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Critical behavior of random transverse-field Ising spin chains
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A real-space renormalization-group treatment of random transverse-field Ising spin chains that
was introduced previously is developed and extensively analyzed. It yields results that are asymp-
totically exact in the critical region near the zero-temperature para-to-ferromagnetic quantum phase
transition. In particular, the exact scaling function is obtained for the magnetization as a function
of a uniform applied magnetic Geld and the distance to the critical point, and up to the solution
of a linear ordinary difFerential equation whose solution can be exhaustively analyzed, the scaling
function of the average spin-spin correlation function is also obtained. Thus more exact informa-
tion is obtainable about the critical behavior for this random model than is known for the pure
version which is equivalent to the two-dimensional Ising model. The basic reason for this is the
extremely broad distribution of energy scales that occurs at low energies near the critical point of
the random system. For the random chain the distribution of the magnetization of the Grst spin in a
semi-inGnite system is also studied and the results found to agree in the scaling limit with results of
McCoy obtained from the exact solution of the closely related McCoy-Wu Ising model; this provides
strong justiGcation for the validity of the present approach. The singular properties of the weakly
ordered and weakly disordered "GriKths' phases" that occur at zero temperature near the critical
point are also studied, as well as the behavior at low but nonzero temperature. Possible extensions
of the results and general lessons drawn from them for other random systems are brieQy discussed.

I. INTRODUCTION

Understanding of the equilibrium statistical mechan-
ics of random systems has been greatly hampered by the
almost complete lack of solvable models with random-
ness coupled with a severe shortage of reliable nonper-
turbative methods. The exceptions are mostly infinite
range models which for random systems tend to be ei-
ther somewhat trivial, like the mean-field limit of ran-
dom exchange ferromagnets, or rather pathological and
difFicult to understand, like the Sherrington-Kirkpatrick
model of spin glasses. Almost the only exception to this
is the strip-random two-dimensional (2D) Ising model in-
troduced and partially solved by McCoy and Wu a quar-
ter century ago. 2' It consists of a nearest neighbor Ising
model on a rectangular lattice, on which all the vertical
exchanges K are the same, while the horizontal bonds J;
are identical to each other within each column but dif-
fer from column to column, in the simplest case being
drawn independently &om a distribution m(J)d J. From
a statistical-mechanical point of view, this appears to
be very artificial; this is perhaps one of the reasons the
McCoy-Wu model has received remarkably little atten-
tion.

But the transfer matrix of the McCoy-Wu (MW) model
in the vertical direction is essentially equivalent to a much
more natural system: the quantum-mechanical random
transverse-field Ising spin chain with Hamiltonian

'8 = —) J,.o,'o,+i —) h, o;. —H ) cr,',
where the (o., ) are Pauli matrices. The transverse fields

h,; are nonrandom in the MW model, h; = h, and are
related to the original vertical bonds K; we will, follow-

ing Shankar and Murthy, later generalize to random h, 's

drawn independently &om a distribution p(h)dh. A uni-
form magnetic field H in the z direction can also be added
as in Eq. (1.1), although this destroys the solvability of
the model. Note that with H = 0 a gauge transformation
can always be performed on the variables to make all J,.
and h,; positive. We will thus only consider this case.

Some of the properties of the ground state of the ran-
dom transverse-field Ising chain are known from the exact
solution; these are summarized in the next subsection.
The behavior is found to be rather remarkable. In par-
ticular, as the quantum Quctuations, controlled by 6, are
reduced, the susceptibility diverges below some h~, but
the system remains paramagnetic with ferromagnetism
only occurring below a smaller critical value of h, h, .
In addition, it is known that the distributions of var-
ious physical quantities are extremely broad with rare
anomalous values dominating the averages of them, but
just such averages are what would be measured in macro-
scopic experiments. This seemingly pathological behav-
ior has perhaps been another reason for the neglect of
the MW model; however, as we shall see, related behav-
ior is in fact generic for random quantum systems. But
perhaps the dominant reason for the ignoring of the MW
results by most of the community working on random
systems is that they do not seem to fit naturally into the
conventional field-theoretic or renormalization-group de-
scriptions of phase transitions. One of the main points
of this paper is to show otherwise: Not only can the rich
behavior of the random transverse-field Ising chain be
understood within a renormalization-group framework,
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but the simple renormalization-group transformation in-
troduced here can be used to derive new exact results in
the scaling limit of low temperatures, small applied field
H, and long length scales near the critical point, includ-
ing expressions for some quantities which are not known
exactly even for the pure Ising model. Nevertheless, the
phase transition in this random system is rather strange
and does not seem to be forceable into a conventional
field-theoretic or replica description. In the last section,
we will see that, in spite of its strange behavior, many
of the features of the MW model will obtain in other
random quantum systems.

This paper is organized as follows: In the remainder of
the Introduction, the previously known results are sum-
marized; the renormalization-group (RG) transformation
from which we will obtain virtually all our results is intro-
duced; the resulting qualitative RG Qows are discussed;
and the main results of the paper are summarized. In Sec.
II, the renormalization-group transformation is analyzed
in detail and a special solution of the Bow equations that
includes a scaling limit &om which information about the
critical region can be extracted is found.

The consequences of the RG Bows, the special solution,
and its generalization to enable information on spin cor-
relations to be analyzed are studied in the next section.
Exact critical scaling functions for the magnetization as a
function of an applied field. H and the average two-point
spin correlation function are thereby derived. Sections
II and III contain the main technical analysis found in
the text, but demonstration of the convergence of gen-
eral initial Hamiltonians to the special solution of the
How equations and details of some of the needed analysis
are relegated to Appendixes A—C. In Sec. IV, the prop-
erties of the weakly ordered and disordered phases that
exist near the critical point are analyzed and the general
structure of the phase diagram is discussed.

The properties of the first spin in a semi-infinite chain
are analyzed in Sec. V. This enables comparisons to be
made with exact results of McCoy. Further justification
of the results are discussed in Sec. VI, with a study of the
eKects of correlations between the random couplings and
a preliminary analysis of the transfer matrix approach
contained in, respectively, Appendixes D and E. Finally,
in Sec. VII, possible extensions to other random quan-
tum systems and parallels to more general random prob-
lems are discussed.

A. Previously known results

The random transverse-field Ising chain in zero ap-
plied field H is partially exactly solvable. McCoy and
Wu analyzed the free energy of the strip-random two-
dimensional Ising Inodel, and McCoy computed the
properties of the surface of a half-plane cut parallel to the
nonrandom ("time") direction with which we will later
compare our results. We will work, however, solely in
the quantum spin chain representation which corresponds
to an anisotropic continuum limit of the MW model in
the uniform (time) direction. Shankar and Murthy (SM)
have studied the (zero-temperature) random transverse-

Lg =—lnh. , (1.2)

which is the control parameter that we will use, they find

=LJ =—lnJ.

A special case of this result can be guessed by duality:
A transformation from site variables (o,. }to bond vari-
ables,

x z z
~z

(1.4)

yields a transverse-field chain with the role of h's and
J's interchanged. Thus if the distributions of these are
identical, i.e. , vr = p, we would expect to be at the critical
point.

For Ah, & 4, the system is paramagnetic, while for
Lh (4, there is a nonzero, but unknown, spontaneous
magnetization density Mo. MW showed that there is
only an essential singularity in the ground state energy
density at A, in contrast to the behavior in the pure
system.

Some information on the behavior of correlations was
also obtained by SM, although they confused the rather
important distinction between mean correlations aIid
typical correlations. What they actually showed is that
for operators 0 that are local in the fermion representa-
tion,

has for Ag f Eg the typical behavior

lnCo(~~ y)

with probability one as ~x —
y~ ~ oo, with the length

field chain by a method which will be more familiar to
many readers. It is discussed in some detail in Appendix
E, in which we also develop a variant of the methods

of the present paper that can be justified by the exact
solvability.

The essential ingredient of the exact solutions is the di-
agonalization in the time direction using the &ee fermion
nature of the Ising spin chain. This enables each &e-
quency u to be treated independently, resulting in, ef-
fectively, independent random classical chains with u as
a parameter. Some properties can then be obtained by
taking products of the resulting random transfer matrices
Tz (w) (Appendix E). This is equivalent to a factorization
into &equency components of the full transfer matrix in
the random direction rather unnatural &om the point
of view of a quantum-mechanical system, but like that
used for studying localization of &ee electrons in random
one-dimensional wires.

The critical point of the random transverse-field chain
is obtained quite straightforwardly by SM. Defining
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In the disordered phase, the mean end-point suscepti-
bility

when b', the distance from criticality

b oc Lh —LJ,
is small. The exponent

4, = (~;~;) —(~:)(~;) (1.10)

at long distances away &om criticality; nevertheless, the
mean correlations C~. will decay quite differently, and
it is these that are measurable by, for example, neutron

scattering.
Some indication of the wide variations of the correla-

tions at a fixed distance can already be seen &om SM's
calculations. At 6, they find that

»&o(~ y) - -v'l~ —yl

with the proportionality coeQcient in Eq. (1.11) having
a distribution with width of order 1, indicating that the
mean Co will behave quite di6'erently &om the typical
correlations. This will be made more precise later.

At this point, no exact results are available about ei-
ther the spontaneous magnetization or the mean correla-
tions. However, McCoy's calculations on the properties
of the first spin o.q, in a half-line, do provide lower bounds
on the former. McCoy calculates the end-point magneti-
zation

is identical to the correlation length exponent of the pure
model (for which, of course, no probabilistic statement is
needed).

Thus, in some sense, for almost all widely separated
pairs (x, y), C&(x, y) decays exponentially with the typ-

ical corelation length (. As we shall see, this is in fact
also true for the typical (truncated) spin correlations

BMg
X1 =

BHi

likewise provides a lower bound for the bulk susceptibil-
ity. McCoy found the a priori very surprising result that
pi is infinite for a whole range of 4 ) A, implying that
the bulk y diverges in at least as wide a range.

If all the h s are larger than all the J s, then it can be
shown straightforwardly that y is finite, and so at least
for narrow distributions p(h) and in fact more generally,
there is a value of Ah, L~ ) 4, which separates the
regimes with finite and infinite susceptibility. The strik-
ing difference between this behavior and that for con-
ventional systems has given rise to some confusion as
to whether the transition in the MW model is "sharp";
nevertheless, it is sharp, and the true transition occurs
at 4 . As we shall see, L~ is not really a particularly
special point; rather there is a weakly disordered Grif-
fiths "phase" which occurs when max(J, j ) min(h~ j
but Ag ) A„ in which M(H) is singular at H = 0. This
is discussed in detail in Sec. IV.

In the ordered phase, there is also a GriKths region. If
min(J; j ) max(hi j, then there exists at zero tempera-
ture a nonzero interfacial energy S defined as the limit
of the difference

SL, = E+ —F++

between the ground state energies (or free energies at
T ) 0) of chains of length I with boundary conditions
on the ends that are opposite (+—) versus equal (++).
If min(J, j ( max(hij, then S = 0 with probability
one, even though Lh may be less than L so that there
is a spontaneous magnetization. The properties of this
weakly ordered GriKths "phase" are discussed in Sec.
IV.

Mg = (o, )

of the first spin on a semi-infinite chain as a function
of a field Hi applied only to this spin. He computes
the mean Mq(Hq) and other moments of the distribu-
tion. Since the mean end-point spontaneous magnetiza-
tion Mz p

= ~' p+Mz(Hz) can be nonzero if and only
if the bulk spontaneous magnetization is nonzero, and
is furthermore a lower bound for the bulk spontaneous
magnetization, McCoy's result that

Mg p /hi

for small negative b implies that

Mp ) C[hf,

with a distribution-dependent coefBcient C.

B. Renormalization-group transformation

At this point, it is useful to ask why more informa-
tion has not been obtainable &om the methods of MW
and SM. Partially, this is due to the usual diFiculty of
obtaining spin correlations in Ising systems that arises
&om the nonlocal relationship between the spins and
the &ee fermion operators in terms of which the zero-
field thermodynamics becomes trivial. In addition, there
are of course the difBculties associated with dealing with
random rather than uniform systems which substantially
complicate the analysis. But there is a third reason why
asymptotic, low-energy or long-distance properties near
to criticality are difBcult to obtain, and this involves in-
teresting new physics.

By multiplying transfer matrices in the obvious (or any
other predetermined) order, it is hard to keep track of the
possible development of rare anomalous regions of the
system which may dominate the low-energy properties.
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Instead, one is forced to use central-limit-theorem-like
results which, by their nature, only deal with almost all of
the cases, perhaps leaving out a negligible &action which
could affect the physics. The purpose of this paper is to
develop and utilize an approximate method which focuses
on the important degrees of &eedom which dominate the
physics at low energies. Many new results will thereby be
obtained. By combining the present techniques with the
exact formulation of SM, it may in the future be possible
to put our results on a much firmer footing by multiplying
transfer matrices in a clever order that depends on the
specific realization of the rand. omness; this possibility is
discussed briefly in Appendix E.

The main goal of this paper is to analyze the conse-
quences of a simple approximate renormalization-group
(RG) treatment of the random transverse-field Ising
chain that was introduced earlier. Surprisingly, many
of the results will turn out to be exact in the scaling
regime near 4, as well as yielding qualitative under-
standing of the weakly ordered and weakly disordered
GrifBths phases that occur near 4 . The reasons for
this remarkable property of the RG treatment, as well
as direct comparison of some of the results with those of
McCoy, will be discussed in Secs. V and VI.

We are interested in the low-energy properties of the
system and would thus like to systematically get rid of
high-energy degrees of &eed.om. A nice simple way of
doing this was introduced by Ma, Dasgupta, and Hu for
random Heisenberg antiferromagnetic spin chains and de-
veloped extensively by this author. ' The main idea is
to take the strongest coupling in the system, find the
ground states of the associated part of the Hamiltonian,
treat the coupling to the rest of the system perturba-
tively, and. then throw out the excited states involving
the strong coupling, yielding a new effective Hamiltonian
'R. The procedure is then iterated ad physicum.

For the transverse-field chain in a small or zero applied
field H, we thus choose first the largest of the set of
couplings,

OI = max( J, , h~ )

(1.18)

with the effective exchange

JiJ2 g ~ J1~J2 Ji J2 J1J21 (1.19)

Note that the effective spin operators o.
~ and cr3 in Eq.

(1.18) are not quite the same as o f and os, but the dif-

(which without real loss of generality of the procedure
we take to be finite), and set the energy scale O, which
will gradually be reduced, to its initial value 01. If the
largest coupling is an h~, say, h2, then the associated part
of 'R is simply —h202 which has a ground state

~
~2) and

excited state
~

+-2) separated by a gap 2h2. The coupling
to the rest of the system, —Jio~oz —J2ozo.3, can then be
treated by second-order degenerate perturbation theory
in the four-dimensional space of states ~o'i ~2 o's) with
ai(s) =f or $. This yields an efFective Hamiltonian

ferences will be small if h2 » Ji, J2.
We now make the approximation of throwing out the

excited state of u2 entirely, replacing Jq by the lowest-
order expression in Eq. (1.19) and replacing 0,' by o,'.
We now have a new chain with one less spin and one
modified bond with J & 0 that has length

(1.20)

Here we have divided, for later convenience, the length
up so that initially 1/2 is associated with each bond E~;
and 1/2 with each spin Is;. Thus after the first step
above, I~i ——3/2.

If the largest coupling in the original Hamiltonian were
a bond, J;, say, J2, then the associated part of 'R is
—J20zos which has two degenerate ground states

~ gg)
and

~
$$). The neighboring transverse fields h2 s can now

be treated perturbatively, yielding an effective transverse
field

h2h3
7J (1.21)

which flips coherently the spin cluster of cr2 + o.3. This
yields an effective Hamiltonian

—h2o 2
—H7D2o 2 (1.22)

where we have explicitly included a small z field H to
show the new feature: The spin cluster has a magnetic
moment

m2 =m] +m2 (1.23)

i.e. , in the present case, m2 ——2. (Note that the effects
on the RG procedure of a nonzero H will be analyzed
later. )

The spin cluster has length

~S2 —~S2 + ~B2 + ~S3 j (1.24)

i.e. , here, Is2 = 3/2. We now throw out the excited
states of the cluster,

~ g$) and
~

J,g), which are sepa-
rated by energy 2J2 from the ground states, and note
that, for J2 » h2, h3, the effective couplings —J~oio2,
and —J3cr3o4 become simply —Jioio2 and —J2o2o.4 with

J2 —J3 . The lat ter follows as we chose to label effective
fields and bonds by the leftmost spin. Thus again, as
after d.ecimating a strong h;, we have a new effective
Hamiltonian with one less spin degree of freed. om and all
couplings ( 01. Note the duality between h and J ex-
plicit in the recursion relations Eqs. (1.19), (1.21) and
those for the lengths Eqs. (1.20) and (1.24).

There are several crucial features of the RG transfor-
mation. On the one hand is the independence &om site to
bond, site to site, and bond to bond, of the effective cou-
plings: The only modified couplings are associated with
the eliminated couplings, an eliminated h also eliminat-
ing the two neighboring J's to give one new J, and vice
versa. On a given bond or site, on the other hand, the
sets of variables (h, , m;, Is; ) or (Jz, E~z) are correlated.

As the procedure described above is iterated, 0 is grad-
ually lowered and more and more bonds and spins are
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replaced by efFective new bonds or spin clusters. But
because of the above-mentioned independence, we need
only keep track of two joint distributions

expect ln J, to be a Gaussian random variable with mean
DJ and variance

and

R.(J, EI3, O)

P(h, Es, m; O),

(1.25)

(1.26)

where

var(lnJ;)—:(lnJ )2 —(lnJ. ) ~ IVI,

VI —= var(ln J)I + var(lnh)1

(1.29)

(1.30)

where we have displayed the implicit dependence on the
maximum energy scale O of the effective couplings (and
any remaining original couplings).

The distributions vr and p must be rescaled to keep
them properly normalized. Thus information about the
number density n(O) of spin clusters or bonds at en-
ergy scale 0 is not directly available from them. How-
ever, since each decimation reduces the number of clus-
ters (and bonds) by 1, we have

00 de ~ J =O, S;0

dEs d~ p h = O)Es)m)O n 0

(1.27)

the two quantities in the square brackets being, respec-
tively, 1/dO times the fraction of bonds or spin clusters
that are eliminated because of the strong couplings when
0 is decreased to 0 —dO. The number density of spin
clusters, n(O}, contains information about the connec-
tion between a characteristic length scale l(O) 1/n(O)
and the energy scale.

The recursion relations Eqs. (1.19), (1.20), (1.21},
(1.23), and (1.24) are analyzed in detail starting in the
next section. We first give a qualitative picture of the
RG Qows.

is defined &om the variances of the original (initial) vari-
ables with distributions vr and p.

The quantity VI is a dimensionless measure of the
strength of the randomness. From Eq. (1.28), we can
guess that the J and h become broadly distributed on
length scales larger than

2&v=-
&i

(1.31)

(the "2" chosen for later convenience) and the system
will cross over to strongly random behavior. However,
the simple independence assumption above is clearly in-
correct. We know, from the definition of the RG trans-
formation, that J, & 0 & OI, therefore, lnJi is clearly
not Gaussian and its mean is not LJ, in spite of the in-
dependence of the original J s. This is because of the
subtle way in which the Ji and h~ that enter a renor-
malized J are chosen, or concomitantly, which effective
bonds Ji exist and what their lengths EI3,. are.

Nevertheless, the distribution of ln J does indeed
broaden with decreasing 0, corresponding to increasing
I, and its variance will turn out to scale as Eq. (1.29).
(This could be guessed &om knowledge of the statistics
of extrema of random walks. ~) In fact, at criticality, the
mean of ln J will turn out to grow in the same way as the

width of its distribution, i.e. , var(lnJ), so that

C. Qualitative flows

—ln J QEVI, (1.32)

At cr iticality

After many steps of renormalizing, efFective J's, for
example, will be ratios of a product of many original J s

to a product of many original h s:

Ji Ji+1
hi+1 hi+2 '

(1.28)

with the bond length E an integer plus 2. If the J, 's and
hz's involved were chosen independently, then we would

Much can be learned about the behavior of random
transverse-field chains by simple qualitative considera-
tion of the RG Qows under the transformation introduced
above. Since we are interested in the critical behavior,
we first consider the self-dual case where the J and h
distributions are identical; this property will obviously
be preserved by the Qow.

suggesting, since ln J & lnO, that effective bonds of
length 8 will be typical in the critical regime when

(1.33)

with O~ an energy scale of order Op. These heuristic
arguments thus yield the relation between energy and
length scales at the critical point, with the basic micro-
scopic length scale being Ev &om Eq. (1.31).

The dramatic broadening of the distributions of lnJ
and lnh under renormalization —with widths that diverge
at low energies at the critical point —is the key feature
that makes our RG procedure work. Initially, errors will
be made by the second-order perturbation approxima-
tion of Eqs. (1.19) and (1.21). But once the typical
bond and cluster lengths become much larger than f~,
the breadth of the distributions of ln J and lnh will make
the RG decimations less and less likely to be problem-
atic, as the neighbors of the strongest remaining efFective
coupling will typically be much weaker and hence can be
treated perturbatively. Thus, up to nonuniversal coefB-
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cients of order 1 (or more generally, powers of VI) which
depend on the small-scale high-energy physics, the RG
should produce asymptotically exact results for univer-
sal quantities in the scaling limit of small b„ low energies,
low temperature, and long length scales.

The effects of a small applied magnetic field H can be
analyzed by keeping track of the distribution of the mag-
netic moments m of spin clusters. In our simple approx-
imation, the magnetic moment of a cluster is simply the
number of active spins it contains, i.e., the spins which
were not decimated at earlier stages of the RG. At some
scale OH, the strongest couplings in the system will, in
the presence of an applied field H, no longer be effective
transverse fields or bonds; instead the magnetic couplings
to H will dominate. But this will result in the remaining
spin clusters being aligned by the applied field, resulting
in a magnetization that is, roughly, the number of active
spins at scale O~. This will be used in Sec. III to obtain
the magnetization as a function of the applied field.

The scaling behavior for small H will be determined
by the scaling of the cluster moments in zero field. Like
the cluster lengths, at criticality the typical moments m
will, from Eq. (1.23), grow as a power of ln(l/0), and
hence, also as a power of the cluster lengths Zg. We will
see that, in fact, at criticality

ev
) (1.37)

((Vl) & (hVI, (1.38)

i.e. ,

the mean lnh will be bigger than ln J by an order of unity.
One might expect that ( would be the true correlation
length, and indeed, it is the length that sets the typi-
cal correlations for asymptotically large ~i —j~ as in Eq.
(1.6). However, at length scale ( the width of the lnJ
distribution is of order ((VI) ~

&,&, )) 1. Thus the
mean of lnJ characterizes its distribution very poorly.
Indeed, almost half of the J s will still be larger than
their neighboring h, 's and regions of the system of size
( will not "know" that they are noncritical. This is the
root of the inequality of Harris and Chayes et al. ' that
the "true" correlation length ( must diverge with an ex-
ponent v, which is large enough that regions of size (
"know" that they are in the disordered phase with prob-
ability substantially greater than 1/2. This implies, in
the simple picture outlined here, that ( should be deter-
mined by

m ln(1/0) (1.34)
&v

) (1.39)

with the exponent

1+ ~5
2

(1.35)

equal to the golden mean; P will determine various mea-
surable critical exponents.

2. Ogg cr iticality

(1nh) I —(ln J)I
var(lnh) I + var(ln J)I

(1.36)

Since b is the ratio of the mean per unit length to the
variance per unit length of P, (lnh, —lnJ, ), it should be
preserved exactly by the flow; this will turn out to be the
case provided the effects of the distributions of bond and
cluster lengths (and their correlations with the J; and h;)
are taken into account; see Sec. IID.

Before summarizing some of the main results of our
RG treatment, we try to develop a heuristic picture of
the behavior of the RG flows away &om, but near to,
criticality.

For later convenience, we define the distance from crit-
icality 4, = 4J by

with v = 2, saturating the Harris inequality v ) 2/d =
2 15

On scales larger than (, most of the h are bigger than
most of the J, and the physics is noncritical and can
be described more simply. Beyond this scale, most of
the eliminated couplings will be transverse fields so that
clusters will be eliminated, yielding progressively longer
and weaker bonds between the remaining clusters. But
the strengths of the remaining bonds will not apprecia-
bly affect the physics, which will be dominated by the
properties of the remaining clusters.

A simple approximation at low energies in the disor-
dered phase is thus to simply set all the remaining J's
to zero at length scale ( and be left with a problem of
decoupled clusters whose properties will be given by the
number density n(06) p(h, Eg, m; Og) of the clusters with
h, , E, and m at the scale Og at which

n(n, ) - V,h'- (-', (1.40)

M„„s(H) II" (1.41)

and a divergent susceptibility at low T,

so that the effective 'R(Og) is substantially away from
criticality. As we shall see in Sec. IV, an exponential tail
of the distribution of ln(1/h) —i.e., a power law tail for
p(h) —leads naturally to singular magnetization at small
fields with

3. Diaov dered phaae
x(&) —T, ,

1
(1.42)

We first consider the weakly disordered phase, i.e., b &
0. At a length scale

with p ( 1. The exponents K and p depend continu-
ously on h via the parameters of the ln(1/h) distribution.
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In the ordered phase for b small and negative, similar
considerations lead to a characteristic scale ( ~ &, be-
yond which the system is well ordered. Since most J's
will be bigger than most h's at scale (, beyond this scale
only a few clusters will be eliminated while most of them
will be joined together into bigger clusters; eventually at
0 = 0 an infinite cluster will have formed. This infinite
cluster will contain as "active" spins a substantial &ac-
tion of those that were active at scale (. Since only the
active spins can contribute to the spontaneous magne-
tization Mo, we can obtain an estimate of this by the
fraction of spins active at the energy scale Og that corre-
sponds to length scale (. The order parameter exponent
P will thus be determined by v and P, &om Eqs. (1.34)
and (1.39).

By analogy with the weakly disordered phase, the
weakly ordered phase for b small and negative should
have at scale ( an exponential tail of the distributions
of bond lengths E~ and efFective couplings In(1/J). This
translates into a pozoer lan distribution of J. If, as we
may do to a crude but good approximation —see Sec.
IV A—we ignore all the remaining 6's at scale (, then the
efFective Q is just a classical random bond Ising model
with a power law distribution of J s. The interfacial ten-
sion SI, of a system of length I will then just be the weak-
est J in length L. We thus see that Sl. should vanish as
I for large I with n(b) depending on the paraineters
of the distribution at length scale (. Similarly, at positive
temperatures there will be a thermal correlation length
(z T and a susceptibility

1
x(T) - T,+ (1.43)

which is now larger than the Curie susceptibility due to
the developing correlations. Again, the task of the RG
analysis near the critical point is to obtain the form of
the distributions and hence n(b).

In Sec. IV, we will see that the simple toy models
that we have sketched above capture most of the low-
energy properties of the weakly ordered and disordered
GrifBths' phases. The small b dependence of o. and K will
be obtained exactly &om the RG.

D. Summary of main results

Before proceeding with the concrete calculations, we
sumxnarize some of the main results of this paper. These

The exponential tail in In(1/h) arises from an exponen-
tially small probability of large Es's and the tendency,
as we have seen, for ln(l/h) Es. The long rare clus-
ters with anomalously small 6 in fact dominate the low-
energy physics in the weakly disordered GrifIiths phase
that we have been discussing. What is needed &om the
RG transformation is information on how the tail of the
h distribution develops, and what its parameters are at
scale Op, this we analyze in Sec. IV and the end of Ap-
pendix A.

Order ed phase

prixnarily concern the critical region with b, the dimen-
sionless measure of the distance to criticality, Eq. (1.36),
the temperature T, the applied ordering 6eld H, and
wave vectors or inverse distances all small.

At zero temperature, the magnetization in a small
(positive) applied ordering magnetic field H has the scal-
ing form

M(b, H) =p, [ln(D„/H)]~ 'M-bin~ Da
& H )i (1.44)

for ~8~ and 1/(1nH(, both small, but their ratio p tending
to any fixed constant.

Here the exponent P = z(l + ~5) while P and DH
are nonuniversal dimensional constants. The universal
scaliny function

1
n(p) oc Qp i(cothp), (1.46)

with Q~ i a I egendre function.
Note that the analogous magnetization scaling func-

tion for the pure Ising model is not known.
At the critical point 8 = 0,

1
M(H) (1.47)

for small H, while in the ordered phase b ( 0, the spon-
taneous magnetization

M. (b) = ™„M(b, H) - (-b)~, (1.48)

with

3 —i/5
2

(1.49)

In both phases M(H) is very singular for small H near
the critical point. In particular, in the disordered phase
b ) 0, the scaling function yields a continuously variable
power law singularity for small H,

M(H) b ~H ~lnH ~, (1.50)

so that the linear susceptibility g is infinite for a range
of b. At asymptotically low fields at fixed b in the disor-
dered phase there are nonscaling corrections to Eq. (1.44)
which change slightly the exponents of H [probably by
O(82)] and lnH in Eq. (1.50); see Sec. IVB. For 8 suf-
ficiently large, y becomes finite but there will still be a
weaker power law singularity in M(H) for a wider range
of b.

We also compute the scaling function for the magneti-
zation of the Grst spin in a semiin6nite chain as a func-
tion of a z field Hi applied to this end-point spin only.
This was previously known both for the pure Ising sys-
tem and, thanks to McCoy, for the randoxn chain. Our

~h) = . , + .
h 4~ (~)+~'„, (145)

p2 oc (p) e 2 dO!

sinh2p sinhp

with a(p) obeying the second-order difFerential equation
(3.49) with n(0) = 1, which can be solved, yielding
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(1.51)

is studied in more detail. At the critical point, C(x) is
very broadly distributed, with the typical behavior

—lnC(x) - ~x, (1.52)

results agree exactly with McCoy s in the scaling limit,
both for the scaling function of the sample averaged end-
point magnetization, which is dominated by rare samples,
and the very broad distribution of the end-point sponta-
neous magnetization just into the ordered phase.

By our methods, the scaling behavior of the bulk linear
low-temperature susceptibility y(b, T) is also obtained,
and its low-temperature limit analyzed in the two phases
and at the critical point, although the exact scaling func-
tion has not yet been computed.

The behavior of the two-point spin-spin correlation
function

with Cg a computable coefficient, Eq. (3.112).
Thus we see that the mean correlations decay expo-

nentially with a much longer correlation length ( than
do the correlations between a typical pair of widely sep-
arated points. Both the long-distance mean correlations
and the low-field magnetization are dominated by spins
which remain active down to very low energies.

The decay of the mean correlation function in the or-
dered phase (at H = T = 0) to its long-distance form of
Mo are also computed, as is the behavior of the correla-
tion length in nonzero magnetic field and nonzero tem-
perature. Again, these collectively represent more infor-
mation than is known exactly for the pure Ising model.
Many other properties —essentially all the behavior of
mean multipoint correlations when all of T, H, b, and
inverse distances are small —are computable, in princi-
ple, by the methods presented here. These are left for
future researchers.

—lnC(x) = x/(, (1.53)

with probability one for large x with the typical correla-
tion length

(1.54)

with the coefficient in Eq. (1.52) having a axed (but so far
unknown) distribution in the limit of large x. Conversely,
in the disordered phases the typical correlations decay as

II. RENORMALIZATION-GROUP FLOWS

In this section, the renormalization-group Qows out-
lined in the Introduction are analyzed and fixed points,
eigenvalues, and scaling functions computed. We post-
pone a detailed discussion of the justification of the ap-
proximations made in the decimation procedure to Sec.
VI.

It is convenient to work in logarithmic variables defin-
ing

with

(1.55)

r —= In(n, /n),

g = In(A/ J) & 0,

(2.1)

(2.2)

1C(x)- (1.56)

is found, while in the disordered phase for distances x
much larger than the true correlation length

(1.57)

Nevertheless, the mean correlations, measurable by neu-
tron scattering, are dominated by the pairs of spins with
atypically large correlations that are of order unity. The
scaling function of the mean correlations, C(x), at zero
temperature is reduced to analysis of the solutions of a
second-order linear ordinary difFerential equation (ODE).
Although this has not been solved in closed form, all the
interesting limits can be analyzed. At the critical point,
power law decay of the mean correlations

and

P = En(O/h) & 0, (2.3)

where the maximum coupling is initially Oy but af-
ter renormalization becomes 0 ( Oy. The variable
I is the Bow parameter that is analogous to E in the
rescaling of the momentum cutoff A to Ae in conven-
tional momentum-space renormalization-group transfor-
mations. The logarithmic variables ( and P are defined
to be positive; large ( or P correspond to small J or li,
respectively.

As 0 is reduced to 0 —dO, I' is increased to I'+ dI =
I'+ —and bonds with ( within dl of zero are decimated
away and similarly spin clusters with P within dI' of zero.
If, for example, cluster 2 with P2 ——0 is decimated, the
new effective bond coupling cluster 1 to cluster 3 becomes

with (=(i+42 (2.4)

v=2 (1.58) likewise if a bond 1 is decimated, the new cluster has

the mean correlations for small h and x )& ( decay as p= pi+ p2. (2.5)

5/6

C( ) g4 —2P
~

4
~

—c'g(x/g) ~ —m/$

&x)
(1.59) After the decimations, all P's and ('s are reduced by dI'

corresponding to the effects of the change in 0 included
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in Eqs. (2.2) and (2.3). We will generally drop tildes on
the efFective J's and h's, using them primarily to define
the RG transformation as above. For convenience, one
can renumber the new bonds and clusters sequentially;
which spin cluster contains which original spins is thus
not kept track of directly.

In order to obtain information on correlations, in par-
ticular on the relationship between length and energy
scales, it is therefore necessary to keep track of the
lengths of the bonds and clusters. For convenience, we
assign half of the original unit distance between two sites
to the spins and half to the bonds to preserve the duality.
Initially, all bond and cluster lengths are thus

P(0, .) R—: dE'P(o, l')R(P, l —E'),
0

(2.13)

the centerdot denoting the variable (here E) to be convo-
luted.

From the recursion relations, Eqs. (2.4), (2.5), and
(2.8), we thus have

R p~ R = dI.' dP'R(P —P', E —g')R(P', g')
0 0

(2.12)

or if, e.g. , only one variable is being convoluted,

(2 6) + R(0, .) q P (q P —2ROP + (Po + RD)P,

1
&s' = —,

2
(2 7)

for all i. Under decimation of, e.g. , cluster 2, the length
of the new bond is

~B —~B + ~S +~B (2.8)

and similarly for the length of the new cluster when a
bond is decimated.

After renormalization, the bond strengths and their
lengths are correlated; as we shall see, long bonds are
likely to be weaker. Nevertheless, because of the simple
structure of the RG, the properties of the remaining ef-
fective bonds and clusters at any scale are independent,
provided they are independent initially. (In Appendix D
it is shown that, in fact, weak short-range correlations
are irrelevant in the RG sense at the critical fixed point. )

We thus must keep track of the renormalization of two
joint distributions: those of the e8'ective bonds and clus-
ters that exist at scale I'. These we denote P(g, E; I')d(dl
and R(P, E; I')dPdE, respectively, treating the lengths E as
continuous variables for notational convenience. We will
usually not keep track of the magnetic moments of the
clusters directly. The distributions P and R are both
normalized to unity. We will often drop the explicit I
dependence and use several shorthand notations

(2.14)

OR OR + P(0, .) q R pq R+ (Rp —Po)R . (2.15)

The first term in Eq. (2.14) arises from the change in
the definition of ( as I' increases, the second term from
new bonds created when a cluster with P = 0 is deci-
mated, the third &om the elimination of the two neigh-
boring bonds of the decimated cluster (which combine to
form the new bond), and the last term from an overall
rescaling of the probability to keep it normalized, i.e.,
to compensate for the net loss of a fraction (Po + Ro)dI'
of the bonds to decimation. The evolution of the num-
ber density nr of the remaining clusters at scale I' (or
equivalently bonds) is thus

= —[P (I') + Ro(I')]nz, (2.16)

where we have displayed the I' dependence explicitly and
used the notation nr rather than the n(A) of the In-
troduction. The initial condition in Eq. (2.16) is just
Az' —p = 1. The duality is manifest in Eqs. (2.14) and
(2.15).

The probability that a given spin is the first (i.e. , left-
most) spin of a cluster that exists at scale I', and has
field strength P and length E, is

Pj()—:P (c, I)—:f d/P(t, ', l), etc. ,

the former used only when unambiguous, and

P, =—P(o) =P(o, f),

(2.9)

(2.10)

nz R(P, E; I') . (2.17)

Note, however, that this is not the probability that the
given spin is an active member of some such cluster; the
latter requires information on the number of active spins
in a cluster which we are not yet keeping track of.

R, =—R(0, j'), (2.11)
A. Critical fixed point

so that the probability that a bond is decimated on going
&om I' to I'+ dI' is PodI'. Because of the additive nature
of the recursion relations, Eqs. (2.4), (2.5), and (2.8),
convolutions of P's and R's will naturally occur. These
we denote, for example,

The first task is to try to find a critical fixed point of
the system of equations (2.14) and (2.15). In order to
do this, we must allow for a rescaling of the variables
by, one would guess, a power of I'. We postpone until
later the consideration of the lengths, and first concen-
trate on the distributions of ( and P alone, Pg') and
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R(P). Anticipating the efFects of duality, we rescale P
and ( similarly, defining g:—(/I'~ and 0—:P/r~ with

@ to be chosen to find a well-behaved fixed point. The
distributions of the rescaled variables are denoted Q(q)
and B(0), respectively. From the expected self-duality at
the critical point, we are led to look for a self-dual fixed
point, i.e. , with B = Q. The resulting recursion relation
for Q becomes

r =@ q+& +r'-~ +Q.q q,t9 i 8
or Bq Bg

(2.1s)

with Qp = Q(0). Fixed points Q* are solutions of Eq.
(2.18) with no explicit r dependence for r m oo.

For g ) 1, the terms in the first set of brackets in Eq.
(2.18) dominate for large I', yielding the unphysical fixed
point solution Q* oc 1/rl. Conversely, for @ ( 1, the
terms in the second set of brackets dominate, yielding
(via Laplace transforms) a Q* which oscillates in sign for
large g and is thus also unphysical. Therefore, we must
have @ = 1 so that

1
np I2 (2.24)

for large I', implying that the typical bond and cluster
lengths are

2nI
(2.25)

=Q+(1+v) ~
+B.qq+(Q. -B.)qolq Bq

(2.26)

so that lengths scale logarithmically with energy. It is
the associated extremely broad distribution of energy
scales that makes the whole analysis of this paper both
tractable and valid.

The significance of the fixed point found above depends
on its stability. We must thus consider the effects of
small perturbations away &om the fixed point. With the
rescaling of Eqs. (2.19) and (2.20), we have RG Bows for
Q(g) and B(0):

and

~
—= q/r (2.1o)

(2.20)

and

BB OBI' = B + (1 + 0) + QpB I3 B + (Bp —Qp) B,
(2.27)

Q'(g) = e "e(g), (2.21)

with 0 the Heaviside step function.
The behavior of the distribution P(() for large I at

criticality is implied by the fixed point

give the correct rescaling at the critical point. In the
Appendix of Ref. 10, it was shown that for g = 1, Eq.
(2.18) has a family of fixed-point solutions with different
Qp. However, almost all of these correspond to functions
Q with power law tails in q which can only arise &om
very singular initial distributions [Prob (1) &~i &~„ for

small J]. The only well-behaved fixed point has Qp
——1,

corresponding to

where the gP and Q terms arise f'rom the rescaling Eq.
(2.1o).

To analyze the stability of the fixed point, we define

Q=Q*+q=e "+q, (2.28)

B =B'+6= e +b. (2.29)

q = q~(g)r~,

The detailed analysis of the flow for small q and 6 is
carried out in Appendix A. It is found that there are
exactly two physical eigenperturbations which behave as

~(q. r) = —.-«'1
I' (2.22) b=b (0)r~.

The only relevant eigenvalue is

(2.30)

[and R(P;I') likewise]. This yields preliminary justifi-
cation for the approximate decimation procedure: For
large I', the distributions of the effective J; and h,; are so
broad that the probability that the neighbors of a to-be-
decimated J, 0 are a significant &action of 0 is very
small, of order 1/I'.

The form of the fixed-point distribution also yields in-
formation on the distribution of cluster and bond lengths.
From the RG equation for the cluster density np, Eq.
(2.16), we see that, at the critical fixed point,

A=1, (2.31)

with eigenvector

q, = (g —1)e—&, (2.32)

bi = -(0 —1)e s, (2.33)

corresponding to going ogcriticality, with growth of the
perturbation as I' I'. The irrelevant eigenvalue

1
Po =Ho (2.23) (2.34)

and hence is associated with flow on the critical manifold to the
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critical fixed point. It corresponds to a symmetric, i.e. ,
self-dual, eigenvector

q i(g) = (g —1)e-&, (2.3s)

b i(8) = (0 —1)e (2.S6)

(2.37)

to be consistent with the result for nr i Eq. (2.24). From
the structure of Eqs. (2.14) and (2.15), it is clear that
the Laplace transforms

)'((,v) —= f «» "')'(C ~) (2.38)

and similarly R(B,y) have decoup/ed flow equations for
different y, except that the y = 0 parts that correspond
to P(g, I) enter the other equations. This property will
be used extensively later.

For finding the fixed point, we Laplace transform (LT)
in A —+ y to the scaled distributions

Q(n, y) B(0,y), (2.S9)

which should be equal at the 6xed point by duality. From
either Ref. 10 or the detailed analysis of the Rows in the
next subsections, one obtains a fixed-point distribution
unique up to the overall length scale (i.e., y ~ const xy)

By differentiating the fixed point P((; I') = i e &&r with
respect to I', and rescaling to g variables, it can be seen
that the irrelevant eigenvector just corresponds to a con-
stant shift of the origin of I": I' —+ I' + bI'. Surpris-
ingly, there are no other physical eigenperturbations. A
generic perturbation, as shown in Appendix A, will yield
a projection onto the relevant and irrelevant eigenvec-
tors (above) and a remainder which decays faster than
any inverse power of I'.

We thus see that the fixed point Eq. (2.21) indeed has
the correct stability properties to be the critical fixed
point that controls the transition between the paramag-
netic and ferromagnetic phases at zero temperature. The
magnitude of the relevant eigenperturbation should thus
be proportional to the distance &om criticality b for small

We now go back to the full distributions of lengths
and couplings. At the fixed point, the lengths must be
rescaled as

Poisson-resummed form, it can be readily shown by the
method of Appendix B that Prob(A) is strictly positive
as it must be.]

From Eq. (2.40), one can show that, as expected, A

and q are positively correlated. In particular, bonds with
anomalously large il (corresponding to anomalously small

J) will also be anomalously long with A Cpil+ O(~il).
With the choice of normalization of lengths implicit in
Eq. (2.40), the coeKcient Cp = 2/3.

B. OfF-critical 8ows and special solution

So far, we have concentrated on the critical fixed point
and linearized perturbations away from it. But in order
to get information about the behavior slightly off criti-
cal, in particular to obtain the scaling functions, we need
to analyze where the Hows in the relevant eigendirection
go. Motivated by the properties of the fixed-point so-
lution, in particular the decoupling of different Laplace
transform components in E, and the special properties of
exponential functions of g, we look for solutions to the
RG equations in a particular simple form. This form,
as we shall see, includes both the relevant and irrelevant
eigenperturbations discussed above and has the needed
asymptotic properties to yield o8'-critical scaling func-
tions. Prom the analysis of Appendix A, we anticipate
that the system will converge rapidly to this form for
all but pathological initial conditions that correspond to
singular distributions of initial couplings and/or lengths.

We work with the Laplace transform of the unrescaled
distributions of P((, I) and R(P, I): P((, y) and R(P, y).
The RG flow equations are simply, from Eqs. (2.14) and
(2.1s),

BP((,y)
OI'

+ R(0, y)P (., y) q P(, y)

+[P(o, o) —R(o, o)]P((,y) (2.42)

P (q, y;r) = T(y;r).-~"("l, (2.43)

and similarly for && by duality. Note that R(0, y = 0) =
Rp. The caupling of different y's only involves the
independent y = 0 parts, Bo and Po, which are just
functions of I' whose determination nevertheless involves
analyzing the g dependence ofP ((, 0) and R((, 0).

We look for salutians to Eq. (2.42) in the form

qs( »I) LT—1 )/y —g~ycoth~y
sinh~y

(2.40) R(P y I ) = T(y I')e (2.44)

which can be seen to decay exponentially for A )& 1, i.e. ,
E )) I', as the nearest singularity to the origin of y occurs
at y = —vr. On integrating over g, we And that

Prob(A) = ) ~

n+ — ~~(—1)"e "~"+~, (2.41)

A —i 4Awhich behaves as e 4 for large A and as A 2 e ~ for
small A. [Note that by considering Eq. (2.41) and its

where we have displayed the I' dependence explicitly. For
y = 0, P(g, 0) = P(g) [as from Eq. (2.10)] which must be
normalized so that

T(y = 0; I') = u(y = 0; I ) =—up(I') = Pp(l )

(2.4s)

T(y = 0; r) = v-(y = 0; I') —= ~p(I ) = Rp(I'),
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yielding

P(() = upe and a(P) = «e-'" (2.46)
7p ——bp(1+ coth[(I'+ Cp)bp]) = 2bp

Substituting Eqs. (2.45) and (2.47) into the RG flow
equations, we see that they are indeed a solution if the fol-
lowing nonlinear ordinary difFerential equations are sat-
isfied for each y:

u =b (—1+ coth[(F+Cp)bp]) =
( )

bp

=«2bp. (2.60)

Ott TT (2.47)
C. Scaling solution

87 TT )

AT
M'

= (up —« —u)T,

(2.48)

(2.49)

We now construct a scaling solution, which will contain
the whole critical regime, Rom the above special solution.
If D(y) = 0 and b(y) = 0, the solution is self-dual and
thus should correspond tu the critical point on which we

focus first. For y = 0, this yields simply

« ——up ——1'(F+ Cp), (2.61)
BT
or

== (rp —up —r)T. (2.50)

These can be integrated explicitly to yield

(y) =b(y)+~(y) oth([~+C(y)l~(y)) (2»)

u(y) = r(y) —2b(y) (2.52)

(y) eD(y)+[2b —b(y)]I' (2 53)
sinh([I'+ C(y)]K(y))

~(y) = ~(y) ~
—D(v) —12~0 —b(&)I~

»nh([l'+ C(y)]&(y))
(2.54)

are y-dependent integration constants with

where

b(y) C(y) D(y) and ~(y) = v'~(y)+b'(y) (255)

'(y) = ~iy (2.62)

for small y and C(y) = Cp. The coeKcient Cp disap-
pears in the scaled solution, and so we set it equal to
zero to eliminate the irrelevant perturbation. The coefIi-
cient pz in Eq. (2.62) sets the overall length scale which
can be defined away. Thus, to obtain the critical scaling
solution, we may choose

(2.63)

which is exactly the =aling solution at the critical point
found earlier, with Cp g 0 corresponding to the irrelevant
eigenperturbation Eqs. (2.35) and (2.36), as can be seen

by expanding in Cp.
At low-energy scales, we are interested in long-length

scales corresponding to small y. In the critical region,
with the scaled variable y = yI' corresponding to Eq.
(2.37), the only properties of the integration constants

C(y) and p(y) that should matter is their leading small-

y behavior. By integrating over ( to obtain the Laplace
transform of the distribution of bond lengths, it can be
seen that any well-behaved distribution of lengths [e.g. ,
b(E —2)] implies smoothness for small y. Thus we must
have

bp = b(y = 0) and Cp = C(y = 0), etc. (2.56)
and

To satisfy the normalization conditions, Eq. (2.45), we

require that C(y) =0, (2.64)

i.e.,

D(0) = C(o)b(o)

(o)

'(0) =o.

(2.57)

(2.58)

(2.59)

thereby yielding the scaled critical fixed point distribu-
tion Eq. (2.40).

Prom the above discussion, it should be apparent that
to obtain scaling distributions just ogj' critical, we should
again focus on the small-y behavior, and again set C(y) =
0 and p(y) = y. Since bp can now be nonzero —indeed,
as we shall see, bp is just a measure of the deviation &om
criticality and will thus be small —we can take, for the
scaling solution, b(y) to be y independent:

Thus for y = 0, the expressions Eqs. (2.53) and (2.54)
simplify to

b(y) =bp =—b.
Airthermore, since Dp ——Cpbp = 0, we should also set
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(2.66)

We thus obtain a scaling solution which should be valid
for I' large, y small, and b small:

malization of b appears arbitrary; indeed we have chosen
to define it with a factor of 2 in Eq. (2.69). This normal-
ization, in fact, turns out to correspond exactly for small
b to that chosen in the Introduction:

&(y) = ay+~',

~(y) = b+ A(y) coth[I'A(y)],

u(y) = r(y) —28,

(2.67)

(2.68)

(2.69)

b=—
I

(2.76)

with Vl the sum of the variances of the original lnh and
inJ variables, Eq. (1.30).

To see this, we consider the mean and variance of the
sum

&(y),br
»nh[l ~(y)]' (2.70)

Z = ) (inh; —lnJ,.) (2.77)

&(y),-sr
sinh[I'A (y) ]

(2.71)

over the set of efFective spin clusters and bonds at scale
I' which start exactly at (original) site 0 and end exactly
at (original) site L so that

This scaling solution is unique up to the overall length
scale which is discussed in the next subsection. For y = 0,
we have

2b
~p = ~(0) = T(0) = 8+ bcothI'b = (2.72)

2b
up = u(0) = T(0) = —b+ Scothl'b =

&&
. (2.73)

Expanding the scaling solution for y = 0 in b and rescal-
ing g and P to q and 8, we see that the small-h pertur-
bation corresponds precisely to the relevant eigenpertur-
bation away from criticality, Eqs. (2.32) and (2.33).

The analysis of Appendix A strongly suggests that gen-
eral near-critical distributions will converge to this scal-
ing solution in the limit that b, 1/I', and y are all small
with bI' and y = yI'2 fixed. As we shall see, scaling func-
tions of observable physical quantities can be obtained
by calculating, in an analogous manner, the scaling limit
of other distributions.

At this point, however, we can already anticipate that
there will exist a characteristic correlation length ( near
the critical point, which diverges as

(2.74)

L = ) (Zs, + E~;) . (2.78)

(2.79)

with E the mean length of a single cluster-bond pair, we
should expect the distribution of Z to be essentially inde-
pendent of I'; indeed, it should, by the central limit theo-
rem, be Gaussian with mean Z and variance var(Z) both
proportional to L. The conditional distribution Pr(Z~L)
of Z given the event (SO LB'} that a sp—in cluster starts
at 0 and a bond ends at I is computable from P and B.

For the special solution, the double transform of this
conditional distribution, Laplace in L —+ y and Fourier
in Z ~ s, has the simple form

Because of the additive nature of the recursion relations,
any decimation which does not destroy the first or 1ast
coupling in the segment [0, L] will leave Z invariant.
Thus, naively, we would expect Z to have a distribution
independent of the stage of renormalization but depend-
ing, of course, on L. But this is not quite right: The con-
dition denoted (SO LB}that —an efFective cluster starts
at 0 and an eH'ective bond ends at I means that the seg-
ment [0, L] is not quite typical in a way that depends on
L. Nevertheless, this should be primarily an end effect
so that for

with

(2.75)
Pr(E]L) =

—1
LT-&FT-& y [~8+~(u)] 1

—~~+~(~)I

Pr(SO —LB}
arising &om the scaling of b with the inverse length y
explicit in A(y), Eq. (2.67). This is a consequence of the
scaling of lengths with I' at the critical point, and the
relevant eigenvalue A = 1 for perturbations away from
the critical point. S —LB}= I,T 1—

~(y)u(y)

(2.80)

(2.81)

D. Normalization of 8 and lengths
Direct computation shows that in the limit L —+ oo the
distribution of

We have seen that 8 = bo is the parameter that centrals
the distance from criticality. But at this point the nor-

(2.82)
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becomes Gaussian with variance and

and

var(Z) 2 8bpp2 8bihp f 1 l+, +O-
L)

2hp +
kL)

(2.83)

(2.84)

s(h) = —
I

l
O(nI —h)

7.1 (nlrb '

h (hp
corresponds to y-independent b and D,

1
h(y) = ho = (r—l —uI),

2

(2.89)

(2.90)

where we have expanded for small y,

h(y) = hp + hiy + O(y )

D(y) = Dp ——Coho,

(2.85) with the lengths fixed by

(2.91)

and &(y) = u, ~, (1 —e &)- (2.92)

7(y) 'Yiy + 72y' + O(y') (2.86) and

The mean and variance of E per unit length are thus
both explicitly independent of the renormalization scale
for large L. [Note, however, that, not surprisingly, there
are O(l) corrections to Z —0 L (which are also readily
calculable) that do depend on I' as should be expected
from the conditioning of the end points of the segment. ]
In the regime in which we are most interested near the
critical point —bp is small but pi, p2, and bi are all of
order 1 (or smaller) so that, for small h—:bp,

Z = b+O(b ) . (2.87)

Thus to leading order in b, the normalization of b in the
Introduction, Eq. (1.36), corresponds exactly to that in
Eqs. (2.65)—(2.69).

Since any well-behaved initial distribution will con-
verge to the special solution Eqs. (2.43)—(2.56) for large
I', if it is initially near critical (see Appendix A), the
"conservation" of Z arid var(Z) for large L guarantees
that b defined in terms of the initial distributions will
indeed be the same 6 in the special solution to which
the initial distributions converge. One might worry that
the errors made in the RG approximation at early stages
would. invalidate this equivalence; however, the discussion
of the transfer matrix solution in Appendix E shows that,
due to the exact solvability of the random transverse-
field Ising chain with nearest neighbor couplings, these
errors exactly cancel at later stages. We thus believe
that asymptotically near criticality, b will be given ex-
actly in terms of the original variables by Eq. (1.36).i~
The agreement discussed in Sec. V with McCoy's exact
results confirms this claim.

Before turning to the direct computation of physical
properties, it is useful to note that the special solution
Eqs. (2.43) and (2.44) is, in fact, quite general, at least as
far as distributions of lengths. In particular, a chain with
all spins and bonds having initial (i.e., at I' = I'I = 0)
lengths g~; = lg; = 1/2, and power law distributions of
initial J's and h's,

1 uI + ~1 + 24(y)
2A(y) uI + &I —2&(y)

(2.93)

with

&(y) = ho+ ~(y) (2.94)

This yields

lnh —ln J
=bP1

vl .(ur + ~1')—
(2.95)

which is bp for small bp and can be checked with the
more general expression Eq. (1.36).

The choice pi ——1 (from p = y) in the scaling solution
Eqs. (2.67)—(2.71) generally corresponds to measuring
all lengths in units of

2
~V )V

(2.96)

the basic length scale beyond which the randomness dom-
inates. Prom now on, lengths in the scaling limit will thus
be expressed in units of 8v, &om the above analysis, the
coeQcients of lengths will then become exact We no. w
turn to computation of physically measurable properties.

E. Scaling of cluster moments

To obtain information about the scaling of spin corre-
lation functions, we need to have information about the
distribution of the moments of spin clusters as well as
their lengths. The approach we will use in the next sec-
tion enables mean correlation functions to be obtained
directly; however, a simpler approach yields the correct
scaling exponents.

The RG Bow equations for the joint distribution of the
effective field and the moment of a spin cluster, i.e. , P and
m, can be obtained simply &om the recursion relation for
the moment of a cluster,

~(J) = —
i i

e(n, —J)ul (nl )"'
(2.88)

m —m1+ m2 (2.97)

when a strong bond 1 is decimated. Unfortunately, in this
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case the joint distributions cannot be found explicitly.
But using the methods of Ref. 10, one can show that
the only well-behaved fixed point has typical moments
scaling as

(2.98)

with
(xb

C(x) - —C~
i

—i, (2.102)

The explicit computation of Sec. III A verifies this con-
jecture.

Similarly, the mean untruncated spin-spin correlation
function C(x) should scale so that for b ( 0 and x )) (,
it becomes Mo. This suggests that

1+ ~5
2

(2.99)

MQ Fb (—h) (2.100)

with

P=2 —4 = (2.101)

the golden mean. We shall later see how this arises &om
other quantities that can be calculated more explicitly;
however, it is instructive, first, to see how the scaling
forms of average correlations can be obtained from Eq.
(2.98).

In the ordered phase b & 0, some &action of the spins
will never be decimated. These will eventually form
an infinite cluster whose moment yields the spontaneous
magnetization of the system. The scaling of the density
of spins in this infinite cluster, which is simply propor-
tional to the spontaneous magnetization density Mo, can
be guessed by stopping the renormalization at a scale of
order the correlation length, i.e., when I' Fg I/~b~,
at which point the scaling solution is well away &om crit-
icality. At this scale, the clusters will still have lengths

F&2 and moments m I &@, and the natural guess (see
Sec. IV) is that only a finite &action of spins remaining
at this scale will be decimated at lower energies. Hence,
we guess that

with ( ~h~ and the scaling functions C~ obtaining for
b +&0. In Sec. IIIB we will obtain the scaling function
C~ in terms of the solution to a second-order linear dif-
ferential equation which can be exhaustively analyzed, in
particular to obtain the asymptotic limits x )) ( in both
phases.

III. MAGNETIZATION
AND CORRELATION SCALING FUNCTIONS

To obtain information about the mean correlation
functions is rather more complicated than what we have
done so far. As discussed at the end of the last section
and in Ref. 8, the scaling forms of the spontaneous mag-
netization and the spin-spin correlations can be guessed
Rom analysis of the scale dependence of the typical num-
ber of spins that are active in a cluster, i.e., its moment
m at the critical fixed point. Yet this does not provide
information on the actual correlation functions. Even to
answer seemingly simple questions such as whether these
decay exponentially in the disordered phase requires a
much more detailed analysis. In addition, we would like
to obtain information about the magnetization in small
fields; we will see that this will appear as a by-product
of the calculations below.

The simplest route that has been found so far for ob-
taining mean correlation functions is via the function

G(p, x; I')dpdx—:d Prob(spin 0 p (cluster with right end at x and ln(B/h) = p) at logarithmic energy scale F),
(3.1)

where "spin g cluster" means that it is active in the
cluster, i.e. , not yet decimated. The event in Eq. (3.1)
is shown schematically in Fig. 1. For notational conve-

nience, we have assumed a continuous position variable
x and will sometimes be sloppy with dx's.

The function G contains a lot of information. If x = 0,
then G is just the probability that the right end of a
cluster with logarithmic field P is at the origin, i.e. ,

dxG(p, x, I') = m(p; I')nrR(p; F),
0

(3.3)

where m(P; I') is the mean moment (i.e. , number of active

spins) in clusters with P at scale I'. Integrating over P,

G(P, *= 0; F) =,a(P; F) . (3.2)

Since the events {spin 0 E (cluster ending at x)) and

(spin 0 6 (cluster ending at x')) are disjoint for x g x',
integrating G over x yields the probability that spin 0 is

in some cluster with P at scale I'. Equivalently, by noting
that G(P, x) is also the probability that spin (—x) E-

(cluster ending at 0 with P), we see that

FIG. 1. The "event" whose probability defines G(P, x;I')
in Eq. (3.1). The spin at site zero is active in a spin cluster
that ends at site x and has efFective transverse field h = Oe
at scale I' = ln(AI/O).
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we see that

N~(F) = dP dzG(P, x; I')
0 0

(3 4)

Most importantly, however, the mean spin-spin corre-
lation function can also be obtained &om G. Prom the
discussion in the Introduction, the mean correlation func-
tion

is the density of spins that are active in any cluster at I'.
In the ordered phase, we expect, as discussed earlier,

a single in6nite cluster to form as I' ~ oo. Thus

Mo ——p&~(F = oo) (3 5)

is the spontaneous magnetization density, with the coef-
6cient p, ( 1 the finite mean reduction of the moment
of the active spins due to the nonuniversal high-energy
small-scale Huctuations. This will be a relatively smooth
function of b whose b dependence will only lead to sub-
dominant corrections to Mp, so that we can, to the ac-
curacy at which we are working, set p = p(h = 0).

(3.6)

C(x) =p K (z) =p dF k(x, F),
0

(3.7)

where

with, for convenience, x positive, is proportional to the
probability that spins j and j + x are active in the same
cluster at some I'; if so they will fluctuate together, and
hence, for large x, contribute on average p, to the mean
correlation function. Thus

k(x, I')dI' = Prob (spin 0 and spin x become active in the same cluster when I' + I + dF). (3 8)

k(x, I') = nr' d»G 0', z„F)

xP(0, z —x„I')G (j,z —z„F) (3 9)

De6ning the Laplace transforms

The process by which spin 0 and x become active in
the same cluster at I' can be represented schematically as
shown inFig. 2. For this to happen, O.p and o must both
be active in separate clusters at scale I', which are coupled
together by a bond that is about to be decimated at I .
If the right end of the cluster containing 0 is at xq, which
occurs with probability G(f, xi), there must thus be a
bond beginning at xq and ending at some x2 which has
P ( dI'; this occurs with probability P(0, l. = z2 —zi)dI'.
Furthermore, 0. must be in the cluster beginning at x2.
The probability that this occurs given that a bond ends
(and hence a cluster begins) at x2 is n& G(f, z —x2) since
np is the probability that a cluster begins at a particular
point, and we have used the re6ection symmetry. [Note
that &om Eq. (3.2), G(j,0)/nr ——1 by the normalization
of R(P).] We thus see that

(3.13)

The structure factor

(3.14)

is then simply

S(q) = 2p ReK (y = iq) . (3.15)

We shall later see that the magnetization and correlation
functions in a small field and/or low positive teinperature
can also be obtained &om G. Thus, we see that the
function G contains a great deal of information.

But how do we obtain GY Prom the previous section, it
should be clear that we can derive an integro-differential
RG equation for & ', the simplifying feature is that this
will be a linear equation which can be analyzed rather
fully. The renormalization of G under decimation has
several contributions: (a) The value of P of each cluster
(with P ) dI') is decreased by dI' because of the redefi-
nition of P. (b) If P ( dI', the cluster is decimated; (a)
and (b) are both included in the effects of a

&&
term

G(P, y)—: dx e " G(P, x)
0

(3.10)

and

(3.11)

and similarly k(y) and

we see that

(3.12)

FIG. 2. The process by which spins 0 and z become active in
the same cluster. The bond connecting the two clusters (dot-
ted lines) is decimated (indicated by 2C) and a larger cluster
(shown by solid line) formed. The probability of this occur-
ring as the scale is changed from 1' to 1' + dF defines k(x, F),
Eq. (3.8).
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I' times functions of y = yI' as in Sec. IIA. Initially,
G(P, x) will vanish for all but small x and thus G(P, y)
will be roughly independent of y for small y. This will
persist until nz™y, i.e. , I' —.Thus for y -+ 0, G
should be independent of y. It is therefore convenient
to choose the integration constants in 4 so that 4 is y
independent as y M 0. Using the scaling forms of u and
r, Eqs. (2.68) and (2.69), we can integrate ~&@& Eq. (3.20)
to obtain, at criticality,

(3.26)

W = ——(4 + h ) + —b, coth (I'b, ) + —h coth (I'b)
2 4
1——Ab coth {I'A) coth(I b),
2

(3.29)

e —~ BA
g(y; I') = G (j,y;I') = —(r+ rp)A+

with the y dependence arising from b, (y) = gy + 82.
Note that R' is even in b; the asymmetry between the

phases thus comes entirely from the e factor in Eq.
(3.28) and f'rom the dependence of 7.(y) on b in Eq. (2.68).
For obtaining correlation functions, we only need

Since we are using scaling forms, the small-y limit is
equivalent to I' ~ 0 in which limit e I'

In the same I ~ 0 limit at criticality, R' = TV
independent of y. Thus the equation for A becomes A. Magnetization scaling

(3.30)

82A
gI'2 I'2 (3.26)

A = I'~ for I' —+ 0, (3.27)

with 4' chosen to be y and b independent in this limit:

e =e ( h ) i b, (y)
(sinhl'b )»nhi'A (y)

(3.28)

We have thus reduced the determination of the scaling
form of G to the solution of Eq. (3.24) with the boundary
condition Eq. (3.27) and

which will manifestly have a y-independent solution. In
this limit, there are thus two linearly independent solu-
tions A I'~ and A I' ~ with &j& = 2(1+ ~5). These
yield a I'4', 6 I ~ and a I' ~, b I'
respectively. The mean number of spins in a cluster at
I' is given in terms of G by Eq. (3.3). The two small-I'
solutions for A, above, yield, respectively, mp I'& and
I' ~. The latter is clearly unphysical as the number of
spins must grow as the clusters combine. Hence, the cor-
rect solution must have A I'~ for I' —+ 0 at criticality.
Since this is the smaller solution as I' m 0, we see that
in this limit the correct solution must be purely of this
form for all y, with no mixing in of the I' ~ solution.

Thus the appropriate boundary condition for the scal-
ing functions at criticality is that, for all y, the small-I'
limit of the solution to Eq. (3.27) is A I'~ with a y-
independent coeKcient that is nonuniversal and related
to the small-scale physics, such as the lattice constant,
etc.

We are now in a position to understand the appropri-
ate conditions in the full critical region with b nonzero
but small. For fixed small ~h~ and y, the behavior at
"high" energies with I (( —will be characteristic of the

I+I
critical point. Thus the scaling functions can be deter-
mined again, up to an overall constant coefFicient, by the
condition that for all y

The simplest property of the spin correlations that can
be obtained &om the methods of the previous section is
the probability that a given spin is active in some cluster
at scale I',

N (I'):—g(y = 0; I'), (3.31)

which is given by Eq. (3.30) with r = 7p and

A=A(y=0) =Ap. (3.32)

ln(PmH) = lnH + P lnI' + O(1), (3.33)

with the O(l) term random with a distribution derivable
from that for the moments m. But, since the distribu-
tions of the logarithmic couplings for large I" have width
of order I', we see that on this scale, essentially all the
E~ are either much larger than the couplings if lnH is
substantially larger than lnO, or much smaller than the
strongest couplings 0 if lnH is substantially smaller than
lnO. Thus to a good approximation that is asymptoti-
cally exact as far as scaling functions which involve b lnO,
we can stop the renormalization when

{3.34)

In the limit I' ~ oo, N~ is simply proportional to the
spontaneous magnetization. Furthermore, the depen-
dence of K~(1) on I' yields, as explained qualitatively
in the Introduction, the magnetization as a function of
an applied field H, which we take to be positive.

The crucial observation is that at a scale I )) 1, most
of the remaining couplings are much smaller than 0 in
the vicinity of the critical point, since the distribution
of the logarithmic couplings is broad. The efI'ect of an
applied field on a cluster is to split the energy of the
up and down configurations by E~ ——2p,mH with m the
number of active spins in the cluster. As discussed in Sec.
IIE, the cluster moments are typically of order m I'~
in the critical region with a distribution with width of the
same order that decays exponentially for m/I'~ large.
On a logarithmic scale, the magnetic energies are thus
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and be assured that the Geld is strong enough to fully
align virtually all of the remaining clusters. Furthermore,
we can be assured that on scales I' & I H the field ener-
gies will have almost always been much less than the
strengths of the eliminated couplings and thus not have
played an appreciable role. The O(lnI') uncertainty in
the appropriate F~ implied by Eq. (3.33) translates into
negligible 0( & ~) corrections in the scaling limit.

Thus we can obtain the scaling function for M(b, H)
directly from N~(r~):

Ap =C (3.42)

for large p. By making the substitution

z = cothp, (3.43)

we see that

A.p p or Ap constant, the correct asymptotic solu-
tion must be

M(b', H) = pN~ (b, F~), (3.35)
(di' d

(z —1)
i

—
i + 2z ——1 Ap ——0 .

(dz) dz
(3.44)

which will be valid in the limit b ~ O, I'0 -+ oo with
bI'I ~ any fixed constant. We have displayed the im-
plicit b dependence of N~ in Eq. (3.35). As we shall
see, in the scaling limit, the above argument for the form
of F~, Eq. (3.34), will be valid even ofF critical pro-
vided SFH is fixed. In the potentially problematic limit
of bI'~ large and negative, M will tend to the sponta-
neous magnetization and the bI'0 dependence will only
give corrections; we will discuss the justification in this
limit in more detail in Sec. IV, as well as the form of the
nonscaling corrections.

The calculation of the magnetization scaling function
thus reduces, from Eqs. (3.30) and (3.31), to evaluation
of the function Ap(I') which satisfies from Eqs. (3.21)
and (3.24) the difFerential equation

But this is the differential equation for the Legendre func-
tion Q„(z) with v = P —1 = (~5 —1)/2. Thus we see
that"

Ap (p) = C~ Qp i (cothe), (3.45)

with C~ a constant coeKcient,

» F(4+ —,')
V F(4)

(3.46)

with r(x) the usual gamina function.
The scaling function is most usefully expressed in

terms of

d2Ap b2

sinh (Fb)
(3.36)

Ap(p)
('Y) =

/
(p

) (3.47)

with the boundary condition
which is an even function of p that is smooth for small p
with

(3.37)

for small I'. Here we have used Wp ——b / sinh2(I'b) from
the scaling forms of up and 7p.

We can put Eq. (3.36) in an explicitly scaling form by
defining

n(0) = 1

,d'n dn (
+2Pp +n~ 1 —

2 ~

= 0.
sinh 7)

(3.48)

(3.49)

with

arid

d2Ap

d72
Ap

2sinh p

(3.38)

(3.39)

(3.40)

This has the advantage that the scaling functions in
terms of o. are manifestly smooth as a function of b for
fixed I'~. In terms of o., we obtain the exact critical
scaling function

e ~ ,dna
M(b, l yg) = pl~ + .

~
Ppn+p

sinh2p sinhp ( dp)
(3.50)

valid in the limit b m 0 and I'0 —+ oo with

p—:br~ --b in(DIr/H) (3.51)

(3.41)

for small p. The function Ap is explicitly an even function
of p which we hence study for positive p.

Since Ap and "& ' are positive for small p, &om Eq.

(3.40) Ap and "& ' are increasing functions for all p.
Hence for large p, for which (sinh p) 2 m 0 implying

fixed, where we have allowed for a general scale factor D~
for the magnetic field to make the arguments of the ln in
Eq. (3.51) dimensionless. But note that changes of D~
by multiplicative factors represent really only corrections
to scaling; indeed these are smaller than the corrections
to scaling that arise &om the neglect of all but the lnH
term in Eq. (3.33).

We now consider various limits of the scaling function.
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C'r itica/ point

At the critical point, p = 0 so that o; = 1 and
&

——0.
The expression in brackets in Eq. (3.50) thus simply
becomes 1 + P so that

~~(~, I') = I'-' 4C~ ' "-"-+(2C +4C')&' ~e

+O(p' ~e "), (3.59)

yielding for small H

M(b' = O, H)-

2. Or dered phase

(3.52)
Cl

M(S&O, H) -S'-~ H"
l

S»—+-+
H 2 C~j

+Ol H"Sin —
l

(3.60)

The ordered phase in the limit of small fields corre-
sponds to p -+ —oo. For large lpl,

a = c~lpl' ~, (3.53)

and hence the bracketed expression in Eq. (3.50) be-
comes 2C~lpl ~, yielding

M(h & 0, H = 0) - (—b)' ~, (3.54)

A, = c I&l+c„'+o(l&l -'~~~) (3.55)

so that "& ' has only exponentially small corrections to
C~. From the relation Eq. (3.45) and the connection be-
tween Legendre functions and hypergeometric functions,
we see that

(tanhp) fP 1 Q 1
~(~) =

I Fl —+ —,—,P+ —;tanh p l,) (2 2'2 2

(3.56)

&om which C~ and C& can be obtained IIrom the behav-
ior of E(a,, b, a+ 6;x) for x + 1, yielding C~ in Eq.
(3.46) and

~l+ = @(1)—g(P) = —0.719, (3.57)

with @ the digamma function.
Thus we see that for small H in the ordered phase, the

scaling function yields the form

as guessed earlier &om scaling.
The leading correction to this result for small H can

be obtained from the behavior of Ae or n for large lpl:
The general large lpl form of Ao is, from Eq. (3.40),

Thus we see that M(H) has a poiiier taco singularity with
a continuonsly variable exponent 2b. As we shall see in
Sec. IV, this behavior is associated with a disordered
fixed line of almost disconnected clusters. The form of
Eq. (3.60) with corrections to the exponent which are
higher order in h and hence not in the scaling function
will be seen to obtain along this Axed line even outside
the scaling limit, i.e., H && e

The fact that the scaling function for the magnetiza-
tion can be obtained is quite remarkable; the analogous

1
function, with scaling variable b/H&+~ = b'/H ~ in-
stead of blnH, is not known for the pure Ising model.
Thus, in a sense, the random Ising chain in the scaling
limit is more solvable than the pure system due to the
wide separation of energy scales.

Although it may well be possible to make the approx-
imations used here rigorous asymptotically, this has not
been done and one might thus question whether the scal-
ing function so obtained is really correct. The best ev-
idence for its validity, at this point, is the agreement
between an analogous scaling function for the end-point
magnetization of a semi-infinite system as a function of
a field applied only to the spin at the end. This is calcu-
lated in Sec. V and found to agree exactly in the scaling
limit with the exact results of McCoy for a particular
class of distributions of couplings.

B. Mean correlation functions

Earlier in this section, we saw how the mean correlation
functions in the scaling limit could be obtained &om the
function g(y, I') = G(j, y, I'). This is given by Eq. (3.30)
with A(y, I') satisfying the second-order linear differential
equation (3.24) and P(O, y) = T(y) given by Eq. (2.71).

O, H) = M, (h) 1+.O(H~l~lhlnH (3.58)

Close to the transition, the susceptibility thus remains in-
6nite with a continuously variable exponent parametriz-
ing the small H singularity in M(H). As we shall see
in Sec. IVA, this behavior is associated with a classical
ordered fixed line. It obtains with only subtle corrections
even if we take H to 0 at fixed negative 8 so that 6 lnH
is in6nite and hence not strictly in the scaling limit.

8. Disor der ed phase

Cr'itica/ point

We 6rst analyze the behavior of the mean correlations
at the critical point b = 0. For b = 0, the expressions
for g, k, A, etc. , are powers of y times functions of the
scaled variable

(3.61)

In particular, we can write

In the limit of small fields in the disordered phase, it
can easily be seen that N~(b, I' = oo) = 0. The leading
large-p behavior of N~ is with

A(y, r) = y-~~'X(i), (3.62)
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-, = A'(r)A (s.63)

and

(3.64)

W(h =o, y, I') 1 3 - 1= ——+ —coth I' — cothI'
y 2 4 2r

3+
4I'2 (3.65)

-'rFor large I', W = —,implying A e2 . Using

A=r~

for small I'. The function in Eq. (3.63) is given by

tive at the length scale Zr x, in which case one would
expect that it is reasonably likely that they are both ac-
tive in the same cluster. Indeed, the integral in Eq. (3.72)
is dominated by I' 1, i.e., I' nr y, corresponding
roughly to lz 1/nr x 1/y.

The behavior for x )) Er is controlled by the singu-
larities, in y, of k(y, I'). For fixed I', k is not singular
as y + 0. Its singularities in the complex y plane oc-
cur when the prefactor of Eq. (3.71) is singular, i.e. ,

coshr~y = 0, or when A is singular, which, since A sat-
isfies a linear difFerential equation, occurs only when W is
singular, i.e. , at nonzero solutions of sinhr~y = 0. The
nearest singularity to the origin of k(y, I') in the complex
y plane is thus controlled by the prefactor in Eq. (3.71)
and is a double pole at

1 yr = —= =I'2 (3.66) —7r 2

y=y, =
4I'2 (3.75)

aIld

I I '

~y
sinhI'~y sinhl

~ = ~y cothr~y = ~y cothr,

(3.67)

(3.68)

(s.69)

Thus for fixed I' at the critical point, as x ~ oo,

k(x I') xr ~ e 4r& (3.76)

so that the probability of spins 00 and o becoming active
in the same cluster is exponentially small for 2: )) Er. As
we shall see in Sec. IIIC, the finite-temperature corre-
lations can be obtained from k(y, r); their long-distance
behavior is controlled by singularities in the complex y
plane at the scale I' = rz ——ln(Oy/T).

(s.7o) 2. Spontaneous magnetisation

at the critical point, we obtain

—
l

= + cothI' lA+
1 1 f'1 -) dA

r co.h'r 2 gr dr
. (s.71)

We next consider the long-distance behavior of the
mean correlations in the ordered phase. At long dis-
tances, the mean C(x) should tend to MO2, which is pro-
portional to [N~(r = oo)] . Thus, we must have

As I' —+ 0, k I' & independent of y as it should
since the correlations will be short range in 2; in this
"high"-energy limit. Conversely, as I' + oo, k
y~ 4'e ~/r. Thus, we see that the scaled integral to ob-
tain the correlations,

(3.77)

for y ~ 0 in the ordered phase. If we set y = 0, then
g(y = 0, I') 1V~(r) -+ N~(oo) for large r and we see
that with h ( 0 and I' )) 1/l8]

ic (y) = f zri(„,r) =„' &f ui(",-" ),
(3.72)

is well behaved both for small and large I' and hence
yields a finite constant, implying

k(y = o r) = "'"'l~ ( )]' (3.78)

and hence the integral to obtain K(y = 0) from Eq. (3.7)
indeed diverges. It is not a prioH clear how this diver-
gence will be cut ofF for small y.

A natural guess is that for y (& $2 the dominant I' will
be I' I'& defined by

K (y) -y' (3.73) Ar ~y. (3.79)

Therefore, for large x at the critical point, the mean cor-
relation function

Since

n —4b2e-2r~'~ (3.8o)
1

C(x) K (x) (3.74) for r» 1/lbl,

This has the form that was guessed earlier, Eq. (2.102):
It is of order the probability that oo and cr are both ac-

(3.81)
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We can now attempt to expand g(y; I') in y and keep all
terms that are non-negligible for I' I'„. We have

I d (y) = rib l + — + 0(y'), (3.82)

but even the second term in Eq. (3.82) is negligible for
I' I'y. Indeed, one can see that

A(y, I'„) = A(y = 0, I'„) . (3.83)

The only problem with setting y to zero in Eq. (3.30)
is thus in the function that appears in the denominator,

~(y) = h+ 4 cothrE
1 y
2 [hl

/' y' yrl= &o 1 + y/nr + 0
l(h2nr ' 8 p

(3.s4)

with

(3.s5)

(3.s6)

Thus, to the required accuracy for I' I'„, we have, from
Eq. (3.30),

1
g(y, l) = g(0, oo) 1+y nz

(3.s7)

and hence, &om Eq. (3.13),

which is very small at low-energy scales. The y/nz term
in Eq. (3.84) is clearly needed for large I'. In the needed
limit,

small y. But, as we shall see, these cancel exactly along
with all other singularities near the origin y = 0. In
fact, the mean correlations decay exponentially to their
asymptotic limit associated with a singularity away from
the origin of the complex y plane. Before showing this,
we turn to the somewhat simpler behavior in the disor-
dered phase. This will set the stage for a fuller analysis
of the analytic structure of K (y) in the ordered phase,
as well as enabling correlations to be computed at Gnite
temperatures.

3. Disordered phase

In the disordered phase, we would expect the mean
correlations to decay exponentially. As we shall see, this
is true but the actual detailed form of the decay is quite
interesting; we focus on the long-distance behavior here.

We first note that the singularities in g(y; I') near y = 0
that arose in the ordered phase from the vanishing of
w(y; I') do not occur in the disordered phase. Instead,
the nearest singularities to the origin occur near y = —b,
i.e. , A = 0. These arise from two sources: First, 7(y, I')
can still vanish in the disordered phase; it will do so when
D(y) is purely imaginary with the closest singularity to
y = 0 in the range

+2
( llmAl ( r corresponding to a

singularity at

(3.90)

2
with a, (8r) in the range 4 ( a, ( vr . But, in addition,
g will be singular if A is singular. As mentioned ear-
lier, since A satisfies a linear differential equation, it will
be singular only when the function W(y, I') is singular.
Hence, we expect singularities in g at

k(y, I') = N~(oo) .
2l~lnr

y+ nz' 2 (3.88) (3.91)

By changing variables from dI' to dna and noting that
dnr —2lhlnrdt, we see that the integral over I' of Eq.
(3.88) yields Eq (3.77).. The neglect of the other regions
of the I integration, I' ( 1/lbl and I' ) l$l/y fai which
the approximation Eq. (3.86) is not valid, can readily be
shown to be justified for y &( b . Thus we see that, as
it must, the long-distance form of the mean correlations
in the ordered phase reduces to the square of the mean
spontaneous magnetization. Note that

for n = 1, 2, 3... . As I' —+ oo, these singularities, as well
as y, , approach —b and hence upon integrating k over
I' we anticipate a cut in K (y) on the negative real axis
ending at y = —b .

From the analysis below, it can be seen that K (y)
will be analytic except on this cut. Thus the contour in
the inverse Laplace transforzn to abtain K (x) can be
deformed to an integral around this cut, yielding

(3.s9) K (x) = e * drI e "*p~(g),
0

(3.92)

rather than (o')2, because the ((oz)) are approximately
independent for widely separated spins.

In order to obtain the corrections to the asymptotic
form Eq. (3.89), i.e. , the farm af the decay of the corre-
lations, the effects of the singularity in K near y = 0
need to be removed and the singularities of the func-

N )tion K (y) — " studied. A straightforward studyy
of the form of the neglected terms in the above analysis
would lead one to expect lny carrectians ta K' (y) far

where the "spectral density"

(3.93)

with 0 a positive infinitesimal, is given by the disconti-
nuity across the cut. From Eq. (3.92) we immediately
obtain the correlation length
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(3.94)
02A+ = TV+A+ (3.1oo)

in the scaling limit.
In order to analyze the needed behavior of K across

the cut, it is useful to separate out the effects of the
singularities in 1/~ from those in A. This can be done
by an appropriate integration by parts of Kr (y). Using

the fact that &r
——TVA, we can write

can be found. This must be matched onto the solution
for A which obtains in the "inner" regime bI' 1, but
~A~r && 1, to obtain the correct coefficients of the two
linearly independent solutions to Eq. (3.100). From Ap-
pendix C, it is found that

r
K, —= dr'k(y; r')

0
1 2b

S+~cothr~ e2r~ —1~ '("' )I

r
+ dr'k'(y, I"),

0
(3.95)

(sinhrE)
(3.101)

where Ci is an O(1) coefficient obtained &om the solu-
tion to the scaled inner equation

d A

with

with

2b
k'(y, r) = Ii (y, I')I (y, I'), (3.96)

with

d7'
=R' A

as p~o

(3.102)

(3.103)

BA f 1 1I, (y, I) = +
~

s+ -a.othra+ -s.othrs
~

A
Or g 2 2 )

(3.97)

and

and

1 3 2 1 3= ——+ —coth p ——cothp+
2 4 2p 4p2

The function

(3.1O4)

R'- R" = —-L'+ -b'+-L' oth'I'L
2 4 4

1
2

——hb, cothrb, + O(b e ) . (3.99)

Ignoring the exponentially small corrections to lV+, a
general solution to

OA & 1 3I (y, I') = — + 8 ——A cothrA + —b cothrh
~

A .
Br ( 2 2

(3.98)

In the desired limit r —+ oo, the first term in Eq. (3.95)
can be shown to vanish for any 4 in the right half plane,
i.e. , any y ofF the cut of K (y). Thus K (y) is not
afFected by the singularities of v and we can determine its
properties by analyzing only the singularities in A(y, r).

The mean correlations will decay exponentially for
large x )) ( = 1/h as follows immediately from the
form of Eq. (3.91). But for x )) (, the form of the de-

cay will be dominated by the behavior of K near the
end of the cut at y = b, i.e. , pa-(g) for g—&( b . We
are thus led to analyze the behavior of the solution to
the difFerential equation for A for (A~ = ~gy+ h

~
&& b,

where 4 = ki~g+8 for just above or just below the cut.
We will see that the dominant values of I' are of order
1/~A~ because of the singularities in the complex I' plane
that correspond to those of Eq. (3.96) in the complex y
plane. Thus we need the behavior of A for I'b )) 1 but
with general I'L.

In this "outer" limit, bI' )) 1, but I'L of order unity,

A ( ) = b~A = h~A~ I' = p/b; ~A~ && —
~

(3.105)f
I'

represents the solution for rb 1 and r~A~ && 1. It has
the form

1 1
A = Ci p 2e~ (1+C2 e + ) (3.106)

BA (1 1=
~

—b ——A cothrA
~

A,ar

we see that with I'b )) 1

(3.1O7)

Ig =I2 =2bA.

The integrand in Eq. (3.95) thus becomes

(3.108)

k'(I ) 8h ~Ci e
sinhI'4 (3.109)

for I'b )) 1. Since the singularities in y of the integral
K (y) are far &om the end of the y plane cut for small
I', we see that the singular behavior near the end of the
cut is dominated by large I', and for the purposes of de-
termining the spectral density pJc(g) for small g, we can
thus replace K (y) by an integral over the asymptotic

for p m oo, corresponding to the intermediate regime
1/h « I « 1/~A~, which therefore matches onto Eq.
(3.101) for r~b,

~
&( 1, thereby determining the coefficient

in Eq. (3.101).
The required regime of the integration of Eq. (3.95)

can now be obtained simply from Eq. (3.101). Since in
this limit
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expression in Eq. (3.109).
We are hence interested in

dr&'(y, I') (3.11O)

with

i"(b, r) = [r, (b, r) —2bA(b, r)]
—26

x [I2 (b, I') —2bA(b, I') ]

pic(rt) = 8b' ~Ci e (3.111)

forg(&b .
The long-distance behavior of the mean correlation

function can now be obtained by evaluating the integral
over rt in Eq. (3.92) as a saddle-point integration. We
find that, for 2: )) ( = 1/b2,

S6~'~' ~y 5/6

C( )
—-2C' b4 —»l ~

tl
—r(2~'*/&)' —*/&

for y = —b2 —rt + ie, i.e. , for A = +i~g + 0 with 0 a
positive infinitesimal. For b, = i~g+ 0, k has singular-
ities in I at and near I'L = inn, i.e. , for I' = ~ +i8,
while for 4 = —i~g+ 8, which, due to the symmetry of
k' under 4 -+ —4, is equivalent to A = i~re —0, the
singularities are at and near I' = ~ —i0. In the first

case, the singularities can be put on the real I axis and
the I integration contour can be deformed to just below
the real axis, while in the second case it can be similarly
moved to just above the real axis. The needed difference
between these two, for Eq. (3.93), is hence a closed con-
tour integral in the I' plane running out just above and
back just below the positive real axis and hence enclos-
ing the poles in r of k', Eq. (3.109) (but not those which
occur at I' = i

&
in the bI' 1 part of A). The function

pic(g) is thus simply given by minus the sum over the
residues of the poles in k' as a function of I' for fixed g
with A = i ~g. Frozn Eq. (3.109) for k' we hence obtain

-'(&—I~l)r + —-'(&—I~l)r (3.116)

as I' ~ oo with a+(b, lbl) and a (4, lbl) smooth except
at 4 = lbl and on the imaginary b, axis, corresponding,
respectively, to y = 0 and y real and less than —b, and
therefore on the cut; A is analytic in the rest of the y
plane. From Eqs. (3.97), (3.98), and (3.116), we see that
the first two terms in Eq. (3.114) yield

2b(A —lb l)a+a (3.117)

as I' + oo. Thus singularities in K (y) also occur only
at y = 0 and on the y C (—oo, —b ) cut, the latter
involving contributions &om the integral over k" in Eq.
(3.114). The y = 0 singularity can readily be recovered
by noting that, for b, = lb'l,

A = c rlbl'-~ (3.118)

(3.115)

using the fact that A( —b, I') = A(b, I') and the definitions
Eqs. (3.97) and (3.98) of Ii 2. Thus we see that K (y)
in the ordered phase divers &om that in the disordered
phase with b -+ lbl only by the first two terins in Eq.
(3.114) which are obtainable from the I' ~ oo behavior
of A.

Since W = 4(lbl —I') for real b, as I' -+ oo, the
solution for A has the form

3.112
for r ~ oo from Eqs. (3.38) and (3.42) so that

Ordered Jrhase b, —lb'l
(3.119)

We now return to the ordered phase and consider the
corrections to the asymptotic constant long-distance be-
havior of the mean correlations. The two terms in Eq.
(3.95) for Kr(y) are both badly behaved for large I' in
the ordered phase and are hence not directly useful. Nev-
ertheless, if an appropriate expression such as

bA(r) [I,(r) —s, (r)] (3.113)

r
+bA(r) [s,(r) —s, (r )] + dr'k" (r'), (3.114)

0

is added to the first term in Eq. (3.95) and its derivative
rh

subtracted &om k', both terms become well behaved for
large I' and hence more useful. We thus have, with im-
plicit y dependence of all quantities, but displaying the
b dependence,

for 4 -+ lbl, yielding

4C~lbl' »
K (y) =

y
(3.12O)

for small y in agreement with Eq. (3.77).
To obtain the long-distance behavior of the decay of

2
C(x) to (o), as for the disordered phase, the discon-
tinuities across the cut in K (y) are needed for y just
less than —b, i.e., for L small and imaginary. To ob-
tain these, it is actually more convenient to work with
Eq. (3.95) rather than Eq. (3.114) which is not prob-
lematic in this regime since the integral in Eq. (3.95)
converges for lEl (( b'. The asymptotic solution for A
in the limit lb.

l
(( b that is derived in Appendix C

can be used. The contribution &om the 6rst term in
Eq. (3.95) vanishes exponentially for large I' and hence

A

does not enter K . If the asymptotic expression &om
Eq. (3.109) is used in determining A:, the singularities



CRITICAL BEHAVIOR OF RANDOM TRANSVERSE-FIELD. . . 6435

1
fSsinhra l ~

(b, sinhrh )
(3.121)

it can be seen that C2 is negative. We obtain

p~(g) =-16C, C2 ~~~ (3.122)

from the (sinhr4) ~ are found to cancel almost ex-
actly, with only O(e ~ ~) residual terms. Thus it is
necessary to go beyond the dominant terms calculated in
Appendix C. The next leading correction discussed there
is sufhcient to obtain the small-g behavior of the spectral
density p~(g) of the singularities in a manner analogous
to that for the disordered phase.

The result &om Appendix C involves both the coefFi-
cients Cq and C2 &om the inner solution A of Ap-
pendix C and Eq. (3.106). From the signs of the coeffi-
cients in the differential equation for

BD + k(p, *;r) + 2S,D(., x) ~ ~(.) —2I,D,

(3.127)

with the inhomogeneous term arising from the joining of
two clusters at scale I', one cluster containing 00 active
and the other with o active, while the last two terms
arise from the combining of the cluster containing 0 and
x with another cluster. Here, k(P, x; I') is defined in the
same way as k(x;I') = Jo dP k(P, x;r) but with the
extra condition that the cluster formed has logarithmic
ffeld of P; it is thus given in terms of G by Eq. (3.9) with
the integrals over P in the two G factors replaced by P'
and P —P', respectively, with an integral only over P'.

From the solution to Eq. (3.127), with the appropriate
initial conditions on the Laplace transform D(P, y; I') for
small I', one could obtain

which is of the same form as in the disordered phase, Eq.
(3.111), but with an extra factor of 2 in the exponent.
The mean correlations will thus decay more rapidly than
in the disordered phase but have the same form as Eq.
(3.10) with modified coefficients:

(0.,')(a ) = p' dP D(P, x;oo) .
0

(3.128)

The truncated correlations are then obtainable by noting
that

( 32C] C2 s ~ 4 24 (—Mo =&
I

1—3(~~/$) ~ —m jg (3.123)

OKi (x)
M

yielding

aD(f, x;r)
) (3.129)

C'* = ( o':) —( o') (:) (3.124)

but differs &om it by the "disconnected" correlation func-
tion of the local magnetizations,

Co =(~o)(~ ) —(~ ) (3.125)

which is of course zero in the disordered phase, as all (cr,')
are zero.

In our simple picture, the disconnected correlation
function is dominated by (at long distances) the corre-
lations in the positions of the spins that remain active
down to zero energy and hence have non-negligible (0,').
Conversely, the truncated correlations are dominated by
strongly correlated pairs of spins that do not remain ac-
tive all the way to zero energy. In principle, the corre-
lations in the ensemble of random couplings of the (cr,'. )
can be computed. In particular, (a.o) (o ~) can be obtained
&om

with, again, $ = 1/b2.
Note that the correlation function Eq. (3.123) is not

the mean of the conventionally defined truncated corre-
lation function

c (*) = p,
' dr D(0, *;r) .

0
(3.130)

C. Correlation functions at T ) 0

The finite-temperature correlations can be obtained in
the scaling limit by stopping the renormalization at the
scale 0 = T, i.e.,

A preliminary examination of the structure of the
Laplace transform of the ffow equation (3.127) for D
suggests that even the special solution will reduce to a
fourth-order linear ODE which we do not attempt to an-
alyze here. Although we have not computed D(y), it is
clear that it will have a cut on the negative y axis ending
at y = —b and hence yield a D(x) decaying exponen-
tially with the same correlation length as K (x) but pos-
sibly diferent subexponential factors than Eq. (3.123).
Thus, we expect that Ci(x) and C (x) will both de-
cay exponentially as e /~ but probably with different
subexponential prefactors. Note that one could put use-
ful bounds on both mean correlation functions in terms
of simpler quantities that we have calculated, without
explicitly computing D.

rT = 1n(AI/T) . (3.131)
D(P, x; I') = Prob(cro and o~ active in same cluster

with P at scale r). (3.126)

This obeys an inhomogenous linear differential RG equa-
tion

At this scale, almost all the remaining clusters will have
couplings and effective transverse fields much less than T
and hence the clusters —which are internally made rigid
by efFective couplings )) T—will be essentially indepen-
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dent. Conversely, entropic effects will have been negli-
gible for almost all decimations at scales 0 ) T. The
mean long-distance correlation function for small T close
to the critical point is thus

to be dominated by the simple exponential decay. By
analyzing the residue of the pole in the bI'T && 1 limit,
we obtain that the coefficient in Eq. (3.134) is

C(T, T) = p Kz (x) . (3.132) (3.138)

The long-distance behavior of Kr~(x) is dominated by
the nearest singularity to the origin of the complex y
plane of Kr (y). Since k'(y, I' & I'z) [defined in Eq.
(3.96)] is only singular for y & —b —r2, the nearest

siiigularity to the origin in Kr~(y) arises Rom the first
term in Eq. (3.95) for b ) 0 and the first term in Eq.
(3.114) for b & 0, which are the same. Thus, at low
temperatures, the correlation leiigth (7 will be minus the
inverse of the closest zero to the origin, yT, of

at low temperatures in the disordered phase.

8. Ov des'ed phase

In the ordered phase the correlation length will diverge
strongly at low temperatures due to the development of
long-range order at zero temperature. The correlation
length in the limit IbII'T ~ oo is found to be

~(y; I 7 ) = h + A(y) coth[I'T A(y)] . (3.133)

C(z, T) = p =T (h)e (3.134)

Since the singularity in Kp at yT is a simple pole, the
decay will be a simple exponential

e2r [S[
= 4S'( T )I

(3.139)

which diverges as a continuously variable power of T asso-
ciated with the axed line that controls the ordered phase,
as discussed in Sec. IV A. The coeKcient =T in this limit
ls

with the coefficient =T a function of b and T given by
the residue of the pole in y at yT from the first term in
Eq. (3.95). We can evaluate (T (h) and:-T(b') in various
limits.

Cv itical point

At the critical point, the dominant pole is at L =
2&

yielding

(3.140)

as should be expected since the very long clusters which
dominate at low T have magnetization which is + their
length times the mean spontaneous magnetization den-
sity. Thus, for 1/b « x « (T in the ordered phase, the
mean correlations should be just = Mo.

D. Correlations in a magnetic field

4I'T2b = —
y& (3.135)

The coefficient

2@—4
T —C,I'T (3.136)

with the numerical coefBcient C obtainable from the be-
havior of the scaled function A(I'), Eq. (3.62), and its
first derivative both evaluated at I' = '2 .

We now briefly discuss the correlations in a small ap-
plied magnetic field 0 at zero temperature. We focus
only on the mean correlations; again as in Sec. IIIB
the mean truncated correlations, in which (o'. ) (o ) rather

than (o,') is subtracted f'rom (a,'. cr'), require more work.
Following the analysis of Sec. IIIB, we must compute

the probability that spins i and j = i + x ) i are both
active at the scale I'H = 1n(1/II) beyond which the ap-
plied field dominates and aligns all the remaining active
spins. The Laplace transform of this probability is

2. Disown dered phase LT Prob(o; and o;+ active at I'Ir)

it-2 27r2-
(3.137)

Note that in addition to the pole in Kr~ (y) at yT there is
2

also a cut ending at y = —b —
~r which means that x/(TT

must be much larger than (hl'T) for the correlations

In the disordered phase, the pole of yT will move away
from the origin as b increases. For I'Tb &( 1, it will be
near the critical yT, Eq. (3.135), while for I'Th )) 1, it
approaches

= Kr„(y) + KP (y), (3.141)

the first from the probability that the spins are active in
the same cluster, the second K being the transform of
the probability that they are active in distinct clusters.
We have already studied Kr(y) in the previous subsec-
tion.

By summing up the probabilities that there are 0, 1,
2, . . . , oo intervening clusters between those in which i
and j are active, one can readily derive an expression for
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.—', y(y I') P(J, y;I')

1 —P (j,y; I')Q(j', y; I')
(3.142)

For y small at fixed H, the second term in Eq. (3.141)
dominates and one can show that

~a („) ~~(1'~)
g

(3.143)

y(l )
(3.144)

As in the case of thermal correlations, in the scaling
limit, the nearest singularity in both terms in Eq. (3.141)
is again a simple pole at y,~ that arises from the closest
zero to the origin of

7.(y;I'~) = b+ A(y) coth I~K(y) (3.145)

Thus we see that the correlation length (~(I'~) has iden-

tical functional form to (z (I'z ).
At the critical point, we therefore have

so that, as expected, the mean long-distance correlations
2

approach ((cr,')) at long distances. From an analogous
analysis to that in Sec. III B, one can see that this 1/y
pole is the only singularity at y = 0; the mean correla-

2
tions then decay exponentially towards (0') with a cor-
relation length (~ given. in terms of the nearest nonzero
singularity to the origin, y„ in the complex y plane of
Eq. (3.95):

change of limits in using these to infer properties of the
noncritical phases. In this section, we will focus on the
behavior for fixed small ~h~ in the limit of low energies,
not strictly in the scaling regime, and one would therefore
like to have a low-energy description of the weakly ofF-

critical phases which can be "matched" onto the large
~bl'~ RG flows. This will also give us substantial extra
insight into the behavior near the critical point, in par-
ticular the cause of the singularities in M(H) and the
low-temperature linear susceptibility y (T).

A. weakly +revered phase

We first study the weakly ordered phase as this is some-

what simpler conceptually. We thus focus on fixed small

negative b. In the ordered phase, one expects quantum
fluctuations to be irrelevant at low energies so that the

system should be approximately describable by a classical
efFective Hamiltonian. To see this, consider the behavior
of the J and h distributions for ~b'~1 )& 1, correspond-

ing to 0 && the crossover scale Og. In this limit, almost

all the J's will be much larger than almost all the h's

as 1/up 1/(2~b)) is the typical ln(O/J) while 1/rp

2~&
e2~~~r is the typical ln(O/h). For I' &) 1 g 1/)h), al-

most all the d.ecimations are thus of bonds causing larger
and larger clusters to form, with smaller and smaller h/O.
Only very occasionally will a cluster be eliminated. Thus
the natural classical limit which will obtain at low ener-

gies is that with all remaining 6's zero and with nearest
neighbor efFective exchanges distributed as

4 ln'(1/H) (3.146) o(o —1) &ol (4.1)

while well into the disordered phase, for hl ~ )) 1,

~2
&a =~+ I'a (3.147)

2X'~ )bj
-2l~l

4
(3.148)

i.e., a nonuniversal power law depend. ence on H reflecting
that in M(H) —M. , Eq. (3.58).

In Sec. IVD, the behavior of the magnetization when

both H and T are nonzero is d.iscussed briefly. One could
also analyze the crossovers in the correlations in this case,
but we have not carried this out.

IV. ORDERED AND DISORDERED PHASES
AND PHASE DIAGRAMS

The RG flows of Sec. II can be used, for small ~h~, all

the way into the ord.ered. or disordered phases, i.e., for
~hl'~ )& l. Although this enables the scaling functions to
be calculated exactly, one must be careful with the ex-

In the ordered phase, the behavior of the correlation
length as H ~ 0 reflects the development of long-range
order, so that

with, from the large I' limit of uo, the exponent z given

by

1
Z (4.2)

for small (b(.
We expect corrections to Eq. (4.2) as ~b~ grows due to

corrections to scaling, eKects of errors in the RG, etc. ,

although these will not affect the critical scaling func-

tions calculated in Sec. III. Nevertheless, the form of
the distribution Eq. (4.1) should obtain in the limit of
low energies. This can be readily seen by consid. ering the
decimation RG transformation which becomes trivial in

the classical limit, as it just corresponds to cutting ofF

the J 6 [0—dA, 0] part of the distribution and rescaling
the remaining J's.

The family of distributions, Eq. (4.1), is trivially a

fixed line, parametrized by z of this RG. The quantum
fluctuations —roughly parametrized by ~0—are irrelevant

on this fixed line. Thus to a first approximation, we may

ignore them. At zero temperature, the magnetization
is then just Mp sgn)H~ with Mp ~6~

& given by the
moment per unit length of the clusters as set (up to cor-

rections that are small for small ~h ~) by the critical scaling

function Eq. (3.50).
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1 —r
n(O) ~ Oz ~ e z (4.3)

At energy scale 0 &( Bg, corresponding to length scales
much longer than (, the density of clusters will be

der e / Mo. But we must now be more careful in
obtaining I"0 or, equivalently, AH. As in the criti-
cal region, we stop when Hm(O~) O~. But now

m(OH) Mpl(O~) MpOH
' so that

as obtainable trivially from the distribution Eq. (4.1).
Thus z is the exponent that relates energy scales and
length scales E(O) = 1/n(O) on the weakly ordered fixed
line: yielding

1
QH II 1+1/ (4.10)

O E(O)' . (4 4) M(H) —Mp H i+. (lnH) (4.11)

At nonzero temperature, the behavior of the weakly or-
dered phase will be nontrivial due to competition between
the thermal Auctuations and the exchange. Crudely, we
can still stop the RG at 0 = O~ ——T, as in Sec. IIIC,
and. consider the remaining spin clusters to be rigid but
free. The linear susceptibility will then be

1
g - —n(O = T)m'(O = T)T (4 5)

in terms of the mean square moment of the remaining
clusters. Since in the ordered phase m(O) Mpl(O)
[indeed one can show that the variations from this are
only O(E(O) ~ ) for O —+ 0], we see that

Ty - Mpl(O = T), (4.6)

yielding, for small T,

T&+~/~ ' (4.7)

i.e. , a continuously variable power law with stronger than
Curie divergence due to the buildup of correlations. In
obtaining the prefactor of Eq. (4.7), we have used the
coeKcient relating the length to &equency scales as ob-
tained &om the critical scaling functions:

2ibiFr» (4.8)

&o(1'a)/&o(1'a) =
u, (r„) (4.9)

The excess Inagnetization for small H is thus of or-

where the prefactor here is just the critical correlation
length.

We thus see that the behavior of y(T) as the weakly
ordered Gxed line is approached depends only on the
properties of the Gxed line. On the other hand, in or-
der to obtain the singular corrections to M(H) at zero
temperature, we must analyze the irrelevant quantum
fluctuations. The excess magnetization M(H) —Mp in
a very small field H can be estimated by noting how
many clusters are eliminated between the scale I I and
I' = oo. Most of those eliminated in this range will be
eliminated in the first factor of 2 or so in length scale,
as beyond that the remaining transverse fields will have
become even smaller due to the combining of clusters.
Thus a rough estimate of the &action of clusters ehmi-
nated between I'~ and oo is the &action eliminated as
half of the bonds are eliminated. . This is roughly

where we have allowed. for unknown lnH multiplicative
factors, which appear in the scaling function Eq. (3.58)
and may also appear in the asymptotic (nonscaling) low-
H limit of interest here; we have not computed these.

In the above discussion, we have ignored the diÃer-
ence between z and 1/2~b~. Since the definition of b' is
unambiguous only to leading order for h' small, we must
generally allow for nonuniversal corrections so that

+O(1) .
1

(4.12)

The advantage of using z in physical expressions becomes
clear when Eq. (4.11) is examined: the exponent in the
excess inagnetization is 2~5~ to lowest order, but in gen-
eral differs from 1/z.

The relations between the exponents in y(T), Eq.
(4.7), and M(H) —Mp, Eq. (4.11), are properties of the
weakly ordered fixed line and therefore should be exact.
The discrepancy &om the critical scaling function that
occurs in Eq. (4.11) formally represents only corrections

—4h
to scaling since the extra factor of H &+'~'~ in Eq. (4.11)
[with z = 1/(2~b~)] only becomes substantially difFerent
from unity when PlnH 1, i.e. , h lnH 1/p which is
not in the scaling function Eqs. (3.50) and (3.58). Simi-
larly, correctioiis from Eq. (4.12) will also not appear in
scaling functions.

We end discussion of the weakly ordered phase by not-
ing that the length-dependent stifFness Eq. (1.16) typi-
cally is

1
Sl, (4.13)

being dominated by the weakest effective bond in a sys-
tem of length L. As —b is increased out of the critical re-
gion, z decreases so that the susceptibility y(T) diverges
more and more rapidly and SL, decays less rapidly. Be-
yond the lower GriKths' point, where the smallest orig-
inal J; becomes larger than the largest original h~, SL,
approaches a nonzero constant, there is a gap in the spec-
trum, and y(T) diverges exponentially rapidly as T ~ 0.
This is the more conventional strongLy ordered phase. Its
character can be qualitatively seen even in our simple ap-
proximate RG: In the strongly ordered phase, no spins
are ever decimated and no very weak bonds are gener-
ated; the fixed point is then a classical uniform ordered
Ising chain with no fluctuations. In this regime, M(H)
will have only essentially singular "droplet" singularities
for small H, like those of the pure Ising system.
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B. %weakly disordered phase

(4.14)

parametrized by an exponent z with the number density
of clusters n(O) O~~', so that again z relates length
and energy scales. This is exactly the form found &om
the bI' )) 1 limit of the critical scaling function with

1
Z

2
(4.15)

a relation which, like that in the ordered. phase discussed
above, will have corrections of higher order in h. The
similarity between Eqs. (4.1) and (4.14) reflects the du-
ality.

Unlike in the ordered phase, the clusters in the dis-
ordered. phase will only occupy a small &action of the
length at low energies, while the bonds connecting them
will grow in length, as Z~ 1/n(Q). Nevertheless, the
distribution of cluster lengths can be computed &om the
special solution: T(y)/70 is the Laplace transform of the
probability distribution of lengths of clusters that are
eliminated. at scale I'. By a saddle-point evaluation of
the inverse transform, it can be seen that, for bI' )) 1,

(4.16)

Es (r) obeys a central limit theorem, and the long clusters
hence have transverse fields of order e

The mean moment of clusters being eliminated can also
be computed to be

At low energies in the disordered phase, almost all the
effective bonds will be much weaker than almost all the
effective transverse fields. Thus we guess that, asymp-
totically, the Qows will approach a fixed line consisting
of uncoupled clusters with a distribution of lengths Zg,
effective transverse fields h, and moments m. The distri-
bution of these will be roughly, up to small modifications
of b, that given &om the limit of the critical scaling func-
tions.

Under the trivial RG transformation that in this limit
just eliminates clusters with h C [0—dO, 0], a power law
distribution of transverse fields is seen to be a fixed line:

typical clusters that are joined together when many atyp-
ically strong bonds connecting them are decimated. A
long tail of the cluster distribution of this type will oc-
cur, as discussed at the end of Appendix A, as soon as
any &action of the J's is decimated. Thus the power law
tail for small effective h in Eq. (4.14) will already be well
formed when bI' 1.

The form of Eq. (4.17) has a simple physical interpre-
tation: The magnetization per unit length of the anoma-
lous clusters that remains in the disordered phase at low
energies is of order b2 & which means that they are like
typical clusters that would occur for b the same distance
&om criticality on the ordered side of the transition where
the spontaneous magnetization density is Mo lb'l2

This is a consequence of the properties of the distribu, tion
of segments of length of order (

The width of the distribution of the sum over original
couplings Z = g,.(lnh; —lnJ;) of segments of length (
is the same order as its mean; thus some finite &action
of them for small b "think" that they are in the ordered
phase, and hence "want" to have magnetization density
Mo lbl ~ even though the system as a whole is in the
disordered phases. If a large number of such strongly cou-
pled segments occur sequentially, then an anomalously
long, anomalously low 6 cluster is likely to form in that
region. The probability of such a cluster with length E

will thus be roughly e '~/&, since E for each segment of
length ( will be roughly independent. From the proba-
bility e 2~r of a cluster surviving from scale rg 1/8
(where the clusters and bonds have lengths $) down
to a much lower-energy scale I' and the dependence of
Es(r) or r, we see that indeed the distribution of the
lengths of such long-surviving clusters is exactly of this
form (with the coefficient c, = 4 with length units of Ev
in which ( = 1/h2). This simple picture has consequences
in higher dimensions as we shall argue in Sec. VII.

The thermodynamic properties of the weakly disor-
dered phase can be found straightforwardly in terms of
the above picture of the distribution of independent clus-
ters.

At zero temperature, the magnetization will be sin-
gular for small H. Stopping the renormalization at I 0
given by Hmp e H and noting that the magnetiza-
tion of the remaining clusters is dominated by those with
h &OH, we get

(4.17)
M(H) h ~H* llnHl + i' (4.18)

We conjecture that, in fact, there will typically only
be ~r variations in m around its mean, as for Ig in
Eq. (4.16). We have not computed the distribution of
m directly in this limit, but at the critical point, the
distribution of clusters with anomalously small h have
m Es P = 1n(A/h) with only O(~P) variations. ~o

Since for b small and positive these clusters are more
likely to survive well into the disordered regime than
typical ones, we expect similar behavior for the distri-
bution of m in the weakly disordered phase. Physically,
this arises &om the composition of the anomalously long
clusters which consist of many roughly independent more

where the extra [ln(l/H)]~~', which is not in the criti-
cal scaling function Eq. (3.60), is a consequence of the
dependence of I'H on mz lnI'~.

At nonzero temperature, the thermal Huctuations com-
pete with the quantum Quctuations. The linear suscep-
tibility can be estimated by stopping at scale O~ ——T
and treating the very weakly coupled remaining clusters
as &ee spins with moments

(4.19)

We thus find
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[ln(l/T)]2 4 (4.20)
of principle. The form of the scaling function can, how-
ever, immediately be deduced &om the scaling of cluster
moments and their number density:

i.e. , a slower than Curie divergence due to the "&eezing
out" of most of the clusters at low energies.

As for the ordered phase, it is instructive to consider
what happens as b is increased and the system moves
away &om criticality. At some point, the exponent z will
decrease through 1. Beyond this point, the susceptibility
at zero temperature will be 6nite and will no longer be
dominated by the rare anomalously low-energy clusters
but rather by the more typical ones. Nevertheless, there
will still be a singular part of the magnetization at zero
temperature,

M„„s(H) H ~', (4.21)

but perhaps with different logarithmic prefactors than
Eq. (4.18). If beyond some (Griffiths') point all the orig-
inal h~'s are larger than all the original J, 's, then in this
regime there will be a gap above the ground state and
M(H) will be analytic; this is the strongly disordered
phase.

y(T) - X[8 ln(l/T)],T

with X(p) a scaling function. At criticality h = 0,

T~(T) - [in(1/T)]" '

(4.23)

(4.24)

while the form of the low-temperature limits for ~b~ fixed
but small can be obtained &om the results of Secs. IV A
and IVB; these correspond, up to unknown numerical
prefactors, to the behavior of the scaling function X(p)
as p —+ +oo.

In the disordered phase as T ~ 0, we have

Ty - h '~T' [ln(1/T)]', (4.25)

T T26( g)
2 —2P (4.26)

which vanishes at T + 0. Conversely, in the ordered
phase b ( 0,

Toy model

ln~z-
lnp

(4.22)

It is instructive pedagogically to consider a simple toy
model of the disordered phase: The J s are taken to be 1
with probability p and 0 with probability 1 —p, while the
h s are all equal to e & 1. This model can obviously not
be ordered except at p = 1, but it nevertheless has all the
principle thermodynamic properties of the weakly disor-
dered phase discussed above —including the logarithmic
factors. This can be seen by observing that the number
density of connected segments —i.e., clusters —of length
g, is p~ while the splitting between the two lowest-
energy states of the cluster —"mostly up" and "mostly
down" —is of order e~; i.e., the effective transverse field is
of order e~, and the moment m is of order g. This corre-
sponds to the weakly ordered phase discussed above with
the exponent

S(T) = ln2 n(0 = T) (4.27)

and hence

(4.28)

Using

$2

sinh (I'b')
(4.29)

we have

C~ s i
.

i
cosh(bFz),

1 t' b'Fr

Fzs qsinh SF' )
(4.30)

with

which diverges as T + 0.
The zero-field specific heat C„(T) is obtained much

more easily. At low temperatures, the entropy is just ln2
per &ee cluster, yielding an entropy density of simply

Since the computations involve only finite-size sections
of the pure Ising model, the details are left to the reader
[who will, unfortunately, not be able to produce a closed
form expression for M(H) due to difficulties with the
pure Ising model].

C. Susceptibility and speci6c heat scaling

The scaling function of the linear susceptibility at low
temperatures —a potentially measurable quantity —could
be obtained in the critical region of small ~h~ and low T
by keeping track of the mean square magnetic moment of
clusters, in addition to the mean moment that was stud-
ied in Sec. III A. We have not carried this out (except at
h = 0; see Ref. 10), but there appear to be no difficulties

Fz = ln(Dz/T) (4.31)

1
C„

ln (Dz/T)
(4.32)

while for b' g 0, the duality under b ++ —b is explicit and,
for low T off critical,

2[8i- ( T1+Oi (4.33)

In general, in the weakly ordered or disordered phases,
the T2~~~ in Eq. (4.33) will be replaced by T ~'. This

D~ being a nonuniversal energy scale. At the critical
point b = 0,
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can be seen to be a direct consequence of the scaling
of lengths 8~ as T ~ and a hyperscaling form for the
singular part of the &ee energy density,

(4.34)

with 0 = ——and d = 1.

D. Scaling with nonzero H and T

If the magnetic field and temperature are both nonzero
but small, then some information on the scaling behavior
can still be obtained. . Basically, one stops the renormal-
ization at the smaller of F~ and I'8, i.e. , the larger of the
energy scales Oz ——e ~ = T and

(4.35)

with mz a typical magnetic moment of a cluster at scale
I', so that mr ~ (1nl')& at the critical point. It is im-
portant to note that OH is only defined up to a multi-
plicative coefFicient which depends on small-scale physics
and is also ambiguous because of the distribution of clus-
ter moments m. Conversely, 1~ is well defined up to
an additive constant of order unity. Even if the devia-
tions of I'~ &om ln(01/H) are ignored, I'Ir still only has
corrections that are

O(blnH) and O(ln~lnH~), (4.36)

M(H, T) = M(H, T = 0) . (4.37)

In fact, as long as

so that in the scaling function for M(H, T = 0), Eq.
(3.50), which is a function of the combination SI'Ir, the
corrections to bl'~ are negligible. (They do, however,
affect the off-critical behavior at asymptotically low fields
as discussed above in Secs. IV A and IV B.)

If I'H )) 1 z, then the thermal effects will be negligible
and

scaling functions with the arguments bl'z and bl'~ will
have nonanalyticities at 81'z ——bl'~. This is because
the scale of the crossover Rom field dominated to tem-
perature dominated is of O(1) in I, and hence O(b) and
therefore formally negligible in the scaling variable bI'.
This sharp crossover will be rounded in a way that is
technically not in the critical scaling function but can be
analyzed. .

First note that the forms of M(H, T = 0) &om the
scaling function, and M(H, T) from the linear suscepti-
bility, Eq. (4.40), valid for O~ (( T, are the same, up
to a constant multiple, at A~ = Qz if Eq. (4.35) is used
for OH. Therefore, the magnetization only changes by a
constant factor in the crossover regime. But now we ob-
serve that as long as H, T, and ~h~ are all small, almost all
the remaining couplings at O = T will be much smaller
than T so that the picture of independent spin clusters
interacting only with the applied field H is valid. If the
distribution of magnetic moments of these clusters,

Rtt(m; I') = f dP f dh R(R, I, m; I'), (4.41.)

were known, this would immediately yield the crossover
as OH goes &om (( T to )) T via

M(R, T) = nr f dm R(m;I')dm tanh, (4.42)T

with p, the nonuniversal coefBcient &om suppression of
magnetic moments on small scales that enters, e.g. , Eq.
(3.50). At this point, RM(m) is only known at the criti-
cal point in terms of the solution of a nonlinear ODE as
discussed in the Appendix of Ref. 10. But off criticality,
information on it should also be obtainable, at least nu-
merically. It is readily seen that Eq. (4.42) has the right
limits for O~ (( T and OH )) T.

We note that any experiments are likely to involve this
crossover regime and indeed will probably probe only
slightly into the regimes where I'0 and I'~ differ sub-
stantially.

O~))T ) (4.38)

this will be true. This corresponds just to I'0 —I'z )) 1,
a much weaker condition than 1H )) I'z. Note that for
Eq. (4.38) the ambiguous coefficient in Eq. (4.35) is
clearly unimportant.

The other limit

OH ((T (4.39)

M = Hy(T), (4.40)

with the susceptibility )((T) having the forms discussed-
in Sec. IVC.

Strictly speaking, Eqs. (4.37) and (4.40) imply that

is also simple. In this case, the magnetic energy mH of
the remaining clusters at energy scale O = T will be much
less than T, and so they will exhibit a Curie susceptibility
and

E. Phase diagram

A qualitative phase diagram as a function of 4p„T and
H is shown in Fig. 4, showing the behavior as T, H —+ 0
in the various regimes. Note that for b'~ small and T and
H small, but not so small that ~b lnT or ~h lnH~ is large,
the behavior will be dominated by the quantum critical
point, as shown in the figure.

The schematic RG flows in the critical region are shown
in Fig. 5, indicating the weakly ordered and weakly dis-
ordered fixed lines. In order to show even schematically
the GrifBths' points at which these lines end, it would be
necessary to include, on another axis, some information
about the lower and upper bounds (if any) on the J and
6 distributions. We have not indicated this in Fig. 5.
Note that whether or not the GriKths' points that sepa-
rate the weakly &om the strongly ordered or disordered
phases are considered true phase transitions is largely a
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r@ =—1n(BI/Hi) . (5.2)

netization is simply given by the probability that oi sur-
vives to scale

Note that Eq. (5.8) is explicitly in scaling form with the
quantity in square brackets just a function of b ln~Di/Hi ~.

In the ordered phase b & 0, the spontaneous end-point
magnetization is

This can be found by analyzing E(P; r)dP, the probabil-
ity that oz survives to scale I and is in a cluster with
ln(Q/h) = P. Since the end cluster can only join with
clusters on its right, this obeys a somewhat difFerent, but
related, RG fiow equation to fo G(P, x; 1 )dz:

M, (H, -+ 0+) = 2p, ih i
',

with the exponent

(5.9)

(5.10)

BE(P) BE
(5.3) and Hi corrections to Eq. (5.7) for small Hi. At the2[8)

critical point,

E(P, I') = E(r)~ e ~ ', (5.4)

with

OE
or= E"

yielding

E(r) = dPZ(P;r) = „, ~ u. (r) . (5.6)
0

To give the correct b-independent behavior for br (( 1,
we must have the coefficient Ca oc b, therefore, up to an
unknown nonuniversal coeKcient

the first term arising as usual &om the redefinition of P
and elimination of the end cluster with P = 0, and the
second and third terms &om the combining of the end
cluster with the one to its right.

Note that the flow equation for the conditional
distribution of P of the end cluster if it survives,
E(P)/ J dP'E(P'), is identical to that for R(P) &om
Eq. (2.15); this is a reHection of the independence of
the renormalized bonds and the equivalence of the end
spin to a bulk spin which happens to be next to a bond
with J = 0, i.e., ( = oo. Of course, the survival proba-
bility of such a spin depends on its anomalous neighbor,
as will be reflected in the difFerence between M~ and M,
but if it survives, it will be in a typical cluster.

A special solution to Eq. (5.3) can be guessed, analo-
gous to those for the bulk problem:

in(D, /H, )
' (5.11)

while in the disordered phase, for small Hq,

Mi(Hi) = pi2h
i~D) (5.12)

B. Distribution of end-point magnetization

i.e., a power law dependence of the same form as the bulk

M(H), although with a difFerent prefactor.
The scaling form for the end-point magnetization can

also be extracted &om McCoy's exact calculations. Mc-
Coy restricts consideration to a specific form of the dis-
tributions of (J;}and (h;}, the former of the form Eq.
(4.1), but with z very small, and the latter a 8' function.
He defines a dimensionless measure of the distance to the
critical point b, which corresponds exactly to our general
definition Eq. (1.36) for these distributions. The scaling
form for Mi(Hi) extracted &om Eqs. (2.15) and (2.19)
in Ref. 3 is identical to our Eq. (5.8) but with a specific
form for the nonuniversal scale factors Dq and pq. As
predicted, however, with the correct definition of 8 there
is no nonuniversal coefFicient in the scaling combination
b ln(Di/Hi). 2s

The agreement between McCoy's exact results and
those obtained by our seemingly questionable methods
provides strong support for the validity of the approxi-
mations made in this paper.

E(r) =
2qz

—uo(r) .2b
(5 7) Further support for our methods is provided by the

distribution of the spontaneous end-point magnetization

pi 2b ln(Di/Hi)
[ln(Di/Hi) I (~D)

'~ (5.8)

where pq is a nonuniversal suppression of the mean mag-
netic moment of the first spin due to small-scale physics,
and Dq 01 is a nonuniversal magnetic energy scale.

As for bulk quantities (see Appendix A), convergence to-
wards this special solution for large I' can be shown.

Equations (5.2), (5.4), and (5.7) yield a scaling func-
tion for the mean end-point magnetization as a function
of the field applied to the end spin, for b and 1/ln(1/Hi)
small,

Mi o
——Jr,

"
o+ Mi(H ) (5.13)

in the ordered phase. More generally, we consider the dis-
tribution of Mi(Hi) for small Hi and small ~b~. Since we
expect M~ to be very broadly distributed in this regime,
we study

Ai = ln(1/Mi); (5.14)

we will later consider how much information the scaling
limit of the distribution of Aq gives about the distribution
of M~ itself.

If the end-point spin remains active until scale I'~,
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then Mq will be of order unity and such cases will dom-
inate the mean Mj computed above. Since Mi is small
in the critical region, we know that most boundary spins
do not remain active down to low-energy scales. But for
nonzero IIi (or IIi ——0 but b & 0) some spins in the bulk
of the sample will remain active all the way to scale I'~
and hence have expectations of order unity. Since oi is
correlated to the other spins through the intervening ef-
fective bonds, Mi will be of roughly the same magnitude
as the correlation between oi and the leftmost spin oA
that remains active at I'@, i.e. ,

(5.15)

where for convenience we drop the z superscripts of o, 's.
Typically, o~ will be far from the boundary and Mi will
be very small.

Let us first consider a simple case in which, after the
scale I i at which the cluster Si(I'i) containing o i is elim-
inated, the next leftmost cluster S2(I'i) remains active
until r@, in this case, o~ will be the first spin in S2(I'i).
The correlation (oio~) can then be estimated pertur-
batively from the efFective bond Ji(I'i) which couples
Si(1 i) and S2(ri) at the scale I i. Since until a cluster
is eliminated each active spin in the cluster is roughly
equal to the effective cluster spin variable, e.g. , o' (I'i),
of the cluster S (I'i), we have for the simple case above

(O.io~) - exp — . Cn (5.20)

where the leftmost cluster has been eliminated nA —1
times between the initial scale I I ——0 and the final scale
I'~. This yields

Ai ——) ( (1 ), (5.2i)

der = ( with probability P((; r) Rp (r)d(dr

and

d(r = 0 with probability 1 —Rp(I')dI' . (5.22)

Then

where we have explicitly noted the elimination scales I'
at which the logarithmic bond strengths ( occur.

The probability that the leftmost remaining cluster
S (I' ) is eliminated at I is, from the independence
of remaining transverse fields, simply Rp(1 )dI'; in the
scaling limit Rp(I' ) = rp(1 ) given by Eq. (2.72). In or-
der to obtain the distribution of the sum Eq. (5.21), with
nA itself being a random variable that is not independent
of the others, it is useful to define a set of infinitesimal
independent random variabl s (d(r) with distributions

(5.16)
rE

A, = d(r,
rr

(5.23)

oioA ~ e (5.17)

&om a simple perturbative calculation. But since the
elimination of Sq at I'i implies hi ——Oi ——Ole ', we
see that

with I'I(= 0) the initial scale, and we can compute
the Laplace transform Z(z) of the distribution C(Ai)dAi
since Aq is the sum of the independent random variables.
In terms of the Laplace transform of the distribution of
d(r which is

where

(5.is) with

d(z; I') = 1+R (r)dr[P(z; I') —1], (5.24)

is distributed according to the distribution P((i, ri).
One can now guess how to generalize to the cases where

not only is Si(I'i) eliminated at I'i & r~, but the clus-
ter S2(I'2) is also eliminated at a later scale I'2 & I ~.
The cluster S2(I'2) consists of S2(I'i) and possibly extra
spin clusters to the right of this that have been joined
to it between scales I i and I'2. The correlation of active
spins in S2(I'2) to active spins in the next leftmost clus-
ter S3(I'2) that is active beyond I'2 is, by an argument
analogous to that above, of order J2(r2)/02 ——e ' with
(2 distributed as P((2, I'2).

Hence, the correlation of o'i to active spins in S3(r2)
is of order

we have

Z(z) = d(z; I')

rg
exp drR, (r) P(z; I') —1

rI

From the special solution for P((; I') = up(I')e
the Laplace transform in ( is

(5.25)

(5.26)

(o lo 3 (r2) ) (o 1(rl) o 2 (r1)) (o 2 (r2) &3(r2) )
(5.19)

u, (r)
z+up(r) ' (5.27)

In general, by iterating this procedure, we see that the
correlation between oi and the leftmost spin o~ (or
indeed any other active spin) of the leftmost cluster
S (r~) remaining at r@ will be

and using & ———uowo, we obtain

1+ z/up(I'I)8 z 1+ z/up(I ~)
(5.28)
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In the scaling limit, we expect A~ to be large which is
controlled by z small so that the initial uo(rr) )) z,
while ue(r~) will be small. We then have

corresponding to

u, (r )
z + ue(ra) ' (5.29)

L(Ag) —uo(ra)e '"' O(Aq) . (5.30)

Before discussing the result Eq. (5.30), we must exam-
ine the approximations made. The correlations between
an individual active spin and the effective spin of the clus-
ter in which it is active are reduced at low-energy scales
by a (random) factor of order unity due to nonuniversal
high-energy physics. This will add a factor of order unity
to Aq. Concomitantly, the scaling form will not be valid
for Aq of order unity, as in this limit, the high-energy
physics embodied in the uo(rl) factor in Eq. (5.28) and
the approximations made will affect the results. Thus,
the scaling distribution Eq. (5.30) is valid in the limit
A, ~ ~, u. (r~) ~ 0, and Azuo(r~) ~ any constant.
It corresponds, in a looser sense, roughly to the power
law distribution of M~..

valid essentially for M~ (& pz with pz a nonuniversal
scale factor.

In spite of these limitations, the form of the mean Mq
can be extracted, up to a nonuniversal prefactor, &om
Eq. (5.31), yielding

Mg(Hg) - up(ra) (5.32)

for small uo which is of identical form to that derived
above Eq. (5.8) by considering only the active spins.
The domination of the mean magnetization by the ac-
tive spins that we have assumed throughout this paper
is thus verified explicitly by the knowledge of the form
of distribution Eq. (5.31). Higher moments of Mq can
also be derived, roughly, from Eq. (5.31); however, they
will all be dominated by values of Ai of order unity and.
hence all be of order uo(r@). The ratios of the moments
will not be given correctly as they are all dominated by
the large Mq limit in which Eq. (5.31) is not valid.

McCoy calculated all the integer moments of the
spontaneous end-point magnetization Mi 0 in the ordered
phase. Since these calculations were performed with a
subtle exchange of limits, he did not obtain the exact
distribution. But &om his results he extracted a form of
the distribution for small negative b which is, up to an
O(1) coefficient, identical in the limit of small Mq to that
of Eq. (5.31) with uo(l ~ = oo) = 2~h~ (as it should be).
Because of information about the large Mq behavior con-
tained in the moments, McCoy also obtained a smooth
multiplicative cutoff function for large M~, which goes
beyond the simple sharp cutofF used in Eq. (5.31).

Nevertheless, the striking agreement of our universal

Prob[My(IIi)] —™0( ' —M ) ( M, ) uo[1n(Da/01))
4 p, ', )

(5.31)

results with McCoy's exact results via the computation
of different quantities (the moments) by completely dif-
ferent methods again supports the claim that the results
of the present paper are exact in the scaling limit.

VI. JUSTIFICATION
OF RESULTS AND PROSPECTS

So far, in this paper, we have presented various re-
sults &om the simple RG transformation and claimed
that many of them are exact in the critical region in
which one might expect universal behavior. In Appendix
A, issues of convergence towards the guessed special so-
lutions Eqs. (2.43) and (2.44) of the RG flow equations
are dealt with and found not to give rise to problems for
well-behaved initial distributions. In this section, we dis-
cuss the thornier problems of potential diKculties with
the RG approximation itself. We must note, however,
that at this point, the best evidence for the validity of
the approximations is the exact agreement of the scaling
function of the end-point magnetization and the distri-
bution of the spontaneous end-point magnetization of a
semi-infinite chain, with McCoy's exact results. Never-
theless, one might worry that even if the approximations
made for the end-point magnetization seem to be the
same as those for the bulk, there could be extra prob-
lems with the latter. Thus it is useful to consider the
approximations made more critically.

The presence or development of correlations in nearby
couplings in the early stages of renormalization is shown
to be unimportant in Appendix D. Potentially more prob-
lematic are the effects of spin renormalization factors that
we have not taken into account and the effects of "bad"
decimations in which the perturbative approximation is
not good. We will later show that the effects of the bad
decimations, in particular their lack of effects on the typ-
ical low-energy scale efFective couplings, can be derived
&om a transfer matrix representation of the spin chain.
But first we consider spin renormalizations.

A. Spin renormalizations

In pure systems, the spin renormalizations that occur
at each stage of, say, a momentum shell RG transforma-
tion are what give rise collectively to nontrivial power
law decay at critical points. But we have argued that
in our system these factors only give rise to a finite sup-
pression of the moments of the spins that are still active
at low energies. This can be seen to be correct &om the
structure of the perturbative RG.

When two spin clusters are combined together to form
a larger cluster, the effective spin operators of the new
cluster [(o) in Eqs. (1.18) and (1.22)) are not, in general,
simply related to the spin operators of the two clusters
&om which it forms. In particular, there will be per-
turbative suppression of the overlap of these operators
arising &om matrix elements between the ground states
of the new cluster of the old spin operators (o q). Pertur-
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batively, these give rise to suppression factors of order
1 —c &' when the strong bond Ji ——A is decimated.

In the bad cases when hi or h2 is close to Ji, the re-
duction factor will be of order unity. However, since at
low energies hi 2 &( 0 almost always, this will only occur
rarely.

Indeed, the logarithm of the geometric mean moment
suppression factor &om decimations of a given scale can
easily be seen to be of order the probability that either
hi or h2 is a substantial fraction of Ji, this is of order
Rp(I') 7 p(I'), which is just the probability of a bad
decimation. But recall that at the critical point 7p
1/I' for large I' and therefore bad decimations become
increasingly rare at low energies. Since the probability
that a bond is decimated as I' + I'+ dI' is up(I )dI' the
total geometric mean suppression factor is of order

p exp
~

—
sf uovodI'

~

(6.1)

Both at the critical point and ofF critical, we see that
the integral over I' in Eq. (6.1) converges, yielding a total
suppression factor p of order unity, arising primarily &om
small-scale high-energy physics. This is equivalent to the
observation that a given spin is likely to be involved in
only a finite total number of bad decimations. Thus the
effects of spin renormalization do not appear to cause
problems.

Note, however, that for weak randomness the crossover
length scale lv [Eq. (1.31)j is long and there will be sub-
stantial suppression and smearing of the moments of spin
clusters out to scales Z~ due to the critical fluctua-
tions of the pure system. The crossover &om the weak to
strong randomness regimes is thus clearly not accessible
by the present methods, except qualitatively.

B. E6'ects of bad decimations

Physically the main reason that rare bad decimations
do not affect the qualitative aspects of the simple RG
is because even badly formed spin clusters will have two
closely spaced lowest-energy eigenstates that correspond
roughly to the even and odd combinations of the up- and
down-spin clusters. Nevertheless, one might expect that
the deviations of the splitting of these levels from the
naive value of twice the effective field 6 on the cluster,
would invalidate some of the more quantitative predic-
tions.

In particular, one might doubt the claim that the defi-
nition of 6 in terms of the initial distributions Eq. (1.36)
yields the exponents that control the weakly ordered and
disordered phases toithout any nonuniversal prefactor and
the concomitant claimed absence of nonuniversal prefac-
tors of bI' in scaling functions.

In Sec. IID, we saw that these features arose &om the
behavior of products of many original h, / J; that appear
in effective fields at low energies. Therefore, the exact
identification of b can only be correct if the errors made
in bad decimations are somehow canceled almost exactly
at lower-energy scales. But, in general, one would expect

that a better treatment of the bad decimations would
alter the distributions of the efFective couplings at inter-
mediate scales —and introduce short-range correlations
in them both of which would then, like the general per-
turbations discussed in Appendix A, lead to some change
in the low-energy parameter b. For many of the random
antiferromagnetic spin chains discussed in Ref. 10, this
will indeed be the case. But the exact solvability of the
transverse-Geld Ising system, in particular its equivalence
to a free fermion system, yields severe extra constraints
that we now briefly discuss; these are enough to yield b

that is exactly given by Eq. (1.36).

C. Transfer matrices

Shankar and Murthy have analyzed the McCoy-Wu
model by transfer matrix techniques, transferring in the
random direction which corresponds to the space direc-
tion for the quantum transverse-Geld chain. This corre-
sponds to writing the Hamiltonian as a sum over local
terms quadratic in fermion operators which are related,
via nonlocal ordering operators, to o. and o . . The full
transfer matrix is then factorizable into an outer product
of 2 x 2 transfer matrices at different frequencies that cor-
respond to the one-particle energies of the free fermion
system. Although spin correlations are hard to obtain
due to the nonlocal ordering operators, the zero-field
thermodynamics and correlations of, e.g. , transverse spin
components 0 . can be obtained at least in principle.

In Appendix E, we show that the transfer matrices
can be cast in a form suitable for our decimation RG.
The decimation procedure then corresponds to multiply-
ing the &equency-dependent transfer matrices in a non-
trivial order: When, e.g. , a bond is decimated, the corre-
sponding transfer matrix is multiplied by its neighboring
matrices that correspond to the transverse fields on ei-
ther ends of the bond. This order of multiplication keeps
the low-&equency behavior of interest remarkably sim-
ple; indeed for good decimations the form of the product
matrix is essentially exactly that corresponding to an ef-
fective field on the resulting spin cluster.

Rather remarkably, as shown in Appendix E for a par-
ticular case, it appears that errors that occur due to bad
decimations cancel out of both the effective couplings and
the form of the low-&equency product transfer matrices
at much lower-energy scales. We conjecture that this is
true generally.

It is this remarkable property that causes the form of
the low-energy spectrum to be very well described in
terms of effective couplings derived &om the naive ap-
proximate RG. The agreement of the exponent 2b of the
mean end-point magnetization in the weakly ordered and
disordered phases between McCoy's exact results and
that obtained from our approximations Eq. (5.8) pro-
vides strong support for this conjecture. We leave its
possible more general verification for future work.

Recently, Mikheev has developed an exact RG treat-
ment &om the "&equency" dependence of the transfer
matrices by a quite different approach. The qualitative
behavior that he finds is similar to that found here —in
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particular the exponent v and the structure near criti-
cality in terms of locally ordered and disordered regions.
Although spin correlations and much of the more detailed
structure found here have not been obtainable, at least
so far, &om Mikheev's method, the combination of this
with our approach holds promise for further progress.

The behavior of spin correlation functions is much
more difficult to extract &om fermions due to the or-
dering operators that relate spins to fermions. Neverthe-
less, it appears that the approximate ground state wave
functions that correspond to our picture of spin clusters
may be approximate eigenstates of certain combinations
of the ordering operators. If this is the case, then it may
even be possible to obtain —or at least justify —some of
our results for spin correlations by use of fermion tech-
niques. But this, also, we must leave for the probably
rather more distant future.

Overall, it appears that the combination of the above
arguments and the agreement with McCoy's results does
rather strongly suggest that our results for the asymp-
totic critical region are indeed exact.

sample, while the other half will be more weakly coupled.
Since the randomness will couple asymmetrically to the
two phases, the &ee energy cost of a sample that "thinks"
that it is ordered to fluctuate into the disordered phase
is rI" I"~ . Thus only a small &action —those with
anomalously small s of order T/L ~2 of—the samples will
be "uncertain" as to which phase they are in. Almost all
samples for large L will therefore either be almost corn-
pletely disordered or be almost completely ordered with
very slow fluctuations —with a rate ~L,—between the two
symmetry related "up" and "down" states. Since a flip
&om up to down in the ordered phase requires passage
of a domain wall, with interfacial &ee energy density 0.,
through the sample, the rate will have an Arrhenius form:

(7.1)

If the temperature is changed on a single sample, then
the width ATq of the temperature range over which the
sample will change &om mostly ordered to mostly disor-
dered is

LTg L (7.2)
VII. DISCUSSION AND EXTENSIONS

In this paper, we have focused primarily on the com-
putation of physical properties of random transverse-field
Ising chains in the critical region, with digressions to in-
terpret physically some of the results. In this last section,
we briefly discuss how the RG analysis of this paper can
be viewed in a more general &amework —in particular by
considering the origins of the peculiar scaling properties.
We then consider extensions to other one-dimensional
random quantum systems, as well as possible applications
to the understanding of random quantum transitions in
higher dimensions, and finally draw some general lessons
about random systems.

since the &ee energy difFerence between the phases is lin-
ear in T —T,. But if the distribution of samples is consid-
ered and, say, the mean square magnetization measured,
it will, &om the above discussion, cross over from or-
dered to disordered only over a much wider temperature
interval

(7.3)

One can invert Eqs. (7.2) and (7.3) to define two distinct
6nite-size characteristic lengths, one of them

(7.4)

describing the rounding of the transition in a typical sam-
ple, the other

A. Nature of critical fixed-point
and renormalization-group Qows (T —T,)

" with v = 2/d (7.5)

The critical RG fixed point that we have studied is evi-
dently very strange. This is suggested by the extreme dif-
ference between typical and average quantities, the scal-
ing relating logarithms of &equency to lengths and the
extremely broad distribution of energy scales, the exis-
tence of two different correlation length exponents (v and
v), and the asymptotically sharp division at low energies
of the spins into "active" and "&ozen."

Some of these features are vaguely reminiscent of
things that occur near to first-order phase transitions in
classical systems with randomness, which we now briefly
summarize. Consider cutting large finite-size samples of
volume L" &om an in6nite d-dimensional system at a
6rst-order transition at temperature T, between an or-
dered phase with, say, a broken Ising symmetry that does
not couple to the randomness, and a disordered phase.
In a collection of such samples, roughly half will be more
strongly coupled —by amounts e I +2 per unit vol-
ume &om the central limit theorem —than the average

describing the rounding of the distribution of samples.
This latter length ( must satisfy the general bound of
Chayes et al. for probabilistically defined 6nite-size cor-
relation lengths in random systems,

(7.6)

which is thus saturated for a 6rst-order transition at
which the randomness couples asymmetrically.

In a RG &amework, the reason for the anomalous be-
havior described above is that first-order transitions are
described by fixed points at which the fluctuations that
take the system &om one phase to another are danger-
ously irrelevant. Formally, there are no fluctuations at
the 6xed point, since as I ~ oo all samples will act ei-
ther fully ordered or fully disordered. However, physical
quantities such as certain susceptibilities, specific heats,
and truncated correlations vanish at T = 0 and thus
one cannot set T to zero in computing these properties.
The dangerously irrelevant fluctuations will give rise to
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anomalous scaling of various quantities and to several
different characteristic lengths. "Activated" dynamic
scaling of times with lengths as in Eq. (7.1) is also char-
acteristic of the behavior near such fluctuationless Gxed
points.

In classical random-field Ising magnets —in which the
random 6elds couple to the order parameter —the critical
fixed point is at zero temperature with the random varia-
tions dominating the thermal Buctuations at long length
scales. This causes, for example, violation of hyperscaling
laws, the existence of two different exponents for corre-
lations at criticality, and broadly distributed time scales
at long-length scales with24

The behavior of our quantum system is both far richer
and now far better understood than the somewhat re-
lated random classical systems with activated dynamic
scaling. 2 Off criticality, rather than just Bowing to sim-
ple ordered or disordered Gxed points, the RG Bows of
the random Ising chain go to low-energy behavior char-
acterized by ordered and disordered fixed tines with con-
tinuously variable exponents. Asymptotically close to
criticality, the Bows eventually go to the bottom of these
fixed lines as shown schematically in Fig. 5; these, like
the critical fixed point, also correspond to points with
very singular scaling.

in~I. I+, (7.7) B. Extensions

which is a more precise statement of the scaling Eq. (7.1)
when the coefFicient c is random.

Several features discussed above are reminiscent of
some of the properties of our random transverse-Geld
Ising chain critical point. In particular, the observation
that at low energies near the critical point almost all
clusters are active with only very small effective fields,
or &ozen with negligible fluctuations. in their magneti-
zation, is reminiscent of the behavior near the random
classical first-order transitions discussed above. Further-
more, the quantum dynamics, the rare flipping of spin
clusters, is exponentially slow at long-length scales with
broadly distributed time scales

—lnJL, - L+ (7.9)

with

g&D =ps =1/2. (7.10)

This should probably have been expected for a quantum
system as the dynamics and energetics are inextricably
linked in contrast to classical systems, for which the static
and dynamic exponents are often independent.

(7.8)

at the critical point. This suggests that the quantum Buc-
tuations from one phase to the other are asymptotically
absent at the fixed point; i.e., in a sense, Planck's con-
stant h, which controls quantum fluctuations, is danger-
ously irrelevant with the different parts of the low-energy
effective Hamiltonian almost commuting with each other.
The dynamics of the spin clusters is, of course, still con-
trolled by the remaining quantum Buctuations.

The Bipping of a spin cluster proceeds by tunneling of a
domain wall through the cluster with a rate proportional
to a typical effective Geld, h, with lnh, I' L ~, at
length scale L. This behavior and the resulting scaling
of logarithmic frequency and logarithmic energy scales
with powers of length scales we dub "tunneling dynamic
scaling" by analogy with the "activated dynamic scaling"
in classical systems controlled by fluctuationless Gxed
points. Note that the exponent @~ controlling the dy-
namics via ln71, L~~ is the same as the exponent con-
trolling the static energy scaling of the couplings that
maintain the order:

1. Wanseerse field -Ising chains

In addition to the behavior discussed in this paper-
and extensions of it to, for example, higher spin corre-
lations and higher moments of the two-spin correlations,
both of whose scaling forms can readily be guessed
one could also study the behavior of correlations in real
or imaginary time. The decay of correlations in imagi-
nary time is unphysical for the quantum system but cor-
responds to the decay in the uniform direction of the
McCoy-Wu model and is thus natural to measure nu-
merically; it could also be explored by the present meth-
ods. The distributions of the local autocorrelation in
imaginary time w will exhibit so-called "multi&actal"
behavior2s which is not much more here (and in many
cases) than the observation that the basic variable is in'
rather than 7.

Real time or real &equency properties are more inter-
esting physically. Again, response and correlation func-
tions at low &equencies ~ in the critical regime can prob-
ably be extracted. The potentially problematic "hy-
drodynamic" regime cu (( T is the most interesting.
Whether the &ee Fermi nature of the Ising system will
substantially simplify the physics and the computations,
or whether the complicated connection between the spin
and Fermi operators will make dynamic spin correlations
hard to analyze, we leave as an outstanding open ques-
tion.

After this paper was completed, an unpublished pa-
per was received that analyzed the McCoy-%'u model
numerically, speci6cally studying the finite-size scaling
properties of systems of length L & 16 in the spatial
direction as a function of their "length" L in the imagi-
nary time direction. Crisanti and Rieger compute prop-
erties at the (exactly known) critical point, using rel-
atively strong randomness so that the crossover length

2. From Gts of various quantities they quote dy-
namic scaling exponents z in the range 1.5—1.75 rather
than the infinite value of z expected &om the RG flows
and the exact solution. Nevertheless, other data they
present seem to indicate an apparent z which increases
with increasing strength of randomness. Thus it appears
likely that in the range of sizes studied, their systems are
in a crossover region in which the apparent z should in-
crease with system size. Nevertheless, &om the scaling of
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the absolute value of the magnetization, an estimate of
P/v = 0.18+ 0.01 is obtained, seemingly in good agree-
ment with the predicted value of (3 —~5)j4 0.19.

Resolution of the apparent discrepancy between the
behavior found numerically for small systems and the
results of the present paper we must leave for future
work. In order to analyze these and other numerical
simulations of random quantum Ising systems it would
also be useful to compute distributions of properties of
systems with finite spatial and temporal extent. This
should be straightforward by the present techniques. At
this point, it should be noted that the singular dynam-
ical scaling with lnL L~~ is a direct consequence of
the exact solution ' and does not depend on the approx-
imation in the present paper. Thus the failure of Ref. 26
to observe singular dynamic scaling in small-size numer-
ical simulations makes one worry about the analysis of
higher-dimensional systems, in particular the transverse-
field Ising spin glass discussed below.

As mentioned earlier, one might also study the weak
to strong randomness crossover which may be partially
analyzable —along with other properties —via transfer
matrices.

More generally, one should ask how universal are the
critical properties found here for random transverse-field
Ising chains. Further neighbor or more complicated in-
teractions, correlations among the couplings, and certain
types of extra degrees of &eedom should result, at least in
some parameter ranges, in a para-to-ferromagnetic tran-
sition that is in the same universality class as the simple
nearest neighbor model studied here. The critical scaling
functions and the other qualitative features should then
still be valid. But the extra information that we obtained
&om the exact solvability —in particular the exact nor-
malization of b and the concomitant absence of a nonuni-
versal prefactor on the scaling variable p = bt'—will no
longer be valid.

Note that a common mechanism for changing the na-
ture of phase transitions by them becoming Grst order
cannot occur here due to the general impossibility of
first-order phase transitions in random one- (and two-)
dimensional systems in the presence of randomness that
couples asymmetrically to the two phases (here para and
ferro).

2. Other one- dimensional systems

Renormalization-group transformations like those used
in this paper can be used to treat other random quan-
tum systems in one dimension. The crucial ingredient
for the validity of the technique is the development of an
asymptotically infinitely broad distribution of couplings
at low-energy scales. Then, at any given low-energy scale
0, almost all effective couplings will be either much larger
than 0 and hence "satisfied" or much smaller than 0 and
hence treatable perturbatively.

A variety of random antiferromagnetic spin chains have
been analyzed in Ref. 10, including ones which are not
even partially exactly solvable. Of particular interest,
for our present purposes, is a transition in a spin chain

system &om an XY "random singlet" phase to an Ising
antiferromagnetic phase in the presence of a conserved
quantity, the total magnetization in the uniaxial direc-
tion. Not surprisingly, it is found to be in a different
universality class than the Ising transition with no aux-
iliary conserved quantities analyzed here.

Some of the antiferromagnetic chains are related to in-
teracting spinless fermions with random hopping which
can also be studied. The most interesting possibility
would be to analyze the low-&equency transport prop-
erties at low but Gnite temperatures, with ~ (( T.
Whether the separation of scales and the forrnal irrel-
evance of interactions will enable progress to be made
in this regime —where one might expect variable range
hopping —is an intriguing question. In any case, some
new tricks will probably be necessary to handle the in-
teresting very long-time behavior.

8. Higher dimensions

Some of the most intriguing open questions are
whether or not various physical effects found here in one
dimension can persist in higher dimensions. One example
is already known: The random singlet phase of random
antiferromagnetic Heisenberg spin-2 chains was first in-
vestigated by Dasgupta and Ma and more extensively in
Ref. 10. Formally, it is quite similar to the critical point
of the random transverse-field Ising chain. But a similar
random-singlet phase is also known to exist in higher di-
mensions, in particular, as shown by Bhatt and Lee, in
the insulating phase of Si:P.

Here we are more interested in the behavior near ran-
dom quantum phase transitions, and so we focus on the
behavior of random transverse-Geld Ising ferromagnets in
dimensions d ) 2, potentially the simplest random quan-
tum system. We Grst ask whether the apparently "split"
nature of the zero-temperature transition which occurs
in 1D can occur in d ) 1. The answer to this is certainly
yes: For transverse-field distributions which are strictly
in the disordered phase at zero temperature, there will
be a range of parameters in which at least some deriva-
tive of the magnetization M with respect to an ordering
Geld H will diverge. This is the hallmark of GriKths'
singularities in a random quantum Ising system and can
be seen simply as follows.

As long as the smallest h's, say, h, are sufBciently less
than some (lattice-dependent) multiple of the largest J's,
say, J+, such that a system consisting solely of J+ bonds
and h fields would be in the ordered phase, then M(H)
will exhibit a power law singularity at H = 0. This can
be seen by a simple generalization of the argument in
Sec. IVB. The probability that a compact region of vol-
ume L" is strongly enough coupled to act as if it were

L ci

in the ordered phase is at least of order p for some

p ( 1, since roughly each coupling in the region must
lie in a particular favorable range. Such a quasiordered
region will behave like a spin cluster with an effective
field that collectively fIips it of magnitude hL, e for
some e. In anisotropic classical language, this is just a
statement that the interfacial free energy in the "time"
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direction between an "up-" and a "down"-spin cluster of
Ldarea I" is of order L" Quantum mechanically, the e~

can be thought of as arising &om L"th-order perturba-
tion theory which is the lowest order that couples the
symmetric and antisymmetric states of the spin cluster.
At zero temperature, a magnetic field will align the clus-
ter if H & hL, . There will thus be a singular part of
M(H) which can be crudely estimated to be

and probability

—lnpL, L/( Lh (7.17)

M H (7.18)

Because pl, vanishes much more slowly than hL, for large
L near the critical point, the dominant of these rare re-
gions give rises to a strongly singular magnetization

M„„s(H) p dL, (7.11)

with the length scale LH determined by

Ld~ ~H. (7.i2)

Equation (7.11) is just the contribution from the rare
large (L ) LIr) almost fully aligned spin clusters. Ignor-
ing logarithms, this yields

The difFerence between the h in Eq. (7.16) and b'2 in Eq.
(7.17) that gives rise to Eq. (7.18) is a reHection of the
anomalous scaling at the critical fixed point, in particular
of the dangerous irrelevance of quantum fluctuations.

In higher dimensions, we are naturally led to consider
rare regions which are similarly in the scaling distribu-
tion, i.e., which occur with probabilities

(7.i9)
M.;„s(H) H", (7.i3)

with

lnp
K = )inc

(7.i4)

so that for L ( they are not rare. Such regions can act
as if they are in the ordered phase by an amount

(7.2O)

as in Sec. IVB. Physically, the important open question
is whether or not, for d ) 1, there are locally ordered
regions that are sufficiently common (not too small p)
and sufficiently well ordered (small e) that some low,
and hence measurable, derivative of the magnetization
diverges, i.e., if there exists a class of rare, quasiordered
regions with r(p, e) small.

Very recent numerical studies of random transverse-
field Ising spin glasses have found that the leading nonlin-

8 Mear susceptibility y3: g~g which is related to the con-
ventional spin-glass susceptibility in classical systems
does indeed diverge at zero temperature in the disordered
phase, near but away from the transition in both two2~

and three dimensions. However, the linear susceptibil-
ity remains finite in three dimensions although it di-
verges in 2D. One might thus be guardedly optimistic
about experimental verification of a power law M„„g at
low temperatures.

In one dimension, we have shown that K becomes
smaller and smaller as the transition is approached, van-
ishing as r b. But this is caused by properties of
the rare but not So rare —regions at the critical point.
It is also associated with the anomalous tunneling dy-
namic scaling in 1D. Physically, as discussed in Sec. IV B,
the rare regions which dominate for b small and posi-
tive are in the scaling distributions —albeit in their tails.
These anomalously ordered regions of size L )) ( 1/h
are spin clusters that behave as if they are a distance
h„- —cb into the ordered region [with c = O(l)j and
have magnetic moments of order

and have efFective fields, i.e., flipping rates

—lnhL, b"L" . (7.21)

Here p is most likely to be the exponent for the interfacial
tension of the ordered phase for an interface normal to
the "time" direction in the equivalent classical system. If
the scaling at the critical point is conventional, then the
analog of the Widom scaling law would imply

p=dv. (7.22)

p(dv (7.23)

as in 1D, then r will vanish as

gdv —p, (7.24)

near the transition and any derivative of M(H) will di-
verge. This would probably also give rise to tunneling
dynamic scaling associated with the slow flipping rates
of the clusters of size of order (,

(7.25)

This would then result in v saturating to a fixed and
(in the absence of domination by much rarer regions)
universal value as b —+ 0+.

Thus we see that the vanishing of K, at the critical point
is, not surprisingly, closely tied to anomalous scaling. If
this occurs because

m LMp(b' = b„) ( b)~, —(7.i5)
i.e. , a scaling of times with length scales in the critical
regime of

efFective fields of order in~I, L+, (7.26)

—lnhL, Lb, (7.i6) with
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(7.27)

Note, however, that scaling laws such as Eq. (7.27),
which work in 1D with p = 1, v = 2, and g = z, may be
too naive in higher dixnensions even if tunneling dynamic
scaling does occur.

The natural alternative, probably associated with K ~
const, is conventional dynamical scaling in which rare re-
gions would dominate less of the physics and there would
be a dynamic critical exponent z, with

L (7.28)

and scaling functions of, for example, u$' and H/~b~+
rather than the blnu and blnH that appear in 1D.
Whether y diverges before the transition would then de-
pend on the sign of K —1.

At this point, the numerical computations on
transverse-field Ising spin glasses in two and three di-
mensions seem to be more consistent with conventional
scaling with a reasonably small value of z ~ 1.5. ' But
the methods of analyzing these have not yet been tested
in the 1D system for which the behavior is now known,
and more work is clearly warranted. Indeed, the appar-
ent problems in the analysis of Ref. 26 in 1D discussed
above suggest that a substantial degree of caution is in
order.

A priori, it does not seem inconsistent that there might
be random quantum transitions in higher dimensions
that have some of the more exotic features of the 1D
transverse-field Ising system. If so, then the development
of order could be viewed as a kind of quantum percolation
of larger and larger ordered clusters. This might suggest
possible approximate RG treatments of such a system in
a way which would, hopefully, indicate its own failings if
this scenario were incorrect.

C. Conclusions

In this paper, we have seen that a simple approxima-
tion which contains some of correct physics leads to a sur-
prising amount of information and understanding —much
of it exact—about one of the simplest realistic random
models. Unfortunately, physically transparent, control-
lable methods for treating other random systems have
been sorely lacking; rather the field has been dominated
by formal calculations on sometimes pathological models,
particularly via "replicas, " and phenomenological scaling
arguments, with occasional rigorous results on which to
attempt to build foundations.

Huse and the present author, along with others, have
developed quite a general picture for understanding, phe-
nomenologically, the properties of phases and phase tran-
sitions in random systems that are governed by zero-
temperature fixed points. ' 4 3 Unfortunately, many of
the features that emerge —doxnination of much of the
physics by rare regions, activated dynaxnic scaling, hy-
persensitivity of states to changes in parameters, and
nonequilibrium dynamic eKects controlled by extremely
broad separation of time scales —have not been derivable
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APPENDIX A:
CONVERGENCE TO THE SPECIAL SOLUTION

In this appendix, the convergence of general well-
behaved initial distributions to the special solutions, and
hence the scaling solutions analyzed in the main text,
is discussed. Linear stability about the special solutions
is analyzed first, using the behavior at the critical point
as a detailed example, with the more general behavior
only summarized. This naturally leads to the emergence
of certain singular distributions which fall outside the
universality class discussed in the text. Finally, the non-
linear development of the exponential tails of distribu-
tions, crucial for the asymptotic low-energy properties
away &om criticality, is analyzed.

1. Eigenperturbations at the Bxed point

In Sec. IIA, the eigenperturbations for the rescaled
distributions of the logarithmic bonds and logarithxnic
fields Q(g) and B(8) about the fixed point,

B*(8)= e (AS)

were given. Defining the linear perturbations

(A2)

by controlled methods on any but toy models. Thus the
analogs of some of these eKects that occur in the quan-
tuxn dynamics of the random transverse-field Ising chain
should lend substantial additional credence to their exis-
tence in models that are not analytically tractable. Per-
haps one might hope that, as has often been the case
with exactly solvable models, insights from the solution
of the random transverse-field Ising chain will lead to bet-
ter approximate —or even systematically controllable—
methods for treating other random systems.

For the present, we close with a challenge to those who
seem to believe that replicas are the route to all the inter-
esting statistical mechanics of random systems: to derive
any of the exotic properties of the random transverse-
field Ising chain by such methods.
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6 = B —B*,
the linearized RG Bows are given by

(A3)
a(0)/ A+

/

= ap/ 2—
1 —A) E 1 —A

(A13)

with

Bb BbI' = b + (0 + 1)—+ 2b Cs B' + qp8e
'

BI
+e (bp —qp), (A4)

I' = q+(@+1)—+2q I3 Q*+bpge "+e "(qp —bp),
BQ OQ

OI" 0'g

from the subsidiary condition Eq. (A9). But this solution
can only satisfy a(0) = ap if A = 2. This corresponds to
an unphysical perturbation of a non-normalizable proba-
bility distribution q& ~ = e "a~ ~ = aoe " which does not
have norm 0 as it must for Q to have norm 1.

For A g 1 or 2, we must add in an admixture of the
other independent solution to the differential equation.
This is

bp =—b(0),
$(1 + g)A

—2

a~(rI) = (1 —A —q) d(
1 —A— (A14)

qp =—q(0) . (A5) the integral in the principle-part sense. For large g,

The duality is reflected in the symmetry of Eq. (A4)
under interchange of q and b. We can thus restrict con-
sideration to perturbations which are symmetric, q = b,
or antisymmetric, q = —b, under this interchange. We
analyze here the antisymmetric perturbations. The sym-
metric perturbations can be handled similarly.

We thus look for eigensolutions to Eq. (A4) with b =
—q with eigenvalue A, i.e. , with

q(g; I') = q(g)I' (A6)

It is convenient to work with the function

a(~) = q(n)e" = q(~)IQ*(~) . (A7)

Differentiating the resulting eigenequation for a, we ob-
tain

a Qa(1+g) + —(—A+ 1 —g) + a —ap ——0
877

(A8)

da—Aa(0) +. — + 2ap ——0 .
CL g=O

(A9)

and the subsidiary condition for the undifferentiated
equation at g = 0,

a~ e"q
A —3 (A15)

q = b = (g —1)e (A16)

The nature of the RG operator linearized about the Axed
point, Eqs. (A4), will become clearer from the analysis
below: A general perturbation will be projected onto the
unique stable and unstable eigenperturbations with the
remainder an exponentially rapidly decaying perturba-
tion. Thus the special solution Eqs. (2.51)—(2.54) which
contains both the irrelevant and relevant perturbations
will turn out to be strongly stable.

Thus, for A g 1, 2, there are no eigenperturbations with

q(q) decaying exponentially. Indeed, by use of the bound-
ary conditions Eq. (A9) and a(0) = ap, and the proba-
bility normalization condition that jp e "a(q) = 0, one
can show that there are in fact no other eigenperturba-
tions at all.

For the solutions symmetric under q ++ b, a similar
analysis yields exactly one eigenfunction with eigenvalue
A = —1, corresponding to irrelevant perturbations on the
critical manifold; this has eigenfunction

The boundary condition at g = 0 is

a(0) = ap, (A10)

but for the time being we ignore this and let a(0) take
any value. By expanding in g, a simple solution for A = 1
can be found,

a = a~'l = a, (1 —g), (All)

a = ap+ ra(0) —ap
i

1—- ( g
1 —A) ' (A12)

with

which satisfies a(0) = ap and corresponds to the one rel-
evant perturbation Eq. (A12), the flow away from criti-
cality parametrized in the special solution by b.

For A g 1, there is similarly a simple solution to the
difFerential equation

2. General initial conditions at the critical point

To give a better understanding of the convergence to
the special solution, we specialize to the critical man-
ifold and consider only symmetric perturbations. It is
more instructive to work with the unrescaled distribu-
tions, writing

(q; I') = ~(r)e-&"('l + p(q; r)

a(P;I') = ~(r)e-~ ~'l+r(P;r), (A17)

(A18)

where we have dropped. the subscript 0 on u and w that
occurs in Sec. IIB, as we are not yet considering the
distribution of lengths. The special solution about which
p and r are perturbations is, at the critical point,
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with

—'ll7 ) (A19)

so that

1
'tl =7 C+ I' (A20)

Symmetric perturbations have

(A21)

and we hence work just with p with

po = p(0) (A22)

aild

= —+ 2u p e "+ pou (e&p ~& 2 —gu ~ —qu (A23)

p = a(I')e "~ ~ + b(I')e ~ ~ l + c(I')ge ~", (A24)

which &om Eq. (A23) yields differential equations for
the coefficients a(I'), etc. , which can be solved.

In particular, we see that

In principle, one can solve Eq. (A23) by Laplace trans-
forming in (, but the presence of po complicates the mat-
ter and makes the analysis rather complicated. It is, nev-
ertheless, instructive to look for solutions which are sums
of exponentials. Because of the special role of e ~", we
look for a solution of the form

turbation plus other parts that decay exponentially in l'.
In the rescaled variables, these residual parts are very
strongly irrelevant with, crudely, "eigenvalue" A = —ao.

From solutions of the form Eq. (A24), a solution to
Eq. (A23) can be constructed for general initial condi-
tions pr((). It is rather complicated, and we will not
display it here. It consists of two parts: first, the ir-
relevant perturbation p with a coefFicient that depends
only on the first three moments of pp, and second, parts
which depend only on the tail of pr(() for ( ) 1; note
that these must exist as there will still be original cou-
plings remaining at scale I' that originally had ( ) I .
The second kind of parts thus decays with I' in the same
way as the decay of pr with (, i.e. , exponentially for well-
behaved distributions pr that decay exponentially in (.
As long as the third moment of py is finite, the p part
will thus be the most slowly decaying part. On the other
hand, if the third moment of py is infinite but the sec-
ond moment finite, e.g. , p(g) &,+ for large ( with
0 ( cr ( 1, then the perturbation will decay (relative to
the special solution) as 1/I' rather than the 1/I' de-
cay associated with generic irrelevant eigenperturbations
p ~

If the second moment of p is infinite, then the criti-
cal point is in a diferent universality class. This should
have been anticipated from the qualitative discussion of
the Introduction and the use there of the central limit
theorem for sums of (, .

The conditions for the validity of our results are thus
that

(lnJ)2 ( oo

(A25)
(lnh)' ( oo . (A28)

so that a general exponential perturbation e "~ produces
under renormalization only itself and terms like those of
the special solution which decay more and more slowly
in ( as I' increases. The coefficient a(I') and the magni-
tude of the feeding of this into b(I') and c(I') all decay
as e "/ "~ ~ e " for large I'. ~ith the normalization
condition that fz pdg = 0, the b and c terms appear in
the combination

It is amusing to note that in the case of distributions of J
and h, that are bounded away &om zero and infinity, the
details of the original distribution are completely forgot-
ten below some finite-energy scale, for the self-dual case
at the critical point that we have analyzed here. In this
case, the only features that affect low energies are the
first three moments of ln J.

p = —u'e &" +u'qe &" (A26)
3. General convergence

for large I' plus terms decaying as e "~. By inspection,
we see that, &om Eq. (A19),

~q( e '") (A27)

and therefore a perturbation proportional to p is just a
shift in C in Eq. (A20), i.e. , a shift in the origin of I'.
In the rescaled variables g = (/I', etc. , p corresponds
exactly to the irrelevant eigenperturbation Eq. (A16)
with eigenvalue A = —1; this eigenvalue arises &om the
fact that, for a typical g 1/u, p is of order u 1/I'
times the scaling solution ue ~ e ~~ /I'.

Thus an exponentially decaying perturbation results
for large I' in a finite amount of the irrelevant eigenper-

The behavior of the convergence to the special solution
that we have discussed above for the coupling distribu-
tions on the critical manifold holds much more generally
as can be shown directly by analyzing linear deviations
[p, rj &om the special solutions for the joint distributions
of couplings and lengths P((, E), R(P, E). We are also in-

terested in the convergence of the function G(P, y) to the
special solution Eq. (3.17). Since this obeys a linear RG
equation (3.16), we are thus interested in its general so-
lution. This can be analyzed by methods similar to those
used above at the critical point and leads again to rapid
convergence to the special solution; we will not discuss it
in detail.
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p = a(r, v, I') e "~+b(r, v, I')e "~"l~+c(r, v, I')(e

r" = h(r. , v, I')e ~ +j (r, v, I') e

+k(~, v, r)pe
—~'l~, (A29)

where we have suppressed the y dependence and u(I')
and v(I') are given by the special solution Eqs. (2.51)
and (2.52) in terms of C, D, 8, p, and I'. For each (I'
independent) r and v, an independent solution of the
form Eq. (A29) can be found with a, 6, c, h, j, and
A: obeying ordinary differential RG How equations in I'.
[Note that a and b here should not be confused with the
coefficients used in Eq. (3.17).]

The perturbation associated with C corresponds to
the irrelevant perturbation at the critical point and it
vanishes generally as 1/I' (relative to the special solu-
tion). Conversely, the perturbation associated with h cor-
responds to the relevant perturbation at the critical point
and thus grows as I' away &om criticality, as it should.
The perturbations associated with p and D, which vanish
at y = 0, are, in a sense explained below, also irrelevant
except for a portion of p(y) which is "redundant. "

The residual perturbations, i.e. , those that are not as-
sociated with the special solution, decay exponentially as
the slower of e ~"+ ~~ or e ~" 2~~ . At y = 0, corre-
sponding to the distributions of just ( and P, this implies
that perturbations will only decay if

]c, +2bp & 0

and

V —28p (A30)

These conditions are very physical: In the disordered
phase, a perturbation with a more slowly decaying tail
in p than the I' + oo special distribution

R(P, y = 0; I' + oo) = ~oe ~ ', (A31)

&o(I' m oo) = 2bo ) (A32)

Here we focus on the behavior of linear perturba-
tions &om the special solution for the Laplace transforms
P(g, y) and R(P, y), noting that each y is independent.
The structure is similar to that discussed above for con-
vergence of P(() = P((, y = 0) at the critical point. But
here, for each y, we have a four-parameter special solu-
tion with C(y), D(y), h(y), and p(y) [or, equivalently,

A(y) = gp(y) + 82(y)] rather than the one parameter
C = C(y = 0) of Eq. (A20) for the y = 0 distribu-
tion at the critical point discussed above. We thus try
to express a general linear perturbation as the sum of
four perturbations which correspond to derivatives of the
special solution [P„R,] with respect to C, D, h, and p,
respectively.

We thereby arrive at a general linear perturbation ex-
pressed as linear combinations with different K and v of
solutions of the form

will clearly change the behavior at low energies as the
remaining fields will be dominated by the residual ones
with large P originally that have not yet been decimated.
Similarly in the ordered phase the condition is on the
bond distribution Eq. (2.44) with uo(I' ~ oo) = 2~b'o~

for bp ( 0. Note, however, that as long as K and v are
positive, even if the conditions Eq. (A30) are violated,
the critical behavior will not change; only off critical with
~ho

~

sufficiently large will the behavior of the weakly dis-
ordered and/or weakly ordered phases change. Thus any
power law tail for small couplings in the initial distribu-
tions of bonds or 6elds will yield the same critical behav-
ior.

We now consider the distributions of bond and cluster
lengths. In the low-energy regime under study, we are in-
terested in long-length scales which will be dominated by
small y. Indeed, in Sec. II C we argued that the scaling
solution Eqs. (2.65)—(2.73) only depended on one param-
eter of the y-dependent quantities C, D, p, and h beyond
their values at y = 0: This is simply the coeKcient pq of
p(y) for small y, p(y) = p~y+ O(y ), as in Eq. (2.86).
The perturbations which correspond to all the y depen-
dence of C, D, p, and b except pi are thus irrelevant at
long-length scales by inverse powers of the typical length
scale Er = 1/nz.

The parameter pq sets the nonuniversal coeKcient of
the overall length scale; it has no other effect and is thus
termed "redundant. " Perturbations in pq can thus be
scaled away by rescaling y and thereby all lengths.

A general solution for [p, r] can in principle be con-
structed from Eq. (A29) by contour integrals over imag-
inary K and v which can be deformed to yield only real
parts of v and v that are greater than or equal to those
parametrizing the decay for large ( and P, respectively,
of the initial perturbations. With the exceptions of the
special cases discussed above, all perturbations are irrele-
vant except for the shift in the distance b &om criticality
and a change in the overall length scale. In general, there
is thus rapid convergence of initial distributions towards
the special solution.

4. Development of exponential tails

The formal convergence of linear perturbations about
the special solution analyzed above does not directly tell
us the degree of uniformity of this convergence, especially
not if the initial conditions differ strongly in some regimes
&om the special solution. Of particular importance is the
development of the exponential tails in the distributions
of P, (, E, and m which dominate the low-energy physics
off criticality. A simple physical argument shows that
these tails develop immediately, as soon as any arbitrar-
ily small but 6nite &action of the couplings have been
decimated.

Consider increasing I' by a small amount (from its ini-
tial value of zero), in particular by less than the widths
of the initial distributions RI and PI of P and (, re-
spectively. With the first decimation of a bond, there is
some probability that the new effective bond generated
is larger than, say, twice the median P of the P. If the
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bond next to this is also decimated as the scale is changed
&om 0 to I', then the resulting bond can be bigger than
3 times P as it is the sum of the old effective P and an
original P.

Generally, if a string of n consecutive original bonds
is decimated by scale I' without any of the intervening
fields being decimated, the resulting e6'ective cluster will
have length 1 = n+ 2, moment m = n, and logarithmic
effective field P which is greater than nP with probability
greater than 2 ", i.e. , the probability that all of the orig-
inal P's decimated were greater than P. The probability
of this occurring is roughly

(rp„l"
Pr(cluster & n) (A33)

with I Ppr being roughly the probability that a given
bond is decimated. before scale I'. Thus we have explic-
itly generated exponential tails for the distributions of
P, Z„and m. Similarly, one generates exponential tails
in the distributions P((, E~) of the bonds. Furthermore,
one sees the root of observations like "anomalously large
P also tend to have m and I of order P." Rare large clus-
ters with this behavior are of the type that give rise to
the power law Grif6ths' singularities of the weakly dis-
ordered phase (Sec. IVB). They exist as long as some
&action of the original J; s are bigger than some fraction
of the original h~'s.

The argument above only gives a lower bound on the
probability of large clusters. But, in fact, the exponential
form of Eq. (A33), albeit with a difFerent coefficient that
is greater than rPpr/2, is the correct form for the tail
provided that the initial distributions decay at least ex-
ponentially. The case of particular interest in which the
original distributions are bounded (or decay more rapidly
than exponentially) can be analyzed directly.

For simplicity, we focus only on the behavior of self-
dual distributions of P and ( at the critical point, thus
studying P((;I ) which obeys Eq. (2.14) with B = P.
Laplace transforming in (, we have

1 /11z.(r) = ——» 1/rPplpPI(p, ) +lnln~ —~+o(1)
P ~ry

(A37)

so that for large ( ))—

P(q; r) = A(r).~"&"l, (A38)

the behavior of the tail being dominated by the very
largest initial ('s. From the form of Eq. (A35), RG equa-
tions for the position and amplitude A(I') of the pole once
it is formed can be derived: Writing, near the pole,

P(z;r) = +a(z;r),A(r)
z+v r (A39)

with v(I') = —z, (I') positive, we obtain

= —Pp(r) A(r) (A4O)

dA
dI'

= —v(I')A(1 ) + 2P B(z = —v; I') .

The special solution corresponds to

(A41)

A=Po =~0 (A42)

p(, , r) P()
1 —I'PpzPz (z)

which thus develops a simple pole at z, (I') for arbitrarily
small I". Near this pole P (( P so that its neglect
in Eq. (A35) is justified. Indeed, the P in Eq. (A35)
will only slightly shift z, and the residue of the pole for
small I' but cannot change the form of the singularity.

For a distribution PI(() with a maximum value p at
which PI drops discontinuously from a value Pl(p, ) to
zero, we have, for small I',

BP(z)
or

= zP —Pp+ PpP (A34)

and

(A43)

BP = zP + Pp —PpPOI'

= zP '+Pp, (A35)

ignoring the P term. With, for simplicity, PI (g)
smooth for small (, we have for small I'

Exponential tails are dominated by the singularity in
P(z) with largest (i.e. , least negative) Rez which for non-
negative P(() must be on the negative real z axis. With
an initial distribution PI(() that decays more rapidly
than exponentially, PI(z) is analytic except for Rez
—oo where it diverges exponentially (or more rapidly)
for Rez + —oo. The inverse 1/P(z) is thus small in the
regime of interest and we have

with

dilp
0 (A44)

APPENDIX 8: DISTRIBUTION OF LENGTHS

In this appendix, we consider the distribution of bond
or cluster lengths, prove that the special solution indeed
corresponds to a non-negative probability distribution,
and analyze the form of its small-E limit. We will focus on
the distribution of the lengths of bonds which are about
to be eliminated; it is somewhat simpler than the full
distribution of bonds (discussed at the critical point in
Sec. II A). The cluster length distribution in the scaling
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~(o,~;r),T(y;r)
~,(r)

=
u, (r) ' (B1)

the latter equality obtaining in the scaling solution of Sec.
II C. WVe must thus study the inverse Laplace transform

E (E) — d ",(B2)
b 2vri, sinh[rA(y) j

limit is related to that of bond lengths by duality.
The distribution of lengths of about-to-be eliminated

bonds is

complicated due to the essential singularities in the com-
plex y plane as in Eq. (2.40); we have not attempted to
analyze this here. Note that it would su%ce to prove pos-
itivity at the critical point (i.e.,

I' « 1/~b~); preservation
of positivity of the flows would then guarantee positivity
for all I'.

Note that we have here treated 8 as a continuous vari-
able; if 8 is restricted to half-integers, there will be pe-
riodicity in the complex y plane and similar results will
follow with the discreteness not playing a significant role
in the scaling limit.

with

&(y) = V'b'+y.
APPENDIX C: ASYMPTOTICS FOR

CORRELATION FUNCTIONS

(B4)

Note that the b dependence of this is very simple. For
large E, the behavior is dominated by the nearest pole in

y (here duplicated as n = +1), yielding

—(h+vr n /I' )r (B5)

Note, however, that Eq. (B4) is not obviously positive
for all 8, although by combining terms, it can easily be
seen to be positive for

ln43' (B6)

By changing variables &om y to I'L, the integral can be
done by deforming the contour, yielding, for 8 ) 0,

OO

E(E)= e —) (—1)" 'n er3

In this appendix, some of the details of the asymptotic
analysis of the solutions to the difFerential equation (3.24)
for the function A. are given, focusing on the parts needed
to obtain the asymptotic long-distance mean correlation
functions.

As explained in Sec. IIB, the long-distance correla-
tions are dominated by the singularities of K (y) for
y —b —e2 ji0, i.e. , just above and just below the cut
in the complex y plane. This corresponds to L = is + 0
small and just to the left or right of the imaginary L
axis. The singularities in K (y) come from those in A,
but the latter is singular only when W diverges, i.e., when
sinhI'4 = 0. Since we are interested in fixed b, we need
to analyze these singularities in the limit (A~ (( )b~.

The most useful expression for K (y) in this limit is
Eq. (3.95). The first term vanishes as I' + oo for either
sign of 8 with ~A~ && ~8~. The remaining term can be
cast in a simpler form for analyzing the singularities by
defining

For small g, the Poisson resuinmed version of Eq. (B4)
is more useful:

1
t'bsinhrEl '

(Asinhrb )
(C1)

sinhr8
b

-„(2m+i)'

1 I'2) —(2m+ 1) —1
rn= —oo-

(B7)

whereupon

(Asinhrb) ' be r BE
(bsinhr b. ) sinhI'b Or (C2)

For small E « min (&, I' ) we see that

F,(~) - ..e-"i4'; (B8)

thus the probability of original bonds surviving (with E

1) is exponentially small in I'2. Equation (B7) is also
useful for showing positivity for small f: This follows
straightforwardly for

the + and —signs obtaining for Ii and I2, respectively,
so that

K (y) = k'(y, I')
0

e~ ~

»nhrA sinh'rb q Br )
(C3)

e( -'r'.
2

(B9)
From Eqs. (Cl), (3.24), and (3.29), we see that E

satisfies the differential equation

Since —) 's, from Eqs. (B6) and (B9), Eo(E) is positive
for all positive Z as it must be.

One can similarly show the positivity of the distribu-
tion of lengths of all bonds in the critical region. The
positivity of the full joint distribution of ( and E is more z(r) =r~. (C5)

02E b2 OE
Z + (b.cothrA —bcothI'b), (C4)

sinh~I'b

with the boundary condition for small I',
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Because it will go to a constant for large I' in the desired
regime IAI « lbl, and && satisfies a first-order differential
equation in this regime, E is more convenient to study
for the present purposes than A. Note that E(b, r) like
A(8', I') is a function of lbl but independent of the sign
of b. The difference between the ordered and disordered
phases is entirely due to the explicitly b-dependent fac-
tors in Eq. (C3).

From the discussion in the main text, we only need the
behavior of the integrand k'(y, r) in Eq. (C3) near to its
singularities at

(C6)

for L purely imaginary and n a nonzero integer. Since A
and E are even in 4 —+ —L, we can restrict consideration
to 4 near the positive imaginary axis and hence n & 0.
For obtaining the needed singular parts of K (y) near

the cut, we can replace Eq. (C3) by

(C7)

with l chosen to be in the range

(c8)

We are thus interested in the behavior of E(b, Ar) for
l & I', but to get this, we need to integrate the dif-
ferential equation for E, Eq. (C4), Rom its boundary
condition at small I' out to I'.

For I' « ~&~, we can use the inner solution A in scaled

form, Eq. (3.105), which is not known explicitly but its
form, for lb'll )) 1 and analytic properties are known, Eq.
(3.106). In particular, at I' = I', A, and hence E are
smooth functions of A with, for A/lhl -+ 0,

~(r) = ~ (I) = lsl4- —:c,r--"-~'~' 1+c, (1+ l&lr). -~'~'+ o(e-'~") . (C9)

Since for I' ) I', hcothrh = lb'][1 + O(e r~s~)] and
(sinhrb) 2 e 2r~s~ to first approximation, we can re-
place the equation for E in this regime by

Eo = ]6] @&2c 1+ol rib], —I

(-
(C15)

= (AcothrA —Ibl)
BE+

(C10) ei+ = l~l v2 ' ' 1+Olrl~l —
I

(c16)

which can immediately be integrated to yield

&+(r) = &o+ + Ei+(r),
with

(C»)

E + = e +e ~ ~ [bcosh(r4) + lblsinh(rA)] (C12)

and Eo+ and eq+ constants.
More generally, we can expand E(r) for I' ) I' in pow-

ers of e ~~~ with Eo+ and E~+ being the first two terms.
Because z(r) =z (r) (C17)

The dominant singularities in k' are then those from
the E2 term in Eq. (C3) which yields the p~ of Eq.
(3.111), just arising from the EO2+ contribution to E2
in Eq. (C3). For the ordered phase, in contrast, the
prefactor of the E term in Eq. (C3) vanishes as e
and so we must examine the possibility of larger terms

arising from corrections to the ( && ) term.BR

To go beyond Eq. (C12), it is simplest to define the
coeKcients Eo+ and Ey+ so that

+ e (&~ g2)e —lslr s;nhI ~
F (C13) and

it would appear that the ( z& ) term in k' in Eq. (C3) is
nonsingular; as we shall see, this is not correct in general.
Indeed, examination of the behavior of Eq. (C4) near its
singularities at I', Eq. (C6), indicates that

gr(r) = ~q+(r) (C18)

yielding Eqs. (Cll), (C12) with, crucially, Eo+ aild ei+
smooth functions of 4 for IAI small. To O(e ~ ~r), we

can then write for I' & l

erin' 6 erin lE""s(b„,r)
I

I' —
I

lnl I'— (C14)
with

z(r) = z (r) + z, (r), (C19)

with, for L just ofF the imaginary axis, the singularities
occurring just ofI' the real I' axis.

In the disordered phase, however, to obtain the leading
behavior of K""g for small L, we need go no further
than writing E —E+ and matching the coefBcients of
Eq. (C12) at I' to those &om Eq. (C9), obtaining

r e I~I~= 4b Eo+e sinhrA . dp (C20)Bl sinhpL

and E2+(I') obtained from integrating Eq. (C20) up from
the matching point I' to F. Note that since the integral
in Eq. (C20) has logarithmic singularities at I' =
E2+ will have singularities like that of the full E, i.e. ,
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of the form Eq. (C14); the expression Eq. (C20) thus
yields the lowest-order expression for the amplitudes of
the singularities in E. From Eqs. (C3) and (C20), we
then see that the dominant amplitude of the correspond-
ing singularities of the form (I' —erin/4) ln(I' —erin/A) in
k' arise Rom the —2 &&+ &&+ cross term in Eq. (C3).
From Eqs. (C3) and (C20) we have

K""s(y) = (—2)A(A —h' )ei+ + dI', (C21)
r

since the I' dependence of the prefactors in Eqs. (C3)
and (C20) cancels that of &r'+ &om Eq. (C12).

Doing the double integral to obtain E2+(I') by parts,
we obtain, after substituting for the coefFicients from Eqs.
(C15) and (C16),

4 '"s —16~S~2-'4C' C

r~g~ 4 o hI'A + ~b~
' hI 4

X e
r sinhI'4

(C22)

with the ~h ~sinhl'A part not contributing to the singulari-
ties and the n = 1 singularity with amplitude ~ g

doininating for small e = A/i and yielding Eq. (3.122) for
the spectral density p~ from Eq. (3.93). Since coshl'A is
negative at this first singularity, the coeKcient C2 must
be negative. This can readily be seen by examining the
differential equation for E in the inner region ~AI'~ && 1.
The boundary condition forces E and & to be positive
for small I'. If one of these changes sign for larger I', the
first to do so must be && . But if this is zero at some
I', then, since E will still be positive, &, ) 0 &om Eq.
(3.4) which is contradictory. Thus, && is positive out to
I', implying t 2 ( 0.

We close with a brief note on the reason for defin-
ing E2+ by integrating up from I', as in Eq. (C20),
rather than the more natural integrating down &om in-
finity which would make E2+(I') = O(e 2~~~r) for large
I' rather than O(e ~~~"). If E2+ had been defined the
latter way, then E~+ and e~+ would have weak singulari-
ties as functions of A which would cause singular parts of
the integral over k' for all I' ) I'. Instead, by integrating
E2+ up Rom I', all the singularities are put into E2+. Of
course, the calculations could have been done the other
way, but considerable care would have been needed to
cancel parts of the singularities and end up with the re-
sult Eq. (C22) which does not depend on I'.

J((', /3 )= »-(O' P') = p(4)&(&') + ~(C* &*) (»)
and similarly for Pr((;, P;+i) so that K is a ineasure of the
correlations and is hence zero if ( and P are independent.
In general, &om the definition of K,

for all P

K((, P)dP = 0 for all ( . (D2)

If K is small, there is a precise sense in which other cor-
relations can be even smaller and hence ignorable. Specif-
ically, we assume that the conditional probability of, e.g. ,
(0 given everything to the right of it depends only on its
immediate neighbor Pi.

»((o~P1 Cl /32 C2 . ) = »(Co~Pi) = J((o Pi)/&(Pi) .

(D3)

Then the joint probability of neighboring bonds,

'Xo(i)= (k) Xi)+f " ' " '~P
1

(D4)

so that the correlations of neighboring bonds are of order
K and similarly correlations between further neighbors
are higher powers of K. This also implies that K "small"
should be defined more precisely as

uniformly small in g and P .

tially, they would likely be generated by a more careful
treatment at the early stages of the renormalization of
higher-order perturbative eKects, in particular &om the
eEects of bad cases when the neighboring couplings are
comparable to the decimated coupling.

In this appendix, we consider the simplest case of weak
correlations between nearest neighbor couplings, i.e. , be-
tween a bond (; and two transverse fields on either side
of it, P, and P;+i. We define the joint distribution of a
neighboring (,P (i.e. , bond-field) pair to be

APPENDIX D:
CORRELATIONS AMONG THE COUPLINGS

So far, we have completely ignored possible correla-
tions between nearby couplings. Indeed, the indepen-
dence of couplings presumed in the approximate RG has
been crucial to the analysis. If the results are really
universal, as we have claimed, then one should be able
to show the irrelevance at the critical fixed point of, at
the least, weak short-range correlations in the couplings.
Note that even if such correlations were not present ini-

This is equivalent to

') —1 small for all (0 and P,
Pr((;)

and likewise for Pr(P, ~(,)/Pr(P;). The results below are
probably true for weaker senses of K being small, but
some extra work would be needed to show this.

In general, if all terms of order K2 are ignored, then it
can be shown that further neighbor correlations are not
generated and a linear RG Qow equation for K can be
derived:
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OK((, P) OK BK+ +K(& o)R(P)+K(o P)P(&)

+P0K((, .) p R( ) + RpK(, P) ~ P( ),
(D7)

where the dots are dummy variables of the convolution.
With the critical scaling solution R(P) = re i / and

P(() = re ~/, a general solution of Eq. (D8) with the
conditions Eq. (D2) can be expressed as linear combina-
tions of

(r) e mr. v—p —
e q/r v—/3 —

e ~r. p/r—1 1 1
r2 vr'

J~(~) =-

( &,

Jj
J~ —™~

(E2)

and

where we have rescaled the &equency so that for a
single site with a field h the excitation energy (i.e. ,

gap) is u = h/2. The transfer matrix Eq. (El) is
not in a useful form for decimation. But products of
T~'s) T~T„1 . T~) can be written by factoring T~'s
and recombining factors in terms of products of ma-
trices J„(u)h„(ur) J~ i(ur)h„ i(~) . .J (w)h (~) where
we have introduced the matrices

h, (ur) =— (E3)

with

—&/r —&/r
r.vr2 The eigenvalue condition for &ee fermion excitations

ur () 0) of a chain m .n can then be simply written as

Ok„k„„(""
~

2 —rr —vr- (D9)ar r~ Kr —1 vr —1j
For large I', we thus see that

(D10)

so that initial K((,P) with well-behaved (i.e. , exponen-
tial) tails will decay exponentially for large I'. Thus the
joint distribution J((,P) converges rapidly to the inde-
pendent product distribution J((,p) -+ P(()R(p). Note
that this analysis also shows explicitly that no correla-
tions of difFerent efFective couplings develop if they are
not present initially; this is indicated by the absence of
inhomogeneous terms in Eq. (D7).

(1 (u)h„((u) J„ i((u)h„ i(ur) . J (~)h ((u)
~ i

= 0.&-~)
(E4)

Equation (E4) is in a useful form to perform a decimation
transformation by simply selecting the largest coupling,
say, Ji, (equal to the energy scale 0) and multiplying the
corresponding matrix in Eq. (E4) by its nearest neighbor
matrices. If we are interested in a low &equency u « 0,
then the resulting matrix can be expanded in &, and for
a "good" decimation which must have hi/Ji and h2/Ji
small, the resulting product matrix h(ur) has, up to sub-
dominant corrections, exactly the form of Eq. (E3) with
h~ replaced by

APPENDIX E: TRANSFER MATRICES h1h2

J1 (E5)

T'(~) =
—hj
Jj

2~hj
J~ hj+1

—24p

Jj(."') &

(E1)

In this appendix, some of the special properties of
the transfer matrices that make many of the results of
this paper more exact than might be expected are dis-
cussed briefly. Since we will not deal here with spin
correlations —indeed at this point is not clear how to
do so—we will focus on the properties of the low-energy
spectrum of the Hamiltonian.

The simplest way to obtain results for the random
transverse-6eld Ising chain, as shown by Shankar and
Murthy, is to transfer in the space direction and write
the full transfer matrix as an outer product of transfer
matrices at all possible &equencies. Because of the &ee
fermion nature of the 2D Ising system, each frequency
component can be treated separately, most conveniently
in terms of a pair of Majorana (real) fermions at each
site. The transfer matrix from site j to site j + 1 along
the chain can then be written in the form

At zero &equency u = 0, this result is of course trivial
as all the matrices are diagonal; however, at nonzero &e-
quency, it is a nontrivial result. From the ~ = 0 behavior,
one can guess that in some sense the basic decimation
result Eq. (E5) is exact [and indeed it is this that de-
termines the form of typical energy (or o. ) correlations
as computed by Shankar and Murthy4]. But to really
show that the decimation procedure is valid, one needs
to know that the small-w frequency dependence of the

renormalized matrix h(u) is of the correct form and that
"bad" decimations (with hi/Ji and/or h2/Ji not small)
do not ruin the decimation procedure. Surprisingly, this
can in fact be shown explicitly. Speci6cally, we consider
a bad decimation with at least one of, say, h1 and h2 of
order 0 = J1.

If one focuses on &equencies of order u so as to obtain
the excitation energy h/2 associated with the difference
between the even and odd combinations of the "up-" and
"down"-spin cluster, then the approximation of replacing
the spin cluster matrix product with a matrix like Eq.
(E3) with h given by Eq. (E5) is quite bad. Indeed, even
if one is interested in low &equencies cu « 0, as we are,
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the product matrix of the spin cluster will have substan-
tial corrections. In particular the ofF-diagonal terms will
have multiplicative corrections of 1 + 2( &') which is
3 in the worst case. Nevertheless, the decimation proce-
dure is saved because of what happens at a later stage. At
some lower-energy scale 0 h (but perhaps not exactly
this due to the earlier errors), the "bad" spin cluster will
be decimated either by combining with another cluster
or by being eliminated; we consider the behavior in the
latter case.

If, as typically will be the case, the decimation of the
bad h cluster is "good, " then it will involve neighboring
(effective) bonds Jo and Jq of the cluster which are both
much smaller than h. In the usual case that these neigh-
boring effective bonds are not themselves results of bad
decimations, the resulting effective bond matrix can be
directly computed. Amazingly, it has again the form Eq.
(E2) with

J="
h

(Efi)

exactly, and negligible corrections to the matrix elements
which are reduced by factors of (Jq 2/h) and (w/h) (al-
beit with coe%cients which are larger than if 6 had been
a good cluster). Thus for cu &( the original scale 0 = Jq
of the earlier bad decimation, we recover exactly at a later

stage &om the errors made earlier.
We conjecture on the basis of this analysis of one type

of bad case that this behavior is true generally. More
precisely, if in the critical region the decimation is car-
ried out by the naive rules i.e., by replacing the cluster
matrices by those of the form Eq. (E3) with h given
by Eq. (E5) and likewise for bonds —then. at low-energy
scales 0 and u && 0 the resulting transfer matrices will,
with high probability, be very close to those obtained by
multiplying exactly the same combinations of the orig-
inal matrices. Furthermore, we expect the main (but
rare) source of errors to be bad decimations which have
occurred at scales not much larger than 0; these occur
with probability 1/ln(AI/O) in the critical region, and

]8~ at low energies just off critical.
To actually get the eigenvalues near some ~, the deci-

mation should be stopped when 0/u is some large factor.
But then with 0 small, the distribution of h, 's and J's will
be so broad that the eigenvalue condition Eq. (E4) is, to
a good approximation, a local condition in a region where
some h, or J 2u. Although we have not attempted to
prove the basic conjecture stated above, it may well be
possible to do so which would, of course, begin to place
the results of this paper on a very Arm footing. Note also
the recent work of Mikheev from a somewhat diferent
direction.
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