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Exact solution of the model of degenerate electrons interacting with an impurity
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A model of degenerate electrons interacting with an impurity via the spin-exchange and
correlated-hybridized interactions is formulated. We present an exact solution of the SU(u)-
symmetric model Hamiltonian. Exact expressions for ground-state properties, e.g. , the valence,
the impurity magnetic susceptibility, and the linear temperature coefBcient of the speci6c heat, are
calculated on the basis of the Bethe ansatz solutions.

I. INTRODUCTION II. BETHE ANSATZ EQUATIONS

An important step towards understanding an appar-
ently simple physical situation, the behavior of localized
spin in metals, was achieved by Wiegmann and Andrei
who solved the Kondo problem and Anderson model.
%'iegmann and Andrei showed that the Hamiltonian of
the 8-d exchange and Anderson models can be diagonal-
ized by the Bethe ansatz. The solutions were obtained
in a continuous approach for a linearized spectrum of
conduction electrons assuming the Fermi energy or the
bandwidth to be largest of the energy scales. The An-
derson model and Kondo problem picture electrons local-
ized at an impurity coupled to the itinerant electrons of
a metal. These models have great physical interest since
the heavy fermion state of rare-earth and actinide sys-
tems has long been associated with the Kondo eKect; the
Anderson model describes the intermediate-valence state
and the formation of the localized magnetic moment in
a metal.

Solutions were formulated to the orbitally degener-
ate extensions of these models, namely, the Coqblin-
SchrieKer and infinite-U Anderson models. The in-
clusion of realistic features such as the orbital degeneracy
and. crystal-Geld splitting in the models permits one to Gt
the experimental results to results of calculations. The
results of calculations for the magnetization and specific
heat were used to provide reasonable fits to compounds
such as Ce Lai B6 and CeAl3, YbCuAl and to dilute
systems such as ThCe.

The modification of the Anderson model determined
for two arbitrary configurations of an impurity shell, e.g. ,
4f and 4f +, was considered in Ref. 9. The model de-
scribing the exchange and the correlated-hybrid. ized in-
teractions between electron states localized at an impu-
rity and conduction electrons of a metal was proposed
in Ref. 10. In this paper we propose a modification of
this model, namely, the model of conduction electrons of
a metal interacting via the exchange and hybridized in-
teractions with a orbital degenerate shell of an impurity
atom. The inclusion of realistic features such as the or-
bital degeneracy of electrons in the Hamiltonian proposed
by the author earlier permits a more realistic single-
impurity model to be built. Such a model has interest
and direct relevance to rare-earth impurity systems.

Let us consider a model describing the behavior of
a localized moment in a paramagnetic host metal in
which highly correlated degenerated conduction states of
a metal interact with a magnetic moment of an impurity.
The model consists of a orbital degenerate level, which
can be singly or doubly occupied, and is hybridized,
and the exchange interacts with the conduction electron
states. As shown in this paper for a linear dispersion of
the conduction states the model is integrable by means
of the Bethe ansatz. The Hamiltonian of the model con-
sidered is
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+) ) f dzb[z)[Wc~ [z)d z +H c.],
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where c" (x) and c (x) are the creation and annihi-
lation operators of the conduction electrons of spin 0
(o =g, $) at x in the band m (m = 1, 2, ..., f), dt and
d are the operators of electrons localized at the impu-
rity located at x = 0, n is the number of spin-0. and or-
bital index-m electrons localized at an impurity, ep is the
energy of the one-electron impurity level measured Rom
the Fermi energy c~, U is the on-site Coulomb repulsion,
and W is the constant of the correlated-hybridized inter-
action. The additional term L'R excludes all configura-
tions of the impurity shell with more than two electrons.
The addition of such a term in (2) is necessary for the
factorization of a many-electron scattering process into
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two-electron scattering matrices.
The kinetic term of the Hamiltonian (2) is written for

the dispersion of band electrons linearized near the Fermi
energy. In this approximation the conduction electrons
interact only with the same sign of a momenta (right- or
left-going wave numbers). By setting the Fermi velocity
equal to unity, the coupling constants in (2) and (3) be-
come dimensionless and the conduction electron density
of states at the Fermi level p~ =

2 in our units.
Instead of directly considering the model Harn. iltonian

it turns out to be more fruitful to study a diagonalization
of the T~ matr. ix related to (1)—(3). The construction of
the T~ matrix is standard; it is built &om two-particle
scattering matrices: electrons on impurity and. mutual
scattering of electrons. After some manipulations we ob-
tain the expression for the scattering matrix of electrons
on an impurity:

'
g(k~) —A ) —i/2

exp('k, l. + i(t) = '
(,)"', g(k, ) —A
' +i/2

(9)

'"; A(') —g(k~) —i/2 A( ) —i/2 q", A( ) —Aq(
) —i/2

color index r = 1, 2, ..., 2f; in such a manner according
to (4),(7),(8) the model Hamiltonian is SU(v) invariant
(v = 2f).

We may use the quantum method of the inverse prob-
lem to obtain the eigenvalues of the Tz matrix (8). A11
solutions are characterized by W, momenta k~ (j
1, 2, ..., 1V,) of charge spinless excitations and sets of ra-
pidities A

" (r = 1, 2, ..., v —1) which are coupled via the
Bethe ansatz equations

g(ki) —P'o
R~ p —— ' exp(i(t ),

g(k) = k —sp —s+ iWi c/2
c(k —s~ —s —iWi2/J) '

(4)
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where

P = —2tan (J/2),

M. &( ) ~( )+,.
for 1(r (v, (ll)

and Pj0 is the permutation operator, Pj0 ——P-0P-0, here
P1-0 and P20 are the permutation operators for spin and
orbital indices of the conduction and localized electrons,
e =eg+U.

Note that the phase shifts are additive at the scattering
of electrons on impurities; thus the electrons are scattered
independently and the result of scattering is independent
of the relative positions of impurity atoms.

The form of the T~ matrix in our case is determined
by the two-electron scattering matrix of the conduction
electrons (the S matrix). Considering the scattering pro-
cesses of two electrons on the impurity we get the factor-
ization equations '

R;pR, pS,; = S~;R~OR;o, S;,S;(S~( = S~iS;iS. ;, , (6)

which are easily verified to hold for the S matrix. From
Eqs. (6) we obtain the solution for the matrix of mutual
scattering of band electrons,

g(k;) —g(k, ) —iP;,
g(k;) —g(k, ) —i (7)

Tj = S~~+1Sjj +2 ' SjNe +j OSj 1Sj 2 ' Sjj —1 (8)
The band m and spin o. indices can be considered as one

where P;j is the permutation operator for spin and orbital
indices of the scattered electrons.

Taking into account the factorization equations (6) the
Harniltonian (1)—(3) is diagonalized following standard
procedure. On imposing the periodic boundary condi-
tions the (N, + 1)-particle problem is solved by means of
the nested Bethe ansatz. The T~ matrix has the following
form:

where M, is the number of rapidities in the set (A
M = 0; the number of particles with color r is equal to
n„= M„ 1 —M„~

The energy of the (K, + 1)-particle system is given by
the sum of all momenta,

N,

E=) k,. —st%, +sg
j=l

The total magnetization can be found as

(12)

(13)

III. GROUND STATE

The Bethe ansatz equations have real for kj and com-

plex solutions for A" . In the ground state, however,

all A(" take real values. In the thermodynamic limit
the rapidities are closely spaced, so that we can intro-
duce the distribution functions p(k) and 0(")(A) for k
and A("), respectively. The corresponding hole distribu-
tion functions are ph, (k) and O'I,

"
(A). Note that pI, (k) g 0

for kp ( k ( kq (where ky is the Fermi momentum

and kq is the conduction bandwidth) and o'& (A) g 0(&)

if —oo ( A ( —B„. By taking the continuum limit of
Eqs. (9)—(ll) the Bethe equations corresponding to the
ground state can be transform into linear integral equa-
tions

here N is the total number of particles.
Equations (9)—(ll) together with expressions (12),(13)

for the energy and the magnetization describe explicitly
the ground state of the model for an arbitrary density of
electrons and coupling constants.



6390 IGOR N. KARNAUKHOV 51

1 I
p(k) + p), (k) = ——g'(k) dAai[A —g(k)]cr~ ~(A),2' —B„

(14)

kF
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0
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n 1a„A
27' A + (n/2)2

' (17)

The symbol a *f (A) denotes the convolution of the func-
tions a(A) and f (A),

where cr~"l (A) = 0 and the function a (A) used in (14)—
(16) is defined as

and

kF OO

ni —— dkp, (k) — dAcr~'l (A),
0 —B1

n, = dAcr~ l(A) — dA(r& l(A)
—B„ —B„

for 1(r (v, (18)

a a f(A) = f dA'a(A —A') f(A')
kF

n = N, /I = dkp, (k),
0

Equations (14)—(16) determine all the distribution func-
tions as a function of the integration limits k~ and B„
(r = 1, 2, ..., v —1). The integration limits are determined
&om the numbers of conduction electrons with each spin
and orbital component. I et n„be the density of conduc-
tion electrons with color component r; then

where p(k) = p, (k) + &p, (k) and oi"&(A) = rr,
"

(A) +
&o~'"l (A). The distribution functions can be divided into
a host and impurity part; n, is the density of the con-
duction electrons.

After some algebraic manipulations Bethe ansatz equa-
tions yield then the set of integral equations

kF

p(k) + ph (k) = ——g'(k) dk'l:[g(k) —g(k')] p(k') ——g'(k) l:[g(k)]
27t 0 I

v —1

yg'(A) ) f dAg [A —g(k)]aa~'~(A),
r=1

v —1 kF
a~"~(A)+ ) g, aaa~ ~(A) = j dgg„[A —g(A)]g(k)+ —&, (A),

m=1 0

l:(A) = — dpd exp( —~u~/2) exp(ipdA),=1 sinh[(o (v —1)/2]
2K sinh(uv/2)

1 sin(err/v)
v cosh(2vrA/v) —cos(err/v)

'

where g„(A) is an integral operator whose kernel, in momentum space, is

sinh [min(r, m) pd /2]sinh( [v —max(r, m) ]pd/2)= exp (dd 2
sinh((o/2) sinh((d v/2)

(20)

(21)

(22)

(23)

(24)

Below we consider a valence of an impurity ion at 0 = 0
(H is an external magnetic field). In the absence of a
magnetic Geld it is easily seen that all B„=oo. Equation
(20) is transformed into the following equation for the
function p(k) at H = 0 denoted as pp(k):

kF
p()(k) + pr, p(k) + g'(k) dk'C[g(k) —g(k')]pp(k')

0

1 1 I= ———g'(k)l:[g(k)]. (25)2~ L

The value of g(k) tends to zero for a momentum equal to
kp ——s~ + s —~W~ c/2 and tends to infinity at the point
k = s~ + s + ~W~ /J. In contrast to the Anderson
model a strong dispersion of g(k) has taken place. Two
branches of values of g(k) are realized for 0 ( k ( ki,
namely, for 0 & k ( k and k & k ( kq. The valence
of an impurity atom depends of the value of g(k) at k =
k~, the state of an intermediate valence is determined
by the region of values of k~ at close range of a strong
dispersion of g(k). I.et us consider the solution of Eq.
(25) for the state of an impurity with a localized moment
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assuming that s = k~ —sF —]W~ /J and J & 0. For
this case we can solve the integral equation (25) using
standard Wiener-Hopf technique. We Gnd this solution
in the weak interaction limit at ~W~ /~ (s~ —s) J~ && 1 and
[W( /](ki —e~ —e)J] && 1 approximation. The key to
the solution of this equation is to find a decomposition
of the kernel of the integral equation (25) into factors
G~(u) that are analytic in the upper and lower ~ planes,
respectively,

[1 —Z(~)] ' = G+(ur)G ((u), lim G~(u)) = 1,

where

kF
T~ = 2 dk exp[ 2—erg(k)/v]po(k)

0

Since the magnetic field corrections to p(k) are of order
H, we use the zero-field solution for p(k) in (30). The
value of T~ is very small compared to c~, such that the
function of g(k) is positive for 0 & k & kp. . This factor
leads to the following inequalities, which were obtained
in Ref. 10:

1+ iWi2c ) 0 and c — &0.ciW]2

2(k~ —s~ —s) J(ky —sy —s)

i~(v —I)
fice+ 0)G-(~) = G+(-~) = ~v

I 2vre )
I'[1+ i(u/(27r)] Fi(u

I'[1 + i(uv/(2vr)] ( 2m ) (26)

Note that the magnetic susceptibility is just the
Coqblin-Schrieffer or degenerate exchange model ' with
the Kondo temperature defined above and the mixed-
valence region corresponds to the strong dispersion of
function of g(k) near kp.

I'(x) is the gamma function.
The density of the conduction electrons is related to

the dimensionless parameter A:~ via the following equa-
tion:

~v du sin(~v /2)sin[sr(v —1)/2]
2~ o (u sin((u/2) G+ (i(u)

kF
x dk exp(~[g(k) —1/c] j. (27)

The valence of an impurity is obtained from the solution
of Eq. (25):

n; =1+ ~v sin(~/2) sin[(u(v —1)/2]
7r o sin(cuv/2)

x exp((u/c) G+ (i~)

~/v . 1 .) —sin(27m/v) exp[27m/(vc)] G+ (i2vrn/v) .2' n

(28)

gimp 2
7

ghost LrTR

where T~ is the Kondo temperature,

(29)

This solution is obtained for e & 0 when a local magnetic
moment is formed.

We calculate the behavior of a localized magnetic mo-
ment in a small magnetic field. According to Eq. (21) the
driving terms for the host and impurity parts of the dis-
tribution functions have the same sin(7rr/v) dependence
on r and the exponential asymptotics for large A; hence
the impurity and host solutions for rr„" (A) are propor-
tional for small magnetic fields. This leads to the fol-
lowing relation between the impurity and host magnetic
susceptibilities:

IV. THERMODYNAMIC EQUATIONS

The asymptotic solutions of Eqs. (9)—(11),within L -+
oo, lie in the complex plane and form a string,

A~'&~ ——Al"l + i(n + 1 —2k)/2 + 0[exp( —bl )],

k=1, 2, ..., n, b)0, (31)

p' —1

y7') f dAoo~")]A)»in]g,
"

]A)]),
—OO

(32)

where fo is the density of the ground-state energy at
H = 0, n(s) = [1+exp(s/T)] is the Fermi distribution

function, and pro' (A) are the ground-state distribution
functions independent of H and T.

The equations determining the thermodynamics of the
model are conveniently written as

which is characterized by a common real abscissa A
~ (r)

and the string length n.
The solutions for the excitations are the same as for

the degenerate exchange model.
The equilibrium distribution functions at temperature

T can be obtained by minimizing the thermodynamic po-
tential 0 = E—HM s~N —TS (8—is the entropy) with
respect to the distribution functions subject to the Bethe
equations. The density of the thermodynamic potential
in terms of the newly de6ned distribution functions is
given by

kl

0/N = Fp + T dkpo(k) ln(n[K(k)])
0

K(k) = k —s~ —H(v —1)(l —v/2)
v —1 A:I

+&) f g&&. ]g]&) —&]»&~I~',"'
V )I) —& g&'g'(&')g Ig(&) —g]&')]»)~]—gg]&')]),

r=1 0
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ei'~ (A) = T—s w 1n(n[s21" (A)]}+ Ts s ln(n[ —si" (A)]n[—ei' (A)]}

dkg'(k) a[A —g(k)]in(n[ —K(k)]}, (34)

e„" (A) = Ts—+ ln(n[e„'+i(A)]n[(e„" i(A)]}+ Ts e 1n(n[ —s~"+ i(A)]n[ —e~" (A)]} for n & 1,

where s(A) =
2

The quasienergies are required to satisfy the boundary conditions

lim [s~"+ii(A) —s~"1(A)] = H

(35)

The ground-state configuration corresponds to the filling of all states with K(k) ( 0 and si' (A) ( 0. Consequently,
the conditions

K(k ) =o, ~',"'(B.) =o
provide another way to define the values of k~ and B„for the ground state for the given magnetic field and the Fermi
energy. The qualitative behavior of the quasienergies is most easily understood by writing (33)—(35) in the form

v —1

ln(n[ —equi"~(A)]} = ) g, * (s * ln(n[ei" (A)]}—1n(n[s2' (A)]})

dkg'(k) W„[A —g(k)]in(n[ —K(k)]}, (36)

v —1

in(n[ —e~'i(A)]} = ) g„w (s w ln(n[s~"1(A)]} —ln(n[e "+i(A)]n[r
"

i(A)]}) for n ) l.
m=1

(37)

We are interested in the thermodynamics in the scaling regime H, T (( ep, 1. The Kondo limit is obtained by taking
into account the spin excitations at low energies and suppressing the charge excitations. In this approximation Eq.
(36) for the thermodynamic function s'i' (A) takes the form

v —1

ln(n[ —ei" (()]}= ——sin(~r/v)exp
(

—( [
+ ) g„~ * (s * 1n(n[zi' (()]}—1n(n[e2"1(()]}),

V
(38)

and Eqs. (37),(38) become universal, ( = A

2" ln(T/T~). According to (32) the impurity part of the
thermodynamic potential is then given by

I

Substituting the low-temperature asymptotics of the
quasienergies into (32) we obtain the impurity part of
specific heat coeKcient at T -+ 0,

d(X„(+ 1n(T/TJt, -)—
27r

cs 2~ ch
2

+~mp +imp +
3 +imp ~ (41)

x 1n(n [~li'1(() ]}. (39)

Equations (37)—(39) are just the thermodynamic equa-
tions for the Coqblin- SchrieKer model as derived by
Tsvelick and Wieglnann.

I et us consider the density of the thermodynamic po-
tential in low-temperature limit in which H ~ 0, T ~ 0
and H/T is fixed. Write K(k) = Ko(k)+T SK(k), where
Ko(k) is the ground-state solution and SK(k) is the so-
lution of the equation

where p; is the low-temperature special heat calculated
in the Coqblin-SchrieKer model ' and p&~p is the charge
susceptibility.

The structure of this expression is quite natural from
the point of view of Fermi liquid theory. In the case when
the Dirac seas are filled by momenta and strings, there
are two Fermi liquids with diferent sound velocities. The
low-temperature specific heat is simply the sum of the
specific heats of all Fermi liquids.

1
v —1

+—) dAW„[g(k) —A]ln(n[eli"i(A)]}. (40)

hK(k) + dk'g'(k')C[g(k) —g(k')]hK(k')

= —g'(k~) C[g(k) —g(k~)]
dKO(k)

V. SUMMARY AND CONCLUSIONS

We obtained the ground-state properties of the SU(v)-
symmetric impurity model. The model Hamiltonian
takes into account both the exchange interaction between
degenerated conduction electrons of a metal and elec-
trons localized at an impurity and the hybridization of
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localized and band electronic states. The charge states
in the system are determined by the real solutions of the
momenta of electrons in contrast to the Anderson model.
The solutions of the Bethe ansatz equations of the model
and the ones in the Coqblin-SchrieKer model have a sim-
ilar structure and the spin analogy between these models
has &equently been invoked.

At low temperatures the infinite set of coupled nonlin-
ear integral equations that arise &om the Bethe ansatz

solution have been solved using standard iteration pro-
cedure. The linear specific heat coefBcient has been ob-
tained analytically.
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