in the term
written above —those due to the approximations used to get the leading order term from the original expression, and
those due to the arbitrariness of the upper cutoff.

If we next consider the suppression of T, due to pair fluctuations, after performing the co sum we obtain,

1 ~ ~ D
ln T„2~N(0) ~n ~ ~' —(D ')'

gq'[1/2+ (Dq'+
I
&

I ) /4~T ]—y'(1/2+
I
II

I
/2~T ) ]

(gI I/2+(Dq'+ I'll)/4~T] P(1/2)]
(4.11)

We note that the zero-frequency (classical) fluctuations
diverge as g 1/q at q=0, corresponding to fluctuations
of the Goldstone mode, and that this is the dominant
term,

T.
ln

cp f
7g(3) ds

2n. N(0)D s
(4.12)

The upper cutoff in this integral will be s =Dq —T„at
which point the low-q expansion used breaks down.

The main problem is deciding what to use for the lower
cutoff in q. The most physical choice appears to be the
inverse length of the system in the transverse direction.
We then see that for an infinite system T, is suppressed to
zero, rejecting the fact that order-parameter fluctuations
destroy long-range broken-symmetry order in two or less
dimensions. This is just a statement of the Merrnin-
Wagner-Hohenberg theorem. ' ' In this sense the prob-
lem of the suppression of T, in a system of two or less di-
mensions is ill-defined. The "idealistic" result we then
get is

T.
ln

cp

1 Ro 3 1
ln

24m Ro 2m T~

7g(3) Ra L 6
2m

3 Rp D
(4.13)

However since there are experiments on two-
dimensional systems that give perfectly well-defined T„
we would like to have some way to deal with the Auctua-
tion term. If we insert the actual size of the sample for L
we find the suppression is much stronger than that found
experimentally. We could just conveniently ignore the
term, preferring to consider only "Coulombic" suppres-

sion, but there is obviously no justification to this. The
only other approach in the literature has been to use the
zeroth-order fluctuation propagator rather than the exact
fluctuation propagator, which immediately yields a lower
cutoff' of Iln( T, /T, o) I

for s. If one then solves the result-
ing implicit equation by iteration, the first term in the
iterated expression has the R ~/Ro factor under the loga-
rithm,

C

ln
cp

ln
24m RO 2+TC7

+ ln
7g(3) Ro 7g(3) Ro
2m' Rp 2~' Ro

(4.14)

This method was first used by Strongin et al. who eval-
uated the phase-Auctuation contribution using a
Ginburg-Landau approach. Ovchinnikov noted that the
above equation could be rewritten in terms of the smear-
ing of the phase transition by the fluctuation contribution
to the conductivity above T„which has smearing param-
eter ~O=R~/Rp so that the smearing ~o appears as the
lower

cutoff

i s. Eckern and Pelzer' in essence reversed
this argument saying that the smearing of the transition
means that one should cut off at the smearing parameter
due to the uncertainty in knowing exactly where T, is.
We believe that the above arguments are incorrect, and
that the actual lower cut-off should be the inverse length
o the system, 1/L. But in order to compare the numeri-
cal T, and Tp results to each other in Sec. V we will how-
ever use this lower cutoff procedure for Eq. (4.12), noting
that similar reasoning (using the mean-field rather than
exact propagators) leads to the same cutoff for b.o.
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V. FIRST-ORDER CORRECTION
TO THE ORDER PARAMETER

Let us now consider the equation for the correction to
the order parameter, Eq. (3.14). The first thing we have
to do is to calculate the singular low-momentum contri-

bution from the potentials V&4„V&, and V . We can
then subtract this singular term from the complete ex--
pression to obtain a term that is well-behaved at low
momentum which we will also analyze. Since the singu-
lar potentials satisfy V ~(q, Q) = —x V&&(q, Q),
V& (q, Q) =x V&&(q, Q), the singular contribution can be
written ("lm" for low-momentum)

1=—~T& TW
(W+ W') W

COCO +6 COCO +6
RW

+'+ 88
2A x
88

+ CO

W2( W+ W')
2 2+2x 2+2x coco'+ Q2

WR"+88 " 88" . g V~~(q, Q) . (5.1)

This expression is simplified in Appendix C to yield after
much algebra

b(T)
b,o( T)

I

1 1~T g T g g V~~(q, Q) .
n q

(5.2)

We see that the singular terms do not cancel each other
completely, but reduce to a very simple form. To under-
stand the physical significance of this term we can set
T =T, . We then find that this term yields half the Auc-
tuation contribution to T, given in Eq. (4.12), and thus
interpret it as being due to the order-parameter phase
fluctuations. (The other half of the Auctuation correction
to T, comes from the order-parameter amplitude Auctua-
tions which are cutoF below T,by the order parameter).
Since the Coulomb interaction and phase Auctuations are
coupled below T„ the singular correction to T, due to
pair fluctuations has to emerge from the same denomina-
tor as the nonsingular correction to T, from the Coulomb
interaction. Let us now evaluate this low-momentum
correction to the order parameter.

At T=O we know' the exact form of V&&(q, Q) up to
0 (q ) in the denominator,

&(0) 1 Ro
ln

24m Ro 2h
(5.5)

where we replaced the frequency sums by integrals, and
noted that the main contribution to the x integral comes
from the upper limit, which is 1/2b, r. If we were to use
the 2D Coulomb potential there is no longer a divergence
at q=O, and the ln(L b, /D) term is replaced by
ln(DIi2/6), where xz is the 2D screening wave vector.
Note that although this term is now finite it is rather
large in value.

We will now consider the nonsingular part of Eq. (3.14)
which is what is left over after the singular part has been
subtracted off. Since this has no singular behavior at low
q, it follows that a large contribution can come only form
large q and Q. We can easily calculate the contribution
from large q and Q since the large Dq and 0 are so
much greater than 5, that we can set 6=0 here. The
leading terms are the same as in the normal metal, so that
we get a log-cubed term. The coefticient is the same as
for the normal metal and is again universal. This contri-
bution can thus be written ("hmqf" for high-momentum
quantum fluctuations)

Vyy(q, Q) ' = — (2 Vc(q) )

D+D«i+ E-
&1+x' (5.3)

The "idealistic" result for the suppression of b, (0) for a
3D Coulomb potential is then

b(0) 1 Rv 3 1
ln ln

b,o(0) 24m R o 2b,r

b, (0)
~0(0)

t 1/26~

4~'N (0}D
dx

y
ds

Ql+x E(x/'}/1+x2) s

If we use a 3D Coulomb potential this diverges as 1/q 2 at
q=O, and ignoring the q term from (2Vc(q)) ' as it is
so small, the low-momentum contribution is ("lmqf" for
low-momentum quantum fluctuations)

1 Ro 1 Lh
ln ln

4~ Ro 26~ D

b,(0)
ho(0)

Ra 1 D&2
ln ln

4m. Ro 2k~

and for a 2D Coulomb potential is

R
ln

24~ Ro 26~

(5.6)

(5.7)

1 Ra 1 L2a
ln ln4z Ro 2Ag D

(5.4) If we cut off the low-momentum divergence by using the
zeroth-order propagators that have value of the order pa-
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rameter, this gives a cutoff ~ln(b(0)/bo(0)) ~. This leads
to the "pragmatic" result

( ~) i N(0)Dq Q
4~2

(5.12)

b,(0)
50(0)

1 Ro, 1
ln

24m Ro 26&

Rp ]. 1 Rp+ ln ln
4m Ro 2~~ 4~ Ro

(5.8)

This pragmatic cutoff is exactly equivalent to that used in
the T, case to obtain Eq. (4.14).

Let us compare Eq. (5.8) for b, and Eq. (4.14) for T, .
We see that they have essentially identical high-
momentum quantum fluctuation terms that are universal
in that they are independent of the nature of the screened
potential. The low-momentum fluctuation term for Ao
differs from that for T, in that it has an extra factor
ln( —,'b, r) and its exact form depends on the nature of the
electron-electron interaction. We note that the "prag-
matic" results for T, [Eq. (4.14)] and b, o [Eq. (5.8)] are
dominated by the high-momentum quantum fluctuation
term and so b,o/T, should be asymptotically constant as
a function of R~/Ro. We investigate this numerically in
the next section.

To see how we go continuously from the low-
momentum classical Auctuation correction to T, to the
low-momentum quantum fluctuation correction to 4o, we
will approximate the singular low-momentum correction
to b,(T) for general T. For TAO we can split this into
two terms —the classical fluctuations from Q=O only,
and the quantum Auctuations from the rest of the 0 sum,
which we expect to be dominated by large Q. For the
classical fluctuations one has the potential

which leads to

ln
~(T) = —D(T) '
&0(T), r Ro max[A, (T), T)

Xln
1

max[6( T), T]~

L max[5(T), T]
D

(5.13)

where again D(T) is an O(1) constant that varies slowly
with T. We see that there is no quantum fluctuation con-
tribution at T = T, since 5=0 there. Note that the clas-
sical fluctuation terms cannot be cut off by the 2D
Coulomb potentials whilst the quantum fluctuations can.
We note also that the high-momentum contribution is
simply obtained by replacing 6 by max[A, (T), T] in Eq.
(5.5) to give

Ra
ln

24m R o max[6 ( T), T]r

VI. NUMERICAL RESULTS

(5.14)

In this section we will numerically evaluate the 6rst-
order corrections to T„and ho, and compare these to the
asymptotic forms given in Eqs. (4.14) and (5.8), respec-
tively. The complete T, expression is given by the sum of
Eqs. (4.7) and (4.11). To evaluate this we introduce the
dimensionless variables m =0/2~T, and y =Dq /2mT, .

to give

V~~(q, 0) ' = — nN (0)Dq T—g (5.9) 1.0

Now we can approximate 0.8

1 1 1 1T cc T
max[~(T), T] ' W' max[A(T), T)'

(5.10)

0.6

0
~ 0.4

so that the low-momentum classical Auctuation (mcf)
term is 0.2

Z R~= —C(T)
max[A, (T), T] Ro

0.0
0.0 0.| 0.2

ReSigltance Hc/Ro
0.3

L max[A, ( T), T]
D

(5.11)

where C ( T) is an O(1) constant that varies slowly with T.
We immediately see that there is no classical fluctuation
term at T=O. To evaluate the quantum fluctuation term,
we need the asymptotic behavior of V&&(q, 0) at large Q,
which is given by

FIG. 6. Numerical results for the first-order correction to the
order parameter, 5/50 (dotted line), and to the transition tem-
perature, T, /T, o (solid line), as a function of resistance R&. In
each case the singular logarithm in the low-momentum fluctua-
tion terms has been cut off in the "pragmatic" way by the
square resistance. The two curves are very similar, showing
that 5/T, is roughly independent of resistance. We have used
the value of T, /c. F for Sn.
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T.
ln

CO

mo

g In
4~2 Rp

2
[g( —,'+m) —g( —,

' )]+/'( —,'+m)

0 mO 4y
dy

(m —y)(m —y )
T

[g(1/2+m) —g(1/2)], , y —rn

[f(1/2+y/2+m/2) —P(1/2)) ' ' 2

28/(3) i dy 0 dy P'(1/2+y/2) —P'(1/2) g"(1/2)
y o y g(1/2+y/2) —g(1/2) P'(1/2)

81—y

g'(1/2+y /2+ m /2) —P'(1/2+ m )

P(1/2+y /2+ m /2) —f( 1/2)

where ma= I/2n. rT, is the upper cutoff for m and y, and y, =7/(3)R~/2m Ro is the lower cutoff for y in the singular
pair fluctuation term. We see that the disorder strength I/r occurs only in the factor R~/Ro and the upper cutoff mo
(we have cut off Dq and Q at 1/r). In our calculations we vary the cutoff mo which can then be related to R~/Ro for
a given superconductor if we know the ratio T, /eF,

R 4+T, mo

+y J'dy
m =1 O ~ 3'

(6.2)
Ro KF

The first term in Eq. (6.1) is the leading term from the Coulombic contribution, Eq. (4.8), and has log-cubed asymp-
totic behavior. The second term is the remainder of the Coulombic contribution, the difference between the exact Eq.
(4.7) and its approximant Eq. (4.8). The third term is the leading term from the pair-fluctuation contribution, Eq. (4.12).
The fourth and fifth terms form the remainder of the pair-fluctuation contribution, the difference between the exact Eq.
(4.11) and its approximant Eq. (4.12). The fourth term is the zero-frequency part of the remainder, whilst the fifth term
is the finite-frequency part. Although the leading asymptotic behavior is the log-cubed term, the asymptotic regime is
reached so slowly that we need to consider subdominant terms to get reasonable agreement between numerical results
from Eq. (6.1) and asymptotic approximants. After much algebra one obtains

C
ln

TCO

1 o 28/3
ln

7~(3) o + 1
ln (m ) — g(1/2)+ —ln (m )

8& Rp ~ 2~ Rp 3 2

7T2 1+ +ln(8) ln(mo)+ —ln(mo)ln(ln(mo)) . .
4 2

(6.3)

46xo
(6.4)

We plot the numerical results for ln( T, /T, o) and

Numerical solution of Eq. (6.3) is presented in Fig. 6. A
comparison of the numerical and asymptotic results for
the T, case is given in Fig. 7.

The complete bo expression is given by Eq. (3.14). To
evaluate this we introduce the dimensionless variables
x =0/2A and y =Dq /2A. As for the T, a case the dis-
order strength 1/r occurs only in the term R~/Ro and
the cutoff for x and y, xo = 1/2hr. The singular term Eq.
(5.2) is subtracted from the full expression Eq. (3.14) to
give an integral that is well-behaved as y=O. Equation
(5.2) is then separately evaluated and is cut off at
y, =R~/4~Ra. There are three levels of integration to
perform —the outer x and y integrals, and the inner co in-
tegral over the coherence factors (and a similar integral
needed to produce the Vz). The x and y integrals are
split into intervals [0,1], and [l,xo], the latter region be-
ing integrated logarithmically. In our calculation we
vary the upper cutoff xo, which is related to R ~/Ro by

ln(b, /b, o) for the value of T, /ez corresponding to Sn in
Fig. 6 for R ~/Ro up to about 0.2. We see that the curves
are very similar so that b, /T, is roughly constant as a
function of R /Ro.

VII. CONCLUSIONS

In this paper we have evaluated the equation for the
first-order perturbation correction to the order parame-
ter, 5( T), due to the electron-electron interaction in a
disordered thin-film superconductor using a self-energy
approach. From this we evaluated the dependence of the
transition temperature, T„and the zero-temperature or-
der parameter, 6, as a function of the resistance R /Rp
both analytically (in the asymptotic limit) and numerical-
ly. The analytic results are summarized in Table III, and
the numerical results are plotted in Fig. 6. We find that
T, and 6 are suppressed in a similar manner, and that
b. /T, is roughly constant for R~/Ro up to 0.2. The ana-
lytic results for T, have been evaluated previously, '7, 11,12

providing a check upon our calculation, while those for 5
are new.
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FIG. 7. Comparison of the nonsingular sums (i.e., all but the
third term} of Eq. (6.1) for ln(T, /T, o) and the asymptotic ap-
proximation to these terms of Eq. (6.3). The solid line is the nu-
merical result; the dashed line is the leading asymptotic term

3
ln (Io };the dot-dashed line contains in addition the next term

—[P( 2 )+ z ]ln (mc); the dotted line contains in addition the
terms [ —'H+1n(8)]ln(mc)+ —'ln(me)in(in(me)). We see that
the asymptotic approach is slow, and in the physically impor-
tant range of mo we must include nonleading asymptotic terms
to get good agreement with the numerics.

The result for T, can be written as the sum of a high-
momentum quantum fluctuation term and a low-
momenturn classical fluctuation term. The high-
momentum quantum fluctuation term consists of all con-
tributions that contain the screened Coulomb interaction,
which is singular at low momentum. This low-
mornentum singularity is cancelled between the various
contributions, leading to a result that is dominated by
high-momentum and high-frequency fluctuations. This
term is proportional to ln (1/2frT, r) with a coefficient
that is independent of the exact nature of the screened
electron-electron interaction. The low-momentum term
consists of those contributions that contain only the
electron-pair propagator, and is divergent for an infinite
system in two or less dimensions. This is consistent with
the Mermin-Wagner-Hohenberg theorem ' ' that there
is no long-range broken-symmetry order at finite temper-
ature in two or less dimensions.

The result for h(T) can be written as the sum of a
high-momentum quantum fluctuation term and a low-
momentum term. This occurs in the following way. The
electronic density Quctuations (Coulomb interaction) and
order-parameter phase fluctuations in the superconductor
are coupled, and as a result their propagators have the
same low-momentum singularity as the bare Coulomb in-
teraction for any T less than T, . The low-momentum
term is the part of the equation for 6( T) that retains this
singularity; the high-momentum part is the remainder
after the singular term is subtracted off. The high-
momentum quantum fluctuation term is proportional to
ln (1/2b, r) with the same coefficient as the equivalent

term in the T, result. This is because at high momentum
and high frequency the superconducting gap is not visi-
ble, and one gets the same results as in the normal metal.
At T=O the low-momentum term in the equation for b is
dominated by high-frequency quantum Auctuations to
give a result proportional to ln(1/2b, r)ln(L b/D) for a
3D Coulomb potential and ln(1/2br)ln(Dire/b, ) for a 2D
Coulomb potential. The low-momentum quantum-
Auctuation term is thus divergent for a 3D Coulomb po-
tential, and convergent (but very large in value) for a 2D
Coulomb potential. For any finite temperature T the
low-momentum term in the equation for A(T) has both a
classical and a quantum fluctuation contribution, and the
classical fluctuation part is always divergent. At T = T,
this low-momentum term has only a classical Auctuation
part, and is equal to half of the classical fluctuation
correction to T, .

From the above discussion we see that the low-
momentum terms in both the T, and b, ( T) equations are
divergent for infinite 2D systems except in the special
case of zero temperature and a 2D Coulomb interaction
between electrons. To be able to compare the results for
T, and b, as a function of R~/Ro we must deal with
these divergences. We do not know of any physically
justifiable way of doing this, but content that the treat-
rnent must be the same for both T, and h. One possible
approach, for example, would be to ignore the low-
momentum terms. We choose to follow the practice used
in work on T, suppression ' ' and introduce a lower
momentum cut-off by using the uncorrected BCS value of
T, or 5 in interaction propagators. This leads to a lower
cutoff of Dq /T, or Dq /b, proportional to R~/RII.
With this cutoff we find that the corrections to T, and 6
are dominated by the high-momentum quantum fluctua-
tion terms and predict that 5/T, is asymptotically con-
stant as a function of R~/R~. This is confirmed by the
numerical results, and consistent with experiment. We
do not believe previous work' suggesting that 6 is
suppressed more strongly than T, since this work appears
to cut off the divergent low-rnornentum classical Auctua-
tions in the T, case as described above, but does not cut
off the low-momentum quantum fluctuation correction to
6 (which converges in the special case of a 2D Coulomb
potential at T=O).

The result that the first-order correction to b,(T) can
be written as the sum of a high-momentum and a low-
momentum term enables us to make a connection to
dirty-boson theories "' of the disordered superconduc-
tor. These theories treat the Cooper pairs as effective bo-
sons, ignoring their fermionic composition. We might
expect this approximation to be valid at low momentum,
q, and low frequency fL. Indeed we see that the phase
propagator in both the dirty-boson model and our su-
perconductor model [see Eq. (2.47)] has the form
1/(q +& q '). &f we perform first-order perturbation
theory for any quantity using the dirty-boson theory, we
would get contributions of the form

T 1

n q q q
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TABLE III. Summary of results for the first-order perturbation correction to transition temperature, T„zero-temperature order
parameter, Ao, and order parameter at finite temperature, h(T). The results are split into three terms: high-momentum quantum
Auctuations which come from high momentum and high frequency, and are usually called Coulomb terms in papers on T„ low-
momentum classical fluctuations which come from low-momentum and zero frequency, and are usually called c'lassical or pair Auc-

tuations in papers on T„and low-momentum quantum fluctuations which come from low-momentum and high frequency and are a
new feature of the 5 calculation. The 2D, and 3D mean that we are approximating the quasi-2D Coulomb interaction by a 2D, or a
3D Coulomb interaction, respectively. The terms "idealistic" and "pragmatic" refer to how we choose to cut off the singular low-
momentum Auctuation terms. In the "idealistic" version we must cut off both classical and quantum terms by the inverse system size,
qo=1/L (we note that in the special case of T=O for a 2D Coulomb potential there is no low-momentum singularity). Since this
idealism gives results that disagree with experiment, the "pramagnetic" version involves a cutoff of Dq /T, -ln(T /T o) or
Dq /b -ln(h/50) obtained by using the zeroth-order propagators —solution by iteration then puts Rz/Ro under the logarithm.
The 6( T) results are included to show how the low-momentum contribution changes smoothly from all quantum at T=O to all classi-
cal at T=T, .

Property

T.
Idealistic ln

co

High momentum
Quantum

1 Ra, 1ln'
2477 Ro 2' T T

Classical

7g(3) Ro L'T,
2~3 Ro D

Low momentum
Quantum

T.
Pragmatic ln

cO

] Rn 3 1
ln

24m Ro 2m. T,r
+

3
-ln7g(3) R 7g(3) R

27T Ro 2m' Ro

3D Idealistic ln
0

1 Ra 3 1ln'
24~ Ro 2

ln ln
4m Ro 2k~ D

2D Idealistic ln
0

Rg ln'
24m Ro 26~

R~ ] Dx2
ln ln

4m. R 26~ b

Pragmatic ln
1 Rp 3 1

ln
24m. Ro 26~

r

+ ln ln
4m Ro 25& 4m Ro

Idealistic ln
6( T)

0

a
1 Ro, 1ln'

24m Ro Mw

T Ro L'—C(T)— ln
M Ro MD

a

D(T)b (T)1 1
1

L M
M~ D

'Where M=max[h(T), T].

We get a similar result for first-order perturbation theory
within our superconductor model, and we also know the
form of the propagator for any frequency and mornen-
tum. We find that the contribution from the phase prop-
agator is dominated by high frequency, leading to a pre-
factor In(1/br) for any low-momentum singularity. This
feature cannot be derived from the bosonic models as
they are valid only at low frequency, n « b, « 1/r. The
boson models therefore cannot obtain the correct form
for the singular low-momentum contribution to a physi-
cal quantity (such as T, or b, ) to first order in perturba-
tion theory. We also note that these theories also cannot
obtain the high-momentum quantum fluctuation contri-
butions which are important in explaining the depen-
dence of T, and 5 upon disorder.
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APPENDIX A: LOW-MOMENTUM SINGULARITIES
IN DENSITY AND PHASE PROPAGATORS

In this appendix we prove the relation

II»(o, n) II„(o,n)+ 11„(o,n)'=o (A1)

for any temperature 0 ~ T + T„which leads to the poten-
tials V&&, V&, and Vpp having 1/q" singularities at
low momentum q. As discussed in Sec. III these singular-
ities and their possible cancellation are technical details
necessary for the calculation of any quantity in the disor-
dered superconductor. This result has been proved' at
T=O where the II;~(o,n) are known elementary func-
tions, but has not been shown for general T. For this
reason we provide a detailed algebraic proof for all T.

We start with the equations for II&&, II&, and IIpp,
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II~~(o, n)=mN(0)T g
=T W' —W

Q WW'(2co+ Q )

2T 1

Q W(2co+ Q)
(A8)

II~ (O, n)= mN—(0)T g Qh
(A2)

1 2( W' —W)
W Q(2co+ Q )

I I

IIp (O, n) =N(0) —mN(0)T g
To simplify these formulas we note that coco' can be
rewritten as

coco' = —,
' [co'+ co' —(co' —co)']

1 4W
W Q(2co+ Q )

If we combine the two terms in S2 over a common
denominator, and expand out 8' in powers of 2co+A we
get

) [ W2+ Wr2 2g2 Q2] (A3)
2a 45 +0

Q W (2co+Q) W
(A9)

Ww'+coco'+b, =
—,'[(W+ W') —Q ];

WW' —coco' —b, = —
—,'[(W —W') —Q ] .

(A4)

Substituting these expressions in the equations for II&&,
II yields

and the coherence factors for II&& and IIpp can be rewrit-
ten The second term in this expression is proportional to S& ~

The first term is a sum over an odd function of cu, and
therefore appears at first glance to be zero. However,
since the upper and lower limits of this sum must be in-
variant under co~ —(co+ Q), there are n/2vrT more neg-
ative ~ than positive co summed over. For large co the
summand is simply 2 sgn(co)/Q, so this sum gives

1 1
Il~~=vrN(0)T g +

and thus

2' 0
AW 2mT

2 1

Q
(A 10)

——QUOT 12"" ~ ww'(w+w')

1 12"' ' ' ~ ww'(w+w') '

W' —W
W+ W'II =N(0)+ AN(0)T g—1 1 1

2

1 2 1~ ww'(w+w')
W' —W=N(0)+mN(0)T g

s = —1+T~ 4b'+n
(2co+Q) W

(A 1 1)

(A12)

Substituting the expressions for S& and S2 back into that
for II, we see that the constant term N(0) is cancelled
out, and the resulting formula for II is proportional to
those for II&& and II',
—x'11„(0,n) =x 11„(0,n)

=11 (o,n)= —Q~N(0)Ty 1

(2co+Q)w '

1 1

2
' ' ~ WW(W+W') ' (A5) where x =n/2b„which proves our original assertion.

To do this we will multiply out top and bottom by
W' —W and use the identity

W' —W =(co+Q) —co =Q(2co+Q)

and the transformation m~ —co' to get

(A7)

where in the last step in each case we used the substitu-
tion co —+ —co' which maps W~R" and vice versa. We
immediately see that II&& and II& are proportional to
each other. To show that IIpp is proportional to II&& and
II

pp
we must relate the two sums

1"='~ ww'(w+w) '

(A6)
8"—W

w(w+ w') ~ w w+ w'

APPENDIX B: DETAILS OF CALCULATION
OF FIRST-ORDER CORRECTION

TO GREEN FUNCTION

In this appendix we will demonstrate how the complex
matrix products that occur in the calculation of Sec. III
may be simplified. This is of course crucial to the utility
of our method, for if all the many-body theory yields is
long expressions containing matrix products that we can-
not simplify, then although the method is formally
correct it is useless practically. We present a method
that is found empirically to work for any diagrammatic
calculation within our approach, not just those of Sec.
III. This cannot be an accident, although we do not yet
have a detailed proof that the method will always work.
The reader is encouraged to plough through the algebra
below to get a feel for the detailed mechanics.

Consider the matrix product that occurs in the



SUPPRESSION OF THE ORDER PARAMETER IN. . . 6489

numerator of Eq. (3.4),

N2 =(2+Zrl+gkr3)(a++P+r, )r, (z'+ Z'r, +gkr3)

EOO, OEO, and OOE—since the terms that are odd in

gk integrate to zero. These terms are simplified using the
easily verified identities

Xrl(a++p+1 l)(Z+Zr j+gk13) . (Bl)
(z+ b r, )(a~ +p+ r, )(z'+ b, 'r, )

To expand out this product we split each Green function
into piece that are even (E), and odd (0), with respect to
gk z+b—,~„and gkr3, respectively. We then consider
the 2 '=4 product terms that are even in gk —EEE,

=Em'(a+ —P+r, ); a+ —P+= —2a+ . (B2)

Multiplying out the four terms using these identities gives

EEE: (z+b rl )(a++P+r, )r, (z'+ b. 'r, )(a++P+r, )r, (z+ b ri) =EE'(a+ P+r,—)(a++P+r, )(z+ hr, )

= —2eE'a+(z+hr, ),
EOO: (z+bri)(a++P+rl)rigkr3(a++P+rl)rigkr3= —gk(a++P+rl)(a+ P+r—l)(z+brl)

= +2(ka+(z+ Zr, ),
1

OEO: gkr3(a++P+r, )r, (z'+ Z'ri )(a++P+1 l )1 leak r3 gk13(c7++P+rl )(a+ P+r, )—(z —hri )r3

I= —2—gka+(z+br, ),
E,

OOE: gkr3(a++P+ri )r, gkr3(a++P+ri )ri(z+ b rl ) = —
gk (a+ P+r, )(a—++P+r, )(z+brl )

=+2/a+(z+~r, ) .

We see that all terms have the same matrix structure
z +A7

~
and that they all have the factor K+ which is the

coherence factor for the V&& term. The empirical result
that all the terms above give the product of the same ma-
trix structure and coherence factor is the key to the suc-
cess of the method. All one has to do is to sum up the
appropriate coefticients of this product. The final result
for this numerator is

N2 =2'+ (B3)

Similar reasoning and identities can be used for the
numerators corresponding to the other potentials V;,
giving the same result except for a change in the coher-
ence factor.

Next consider the numerator from Eq. (3.9)

N, =(z+br, +gkr3)(a++p+r, )

X1 l(z +6 1 i+/ k3r) lr(Z+ kr +gl3)kr
We evaluate this term by term as discussed above

(B4)

EOO: (z+b )r(ai+ P++r, )rlgkr3rlgkr3 (B5)

g'„(a++p+r, )(z+E—r, ),

EEE: (z+br, )(a++P+r, )r, (z'+b, 'r, )r, (z+br, )

=sE'(a+ —p+ r, )(z +Zr, ),

I=—g (a+ +p+r, )(z+ Zr, ),
E

OOE: (kr3(a++ p+r1 )rlgkr3rl(z+ Arl )

= —
/krak (a+ p+r, )(z+ Zr—, ) .

In this case there are two types of matrix structure
—z+br, and (z+hr, )ri, which are multiplied by the
coherence factors a+ and P+, respectively. The final re-
sult for this numerator is

z+A~(
[E E' —2eg+E'g]

(z + b,rl)r,—P+ [E E' —E'g'k] . (B6)

The numerators corresponding to other potentials V; can
be similarly evaluated, giving the same result except for
changes in coherence factors.

The method described above can evaluate the matrix
products that result from any diagrammatic expression
our formalism can produce. In other words we can
evaluate any diagram we may care to write down. This
makes our formalism a very powerful tool for the pertur-
bative analysis of the disorder superconductor.

OEO: Ckr3(a+ +p+ l)rrl(Z +Z r1 )1 ilk r3
I

gk r3(a+ ——p+ r, )(z —b r, )r3
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APPENDIX C: CANCELLATION OF LOW-MOMENTUM
SINGULARITIES IN THE ORDER-PARAMETER

EQUATION
In this appendix we will show that the low-momentum

singularities that occur in Eq. (3.14) due to corresponding
I

singularities in the potentials Vpp Vpp and V& cancel
amongst themselves to leave a single term that can be in-
terpreted as a phase Auctuation term.

From Sec. V we know that the singular contribution to
the order parameter is

ln =—TTTY
~0 2 n W(W+ W')

COCO +5
WW'

COCO +6 2AQ
WW' WW'

+
W (W+W')

b,Q b.Q (coco'+b, ) ~ (x, , x, &&q,
q

(5.1')

This leads us to define the sums A j
—A 5,

1 1 COCO +6
W(W+ W')' ' WW' ' WW'

(Cl)

A45=T
W (W+ W')

1 COCO +5
WW' ' WW'

The singular contribution is then given by

ln
0

Tg V~~(O, —Q)[h(1+x )A, +46, x A2+b(1 —x )A3+b, x(l —x )A4 —2xA~] .
0

(C2)

We can expand out the sums A
&

—A 3 by multiplying numerator and denominator by W' —W noting that
W' —W =Q(2co+Q), and using the symmetry of each term in square brackets under co~ —co' to get

1 1 ~ 1 1 1 1 ~ 1T~ =—T + ' T
W( W+ W') 2 ( W+ W')~ W W' 2 WW'( W+ W')

1 T~ W' —W
2Q „(2a)+Q)WW'

In the case of A3 we further expand

1 1

(2'+ Q) W
(C3)

1 co(co+Q)+b, 1 1 Q Q 1

Q (2~+ Q) W P" Q (2co+Q) W' 2 2co+Q

1 1 1 1 Q 1= ——T + T- T
Q „(2~+Q)W 2 W W' 2 „(2co+Q)W W'

so that we can finally write the A
&

—A 3 in terms of the simpler B i B3,

1 1 1
A, = B,; A~= B2; A3= ( B, 2b, x B2+—hxB3)—,2hx 2hx 2b x

where

Bi=T 1 B2=T 1 B3=T 1

(2~+Q)W (2co+Q)W W' W W'

Expanding A4 and A 5 in the same manner yields

(C4)

(C5)

(C6)

1 T
co(W' —W) 1

(2co+Q)W W'
Q1—

2CO+ Q
1

W W'

1 1
2Q'& W

1 1 1 ~ 1 1T, — T~-+ T
2Q W2W' 2 (2'+ Q) W' 2 (2'+ Q) W'W'

(C7)
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and

1 ~ co(W +Geo)(W' —W) 1 0
(2co+0) W' W' 2& „2co+&

W' —W W —b, W —W
WW' W3 W' 2co+ 0

=T 1 —b, T2 1 +b, T2 1

(2co+&)W (2co+Q) W „(2co+0)W W'

This allows us to write A 4 and A 5 in the form

(C8)

1 1 1 1=—8 — 8 ——8+ 8'4 2 ' 4xx ' 2 4 4Sx

where 84 and 85 are defined by

84= T 1
85 =T 1

(2co+0) W W

35=8)+6 82 —6 84, (C9)

(C10)

Substituting this into Eq. (C2) gives us the result for the singular term
T

ln = Tg V—~~(O, Q)[ —xB, +6 x(1+x )B + 'b(1 —x )B5] .—
n

It turns out that 8&, 84, and 85 are linearly related since

1 1 T 4(co +b, ) 1 (2co+Q) —2A(2co+0)+46, +0
(2to+Q)W 4 „(2co+g)W 4 (2co+0) W

hxBs+b, (1—+x )B4,1

so the final result is

ln = m. T g g—
V~i, (q, 0 )T g1 1

Ao 4

(C 1 1)

(C12)

(5.2')
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