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1

We study the S = 2 anisotropic Heisenberg antiferromagnet on finite triangular lattices with

2

N < 24 sites: H = ZJZ(i’j)(Sfo + SE’S;-’ + AS?S?) with 0 < A < 1. The specific heat C
and the chiral-order parameter (x?) are calculated using a quantum transfer Monte Carlo method.
Remarkable differences in the size dependences of C and (x?) are found between the cases of A < 0.4
and of A > 0.6. For A < 0.4, the peak height of C increases with increasing N and an extrapolation
of {x?) to the thermodynamic limit gives a finite, nonzero value at low temperatures. In contrast
with these, for A > 0.6, the peak height does not increase and the extrapolation of (x?) gives a
smaller value even at very low temperatures indicating the absence of a long-range chiral order.
From the results, we suggest that the chiral-ordered phase transition occurs at a finite, nonzero
temperature when A < A, with A. 2 0.4. The phase diagram of the model is predicted.

I. INTRODUCTION

An anisotropic Heisenberg antiferromagnet on the tri-
angular lattice has attracted much interest in recent
years. The Hamiltonian of the model is described by

H=2J) (SFS; + SYSY + AS}S), (1)

(2,3)

where J (> 0) is the exchange integral and (i,j) runs
over the nearest neighbor pairs, and S¥, SY, and S7 are
components of the spin S; on the ith lattice site. A =0
corresponds to the XY model, and A =1 is the Heisen-
berg model.

In the classical XY model, Miyashita and Shibal
showed using the Monte Carlo method, that a long-range
chiral order exists at low temperatures, although the
long-range order of the spins disappears at finite tem-
peratures. They pointed out that the specific heat di-
verges logarithmically at the transition temperature T,
and the transition belongs to the universality class of
the Ising model. In the classical anisotropic Heisenberg
model, Miyashita? pointed out that the chiral-ordered
phase persists for —0.5 < A < 1.

In the quantum model, however, whether the chiral-
ordered phase exists or not is still in controversy. The
ground state properties of the model on finite triangular
lattices with N sites have been investigated by several
authors using the diagonalization technique. Fujiki and
Betts® studied the S = 1/2 XY and Heisenberg models
for N < 21 and conjectured that the chiral-ordered phase
exists in the XY model. Nishimori and Nakanishi* inves-
tigated the same models for N < 27, showed that the ex-
trapolated value of the chiral-order parameter of the XY
model was a little smaller than that obtained by Fujiki
and Betts, and gave the opposite conjecture. Recently,
Leung and Runge® studied the anisotropic Heisenberg
model for N < 36 and suggested that the model has the
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chiral-ordered phase for A ~ 0 and does not for A = 1.

Properties of the model at finite temperatures have
also been studied. Matsubara and Inawashiro® calcu-
lated the specific heat of the S = 1/2 XY model on finite
triangular lattices with N < 21 using a quantum trans-
fer Monte Carlo (QTMC) method” and showed that the
peak height of the specific heat increases with increase
of N. From the result, they conjectured that a phase
transition occurs in the model and estimated the tran-
sition temperature of T./J ~ 0.39. Fujiki and Betts®
studied the same model using the high-temperature se-
ries expansion method but they did not find the transi-
tion temperature. Recently, Momoi and Suzuki® studied
the anisotropic Heisenberg model by applying a super-
effective field theory,'® and found the transition temper-
ature for —0.5 < A < 0.5. In particular, they obtained
T./J ~ 0.4 for A = 0, which is very close to that of
Matsubara and Inawashiro. Having combined the results
of spin wave theory,'! they conjectured that the chiral-
ordered phase exists for —0.5 < A < 1 as in the classical
model.

We ask the following questions in the quantum model.
Does the chiral-ordered phase really exist for A ~ 0?7 If
so, does the phase persist up to A ~ 1?7 In this paper,
we investigate the S = 1/2 anisotropic Heisenberg model
with 0 < A < 1 at finite temperatures. We treat the
model on finite lattices with N < 24 using the QTMC
method. Although the lattices are not so large as those
treated in the ground state study, we may obtain fruitful
knowledge about the nature of the model. In particu-
lar, we may examine whether the phase transition occurs
or not from the size dependence of the specific heat as
well as the stability of the ground state against thermal
disturbance. If it does, we may estimate the transition
temperature 7, from the peak temperature of the specific
heat and/or the temperature dependence of the chiral-
order parameter. In fact, we find evidence of the phase
transition for a finite, nonzero range of A around A =0
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and estimate 7,.. From the results, we predict a phase
diagram of the model.

In Sec. II, the QTMC method is presented. In Sec. III,
the results of the specific heat and the chiral-order pa-
rameter are shown for different A, separately. In Sec. IV,
the size dependences of these quantities are examined to
see whether the phase transition occurs or not. The phase
diagram of the model is discussed. Section V contains our
summary.

II. FORMALISM

In order to obtain physical quantities of the model at
finite temperatures, we use the QTMC method proposed
by Imada and Takahashi.” The method is effective for
finite systems, because the memory size needed in cal-
culating physical quantities is much smaller than that in
the conventional diagonalization method. Moreover, the
method does not suffer the negative sign problem which
appears in the Suzuki-Trotter formulation.!?

The thermal average of a physical quantity A of a sys-
tem with IV spins is given by

2N 2N
(4) = 3 (il Aexp(~BH)]i) | D (il exp(~BHD]) , (2)

where the sum runs over all the 2V states of an arbitrary
complete orthogonal set and 8 = 1/T with T being the
temperature. Here we choose |¢) as Ising states. Instead
of Eq. (2), we consider the following quantity:

o M M
(A) = (¥l Aexp(—BH)|vx) / D (¥l exp(—BH)|¢x),
k k
(3)

where the sum runs over M states each of which is given

by

zN
[r) = \/%Z Cikli); (4)

here Cjj is a random number in the range —1 < Cj, < 1.
We can readily show that (4) — (A4) for M — oo, be-
cause (G/M) EkM CirCir = 5ij + O(l/\/M_) Hence we
use Eq. (3) instead of Eq. (2). A great advantage of us-
ing the formula (3) is that we can obtain an approximate
value of the average (A) by summing up only M terms
instead of all the 2V terms of the Ising states. Using this
formula, we can treat systems much larger than those
treatable by the rigorous formula (2). Of course, statis-
tical errors of O(1/v/M) arise, but we may reduce them
as M is increased.

In calculating Eq. (3), the following technique can be
used. We rewrite Eq. (3) in a symmetric form as

o M - - M o
(A) = (PelAldhx) / S (k) (5)
k k
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where |1ka) = exp(—BH/2)|r). The calculation of
exp(—BH/2)|¥x) is made by expanding exp(—SH/2) in
term of a power series of BH/2 and by operating every
term to |¢x). The convergence of the series is, of course,
more rapid for a higher temperature Ty (or smaller So).
We start at some higher temperature T = Ty (or some
smaller 35). Once the |¥x) for T = T, is obtained by
operating exp(—BoH/2) to |Y%), we can obtain |k for
T = To/2 by operating exp(—BoH/2) again to |¢3) for
T = Tp. In that way, we can readily obtain step by step
|x)’s for T = Ty, To/2, To/3, .. ., using the rapidly con-
verging operator exp(—BoH/2).

We calculate the energy, the specific heat, and the
chiral-order parameter. The energy and the specific heat
are given by

E=(H), (6)
C = s (H?) — (HY?) . )

The z component of the chirality for each upright triangle
at R is defined as

2 T E ]
x*(R) = ﬁ(sfsf — 5§87 + 575
—S¥S% + SgSY — S¥SE) (8)

where i — j — k are taken counterclockwise. The eigen-
values of (8) are =1 and 0. The long-range chiral-order
parameter is defined as

x=% S X®), (9)

ReA

where R runs over all the upright triangles on the lattice.
Since the average of x vanishes because of the symmetry,
we calculate the average of its square (x?2).

\

FIG. 1. Finite cluster with lattice sites N = 18. The sym-
bols o, e, 0 denote different sublattices.
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III. RESULTS

We have studied the model with A = 0.0, 0.2, 0.4, 0.6,
0.8, and 1.0 on finite lattices with IV < 24. The lattices
are constructed so that the 120° spin structure is possible
in the classical system as shown in Fig. 1. The numbers
of the states M used in the calculation are as follows:
M =200 for N =9,12,15; M = 80 for N = 18; M = 40-
80 for N = 21; M = 15-27 for N = 24. For every lattice,
the set of M states is divided into five subsets except
for three subsets for N = 24, and quantities of interest
are calculated in every subset. Error bars presented in
figures given below only mean deviations of the values
obtained in different subsets. Since the results depend
markedly on whether N is even or odd, we show them
separately.

A. Specific heat

In Figs. 2(a)-2(e), we show the specific heat C for
different A, separately. For odd N, as N is increased,
the temperature T,,, at which the maximum of C occurs
changes together with the peak height C,,. For even N,
T, changes a little but C,,, does considerably. It is noted
that this difference in N being even or odd is reduced as
N is increased.

A considerable difference in the size dependence is seen
between the results for A < 0.2 and A > 0.6. For A <
0.2, as N is increased, C,,, becomes larger, suggesting the
occurrence of a phase transition in the thermodynamic
limit. For A > 0.6, in contrast with this, C,, does not
increase with N. In particular, for even N, it decreases
as N is increased. The case of A = 0.4 is marginal. A
slight increase of C,, is seen only for odd N.

For every A, T,, is lowered as N is increased. This
is pronounced for odd N and becomes more so as A is
increased. These size dependences of C,,, and T, will be
examined quantitatively in the next section.

B. Chiral-order parameter

In Figs. 3(a)-3(e), we show the chiral-order parameter
{x?) for different A, separately, together with an extrap-

olated value which will be mentioned in Sec. IV. For odd
N, as the temperature is lowered, (x?) monotonically in-
creases and saturates. The usual size dependence is seen
at all temperatures, i.e., (x2) decreases with increasing
N. For even N, unusual behaviors are seen. (x2) for
N = 12 and 18 has its maximum value at a finite tem-
perature. In addition, its size dependence is reversed,
i.e., at low temperatures (x2) for N = 24 is larger than
that for N = 18. Of course, these unusual properties
come from a quantum effect which is reduced as N is in-
creased. In fact, (x2) for N = 24 monotonically increases
with decreasing temperature down to a very low temper-
ature, and the difference between the (x2)’s for odd and
even N becomes smaller as N is increased.

For A = 0, as the temperature is lowered, (x?2) rapidly
increases around 7'/J = 0.5 and reaches a larger value.
It seems that (x%) converges to a finite, nonzero value
as N — oo. As A is increased, (x2) is reduced. In
addition, the larger the system size N becomes, the more
(x?) is reduced, and the size dependence of (x2) becomes
larger. For A ~ 1, (x?) increases gradually and reaches a
value which exhibits a larger size dependence, suggesting
(x?) = 0 as N — co. Thus we expect that the change
in the chiral nature of the model occurs at some value of
A between A = 0 and A = 1. This problem will also be
discussed in the next section.

IV. DISCUSSION

In the previous section, we show the specific heat C and
the chiral-order parameter (x2) for different N. In this
section, we examine the N dependence of those values
quantitatively and discuss whether the phase transition
occurs or not.

A. Size dependence of C,, and T,

In Figs. 4(a)-4(d), we plot the peak height C,, as a
function of log;q N. For A = 0.0, C,, lies almost on a
straight line with a positive slope, like C,, of the classical
XY model.! A similar N dependence is seen for A = 0.2
and 0.4 except for the points of smaller N. In contrast
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with this, C,, for A = 0.6 exhibits no systematic increase.
These results suggest that C,, for A < 0.4 increases loga-
rithmically with increasing IV, while it remains finite for
A > 0.6; namely, the results predict the occurrence of the
phase transition at least for A < 0.4. We consider the
threshold A, below which the phase transition occurs.

Assuming that
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we estimate the slope of the line A by using the method
of least squares and plot it in Fig. 5. In fact, A > 0
for A < 0.4, but it rapidly decreases around A = 0.4
suggesting A, 2 0.4.

Next, we estimate the peak temperature T,, for N —
00, which is the critical temperature T, for A < A.. In
Figs. 6(a)-6(c), we tentatively plot T,, as a function of
1/NZ%. The values for odd and even N exhibit difference
N dependences. For odd N, T, exhibits a larger N de-
pendence and seems to lie on a straight line. On the
other hand, for even N, the N dependence is small, and
T, seems to remain almost constant, especially for larger
A. We estimate T}, for N — oo from these results for
odd N and even N separately, and show them in Fig. 7.
As seen in the figure, the difference between the two val-
ues is not large. Note that we also plot T}, as a function
of 1/N and make the same estimation of T;,. However,
the differences between the two values are much larger
than those shown in Fig. 7. Hence we think that our
estimation of T}, is plausible. Of course, we cannot rule
out other estimations, as well as the latter one described
above, because the system size of N < 24 is not large
enough to get a definite value.

A point should be noted. As seen in Fig. 7, Ty, is

0.3 T . T A T v T T T T
C I\l ]
bl ]
- 4
< i ]
0.1 I S
C ! ]
0 C } } l\ ]
ol ]

0 0.2 0.4 0.6

FIG. 5. The slope of C,. vs log;, N as a function of A.
These are estimated using the values for N > 15. The line is
a guide to the eye.
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even N, respectively.

almost constant even for A > 0.4. This means that, as
A reaches A, from below, T, reaches some finite, nonzero
value T.

B. Size dependence of the chiral-order parameter

We first consider (x2) at T ~ 0. As seen in the previous
section, (x?2) for even N exhibits unusual temperature
and size dependences. We believe these come from a
property of the ground state which, of course, does not
contribute to physical quantities in the thermodynamic
limit at T # 0. To confirm this, we calculate (x2) for
N = 12 and 18 in a space where the ground state is
" removed. That is,

<X2>I — i(,ﬁ/ | 20,71 = WY
kX |Pr) Z(¢k|¢k> )
k k

(11)
where

L) = |9i) — |g) (gl (12)

06T T T
." h
A
-3 el
02 - —o— Odd N
| —e— Even N
L e from <> ]
o | ) . ) L 1 L L 1 L 1
0 .5
0 A !

with |g) being the ground state. In Fig. 8, the result for
A = 0.0 is shown. In fact, as the temperature is lowered,
(x?)' increases monotonically and exhibits the usual size
dependence. Then, for even N, we consider (x?)’ instead
of (x?). Note that we have also calculated (x2)’ for odd
N and found that the difference between (x2) and (x?)’
is negligible at low temperatures.

Now, we estimate (x2) for N =+ o0 at T ~ 0. In
Fig. 9, we plot (x?) as a function of 1/N at the lowest
temperature together with those in the ground state for
N = 27 and 36 obtained by Leung and Runge.® For A =
0.0 and 0.2, the points lie well on a straight line up to
N = 36. For A > 0.4, they seem to lie on a curve which
turns downwards as N increases. Then we estimate (x2)
for N — oo using the method of least squares with the
following function:

(x®) = (x*)oo + a/N +b/N2. (13)
The result is plotted in Fig. 10 as a function of A. In fact,
(x?) oo has a finite value for A < 0.2 and drops rapidly at
A ~ 0.4. For A > 0.6, (x?)o has a small, nonzero value

0.8 T T T T T T T T T

T/

FIG. 7. Extrapolated values of the peak temperatures as
functions of A. These are obtained using the values for
N > 15.

FIG. 8. The chiral-order parameter (x?)’ calculated in a
space without the ground state. The lines are those presented
in Fig. 3(a).
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which is almost constant for 0.6 < A < 1.0. Of course,
from this result alone, we cannot conclude whether it
vanishes or not, because the system size of N < 24 is too
small to do it. However, it is natural to think (x2)eo = 0
for A > 0.6, because it is widely accepted that (x2)ec = 0
for A = 1 in the thermodynamic limit. In any case,
we find a change in the chiral nature of the model close
above A = 0.4, ie.,, A. 2 0.4. It is marvelous that
both quantities C and (x2) predict a similar value of the
threshold of A, 2 0.4.

Next, we estimate the transition temperature T, for
A < A.. From the data of odd N, we estimate (x%)oo
at finite temperatures using Eq. (13). The results are
shown in Figs. 3(a)-3(e). As the temperature is in-
creased, (x2)oo decreases rapidly at T'//J ~ 0.35, but does
not disappear near this temperature. Then we regard
the temperature of the inflection point of (x2)oo as Tk
and plot it in Fig. 7. Again we see that T, estimated

0.6 T T T T T T T T T T

<x >

W\

FIG. 10. An estimated value of (x?) at T ~ 0 as a function
of A. The line is a guide to the eye.
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FIG. 11. Phase diagram predicted in this study.

here is in good agreement with that estimated from the
peak position of the specific heat. Note that we cannot
estimate T, for A > 0.6, because the inflection point is
absent. However, the following point is remarked. Even
for A = 0.6 and 0.8, the rapid decrease of (x%)o, occurs
around T'/J ~ 0.35 like that in the case of A < 0.4. This
also suggests that T, reaches T} as A — A..

C. Phase diagram

The phase diagram predicted in the present study is
shown in Fig. 11. Properties of the phase diagram are
as follows: (i) the chiral-ordered phase appears only for
A < A, with A, 2 0.4, and (ii) the transition tem-
perature T, is almost constant for 0 < A < A.. Thus
the phase boundary separating the paramagnetic phase
and the chiral-ordered phase is broken off at some finite,
nonzero temperature 7¥. This suggests the occurrence
of some new phase for A > A, which will become un-
stable for A — 1. At present, we cannot identify which
phase appears for A, < A < 1. We think, however, that
a candidate is a Kosterlitz-Thouless-like phase where the
correlation of chiralities (x*(R)x?*(R’)) decays according
to a power law,!® because we have also plotted (x2) as a
function of N in a log-log form and found that the points
for A > 0.6 lie almost on a straight line. This problem
will be discussed in a separate paper.

It should be noted that the phase diagram predicted
here is different from that predicted by Momoi and
Suzuki,!! in which the chiral-ordered phase persists up
to A =1, although the phase boundaries for A < 0.4 are
in good agreement with each other.

V. SUMMARY

In this paper, we have studied the S = 1/2 quantum
anisotropic Heisenberg antiferromagnet on finite trian-
gular lattices with N < 24 using the QTMC method.
We have calculated the specific heat and the chiral-order
parameter and examined their size dependences to see
whether the phase transition occurs or not. Our results
are summarized as follows.

In the specific heat, when A < 0.4, the peak height
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C.n increases almost linearly with log,, NV suggesting the
occurrence of the phase transition. The transition tem-
perature is estimated as T,./J < 0.4 for A < 0.4 from the
peak temperature T,,.

In the chiral-order parameter, the extrapolation to the
thermodynamic limit at the lowest temperature suggests
that the chiral-ordered phase exists when A < 0.4. The
transition temperature is estimated as 7./J < 0.4 for
A < 0.4 from the temperature dependence of the extrap-
olated value.

Both the results are excellently in agreement with each
other. We believe, hence, that the chiral-ordered phase
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transition occurs in the model when A < A, with A,
being a little larger than 0.4. The phase diagram of the
model has been predicted.
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