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We present the two-dimensional phase diagram of an isotropic six-state chiral Potts model with
a noncyclic Boltzmann weight matrix. This model has been introduced as being preintegrable in
the sense that a very constraining functional relation for the partition function is known. The phase
diagram shows itself to be very rich. In one region the model almost decouples, like a (q„qt) model,
in a product of two simpler models, while in another region a mean-field calculation gives good
results compared to our Monte Carlo simulations. All the transition lines, as well as their order, are
numerically determined. Besides, using the above-mentioned functional relation, an exact form for
one of these transition lines is proposed. The low-energy states are also analyzed showing a variety
of zero-temperature behavior in the di8erent regions of the phase diagram.

I. INTRODUCTION

The q-state standard Pot ts model is now univer-
sally recognized as an important model. It is indeed a
good model for a variety of physical situations, but it
is also a testing ground for diHerent theories of classi-
cal physics on a lattice, as well as for a variety of nu-
merical methods. Despite the fact that the partition
function for q ) 2 is only known at the critical tem-
perature, the standard model is well understood. ' To
describe realistic situations many generalizations of the
standard Potts model have been introduced. In partic-
ular, chiral Potts models have been proposed as being
applicable to commensurate-incommensurate transition
or floating phases (Ref. 5 and references quoted therein),
the chirality being equivalent to a next-nearest neighbor
interaction. Another kind of useful generalization is pro-
vided by models having multicomponent dynamical vari-
ables. For example, the appearance of sinusoidally mod-
ulated phase in lipid bilayers was successfully modeled by
a multicomponent (3, 2) system, where each site has both
a two-state (Ising) variable and a three-state (Potts) vari-
able. Another example is provided by the description of
the critical behavior of cubic rare-earth compounds by
the same kind of two-component model. At the same
time much eEort has been devoted to searching for new
integrable generalized Potts models. The remarkable dis-
covery of new solutions for the Yang-Baxter equations for
one-component chiral Potts models triggered a number of
publications in this Geld. For example, the relation-
ship between integrability and criticality has been stud-
ied both numerically and analytically. New solutions of
the star-triangle equations in multicomponent (N, Np)
models have been proposed. Finally, the connection be-
tween multicomponent and one-component chiral Potts
models has been studied. Such a factorization of a one-
component model into a multicomponent model has been
found numerically in the present work.

Most of the known solutions of the Yang-Baxter equa-
tions concern models with cyclic Boltzmann weight ma-

trices. The exact inHuence of this cyclicity is not yet
clear. On the other hand, some exact results, using
inversion relations, were obtained for models where
this cyclicity condition is not imposed. These ex-
act results concern, among others, a six-state chiral non-
cyclic Potts model denoted hereafter the Bellon-Maillard-
Viallet (BMV) model. This six-state model is defined on
a square lattice and depends on two sets of homogeneous
variables, one set corresponding to the horizontal bonds
and the other one corresponding to the vertical bonds. A
functional relation for the partition function was shown
to hold. The aim of this paper is to present the com-
plete phase diagram of the BMV model. We discuss the
consequences of the functional relation for the partition
function and give the results of extensive Monte Carlo
simulations for an isotropic square lattice.

The paper is organized as follows: in the Grst part the
model is presented in detail, together with a summary
of the rigorous results available in the literature. In the
second part the numerical methods are presented; the
parameters and equilibrium criteria are also given. The
two last parts discuss the results of the simulations and
compare them with the exact results. The third part
concerns the ferromagnetic region, while the fourth is
devoted to the antiferromagnetic region and the mixed
regions, where the physics is somewhat di6'erent.

II. SUMMARY OF EXACT RESULTS

An isotropic model with discrete spin variables on a
square lattice with only nearest-neighbor interactions is
deGned by its Boltzmann weight matrix TV. The parti-
tion function is

(2 1)

where cr; p Zq. The sum of the right-hand side runs
over the q configurations (N = L x L is the number
of sites) and the product runs over all the bonds (i, j)
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*)
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z y z . (2.3)
( z z y )

The matrix TV depends on three homogeneous vari-
ables, x, y, and z. As in Ref. 16 we will use the two in-
dependent parameters, u = y/x and v = z/x. Since the
matrix W is not symmetric, we have to give an arbitrary
orientation to the lattice: for example, we can choose to

of the square lattice. For the BMV model (denoted Ps
in Refs. 16 and 17) we have q = 6 and the following
noncyclic Boltzmann weight matrix:

put arrows from the left to the right on the horizontal
bonds and to put arrows from the top to the bottom on
the vertical bonds. Note that the matrix (2.2) does not
enter exactly in the scheme of the multicomponent Potts
models for which solutions of the star-triangle relations
are known ' because the submatrix A is repeated in its
transposed form, but matrix W exhibits the remarkable
property of being stable with respect to matrix inversion.
This property can be used to deduce a relation obeyed
by the transfer matrix and consequently by the parti-
tion function. This has been the motivation for the
present work.

Using this relation together with the m/2 rotational
invariance of the model it was shown in Ref. 16 that the
partition function of the anisotropic model verifies the
following relation:

Z((u, v), (u, I)) = ' Z(IJ(u, v), JI(u, v)),
p Juv

(2.4)

where

p (u, v) = [(1 —u)(1 —v)(1+ 2u+ 3v)]
—u —u+ 2v2 2 u +vu —v —v2 2

I(u v) =
I( 1 + u + 2v —u —2uv —v

' 1 + u + 2v —u2 —2uv —v2)

J(u, v) = (1/u, 1/v) .

(2.5)

(2.6)

(2.7)

Here u = y/x and v = z/x refer to horizontal bonds,
while u = y/x and v = z/x refer to vertical bonds.
The form (2.4) allows us to discuss the isotropic case,
although the mapping (IJ, JI) does not preserve the
isotropy; this means that applying the transformation
(IJ, JI) to an isotropic point (u, v, u, v) generally does
not give an isotropic point (u', v', u" g u', v" g v').
The two involutions I and J generate an infinite dis-
crete group of birational transforrnations. The algebraic
expression,

2u +2uv —2u —2vu +v u=P (2.9)

( 1 —u 1 —v
Cp u, v) =!

!+2u+ 3v' 1+2u+ 3v )
(2.10)

can be seen as a generalization of the Kramers-Wannier
duality. The line

for which (IJ) (u, v) = (u, v). As explained in Ref. 20
there is no Kramers-Wannier (geometrical) duality on
this model, but the collineation

b, (u, v) a: 2u+3v = ~6 —1 (2.11)

(2v + 2vu —u —2u —2vu + v u)(u —v )
(v + u)4(1 —u) (1 —v)2

(2.8)

is invariant under the action of the elements of this infi-
nite group. The orbits A(u, v) = 8 are generically ellip-
tic curves, which foliate the phase diagram, but for some
values of b these orbits become rational curves. For ex-
ample, A(u, v) = 3/16 gives the standard Potts model.
For other values of b the previous group generated by I
and J degenerates into a group of finite order. For ex-
ample, b = 0 corresponds to the two branches u = v for
which (IJ) (u, v) = (u, v) and

is invariant under Co. We call it a self-dual line. It is
shown in Fig. 2. Point B is the point where the self-dual
line A intersects the curve (2.9), where the symmetry
group degenerates into a finite group of order 6. This
point of enhanced symmetry turns out to play a special
role in the phase diagram as explained below in Sec. IV.
The coordinates of the point B are (0.371 88,0.235 24).

We can generalize a perturbation argument due to
Kardar to the BMV model, which works as follows:
The element W, , of the matrix (2.2) can be rewritten
as

W, , (u, v) = v *
! 1+ U, , !, (2.12)'')
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where b, , is the Kronecker symbol, and the matrix U
is given by

(0
0

U=

1 0 1 0 0)
0 1 0 1 0
0 0 0 0 1
0 0 0 0 1
1 0 1 0 0
0 1 0 1 0)

(2.13)

The term v " ~' in (2.12) corresponds to a standard
Potts model with v as the Boltzmann weight for a bond
between two spins of difj'erent colors. We note that Z'(v)
is the partition function of this modified standard Potts
model. It follows that

( u —v
Z(u, v) = Z'(v) ~

~
1+ U,

I I I v "')
(i j)

(2.14)

where the average ( ) is the thermodynamic average
for the modified standard Potts model with Boltzmann
weight v. Suppose now that we are in the vicinity of the
standard Potts model, so that (u —v)/v is a small pa-
rameter. We develop the product, and, to first order in
(u —v)/v, we find

III. NUMERICAL METHOD

To investigate the difFerent regions of the phase dia-
gram of the isotropic BMV model we have performed ex-
tensive Monte Carlo simulations. We used the usual heat-
bath algorithm, which is very appropriate for chiral mul-
tistate models including antiferromagnetic bonds. The
use of a powerful parallel twelve processor computer al-
lowed us to perform as many as 10 Monte Carlo steps
per spin (MCS/spin) for all the simulations of this work.
The equilibrium was checked comparing two determina-
tions of the specific heat, the one being a numerical dif-
ferentiation of the internal energy with respect to tem-
perature and the other one being the Huctuations of the
internal energy divided by the square of the ternpera-
ture. Using this criterion we had typically to perform 10
MCS/spin to reach the equilibrium from a random config-
uration (transient regime) and to average more than 10
values for a 128 x 128 periodic square lattice. The phase
diagram is plotted in the (u, v) plane. However, to check
equilibrium and for the interpretation of the results we
need to have the thermodynamic quantities as functions
of temperature. So we used a di8'erent parametrization
and defined an asymmetry p and the temperature T by
the following equations:

Z(u, v) = Z'(v) 1+ ) (& „,.), (2.15)
('", ) )

but, since the standard Potts model is insensitive to dif-
ferent colors, we have for the average (U, , )

(2.16)

Finally we see that, to first order in (u —v)/v the partition
function Z(u, v) of the BMV model can approximately
be expressed by the partition function Z' of the modified
standard Potts model:

, &2u+ 3vl
l

Z(u, v) = Z'
~

(2.17)

Therefore the transition point P: u = v = 1/(~6+ 1)
is not an isolated point. The modified standard Potts
model undergoes a phase transition when the argument
of its partition function Z' equals 1/(~6+ 1). With the
expression from Eq. (2.17) this yields exactly the self-
dual line (2.11). So there is a line of first-order transition
points intersecting the u = v standard Potts line at the
usual transition point P with a slope of —2/3.

To conclude this section, we introduce the BMV model
on a Bethe lattice as a mean-field approximation. We di-
rect the arrows on each bond towards the root. The ma-
trix (2.2) has the property that P o W, is indepen-
dent of o~. It is therefore straightforward to see that the
partition function of the BMV model on a Bethe lattice
is Zgy(u, v) = (1 + 2u + 3v) where M is the number of
bonds. The internal energy and the specific heat can be
easily deduced. We will see in Sec. V that this indepen-
dent bond model is a surprisingly good approximation of
the BMV model on a square lattice in some regions of
the phase diagram.

(-p& f -1't
u=exp/ [, v=exp/

E&r
This amounts to having three types of bonds. For the
type x bonds with Boltzmann weight x [see Eq. (2.2)]
the coupling energy is J = 0. For the type y bonds with
Boltzmann weight y this energy is J„=—p, and for the
type z bonds with Boltzmann weight z this energy is J
—1. In Fig. 1 some iso-p lines are shown. In particular
the value p = 1 represents the standard Potts model.
Figure 2 represents the phase diagram. Note that, to
make the diagram more readable, we have plotted on the
horizontal axis the variable u when 0 & u & 1 and the
variable 1/u when u ) 1. Similarly the variable on the
vertical axis is v when 0 ( v & 1 and 1/v when v ) l.

The energy of a configuration is completely determined
by the two numbers n„of bonds of type y and n of bonds

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1

FIG. 1. Some lines of constant asymmetry p in the ferro-
magnetic region of the phase diagram. The point u = v = 1
corresponds to oo temperature and the origin to zero temper-
ature.
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FIG. 4. Specific heat, Buctuations of the
quantities n„and n, and the order pa-
rameters as functions of the temperature for
p = 0.5 and p = 0.8 (see text). Lines are
obtained extrapolating with the help of the
histogram method, execpt for the order pa-
rameters, where they are only guides to the
eyes.

1
ms =, ) (a „o+ ~ „s) —(S...2+ 4„s) (42)

L =64

5

p=0.80
p=0.74
p=0.70
p=0.66

The intuitive idea behind these parameters is the fol-
lowing. For high temperature the partition function is
invariant under any permutation of the six colors, and
we have ml ——0 and m~ ——0. For intermediary val-

ues of the temperature the full symmetry is broken and
only the exchange of two colors of a difference of three
(0—3, 1—4, 2 —5) leaves the system invariant. The system
is then in a two-color phase, and we have mr ——0 and
m~ & 0. Finally for low enough temperature one recov-
ers a one-color ferromagnetic phase where ml & 0 and
m~ ) 0. According to this idea the high-temperature
branch P2 should be of the same universality class as the
q = 3 standard Potts model, and the low-temperature
branch PI should be of the Ising universality class. We
have succesfully tested this hypothesis, performing finite-
size scaling analysis for each of the transitions and for
difFerent values of the asymmetry. The results are sum-
marized in Table I, which gives the values of the exponent

1.4—
1.2—

0+ 0+
Qg

L=32 0
L=64 +

L=128

0
0.3 0.4 0.5

E/spin

0.6 0.7 0.8

FIG. 5. Energy probability distributions P(E) for different
values of the asymmetry p and a lattice size L = 64 near
the corresponding transition temperatures. The four distri-
butions correspond to p = 0.66 and T = 0.6810, p = 0.70 and
T = 0.6967, p = 0.74, and T = 0.7132, and p = 0.80 and
T = 0.7372.
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FIG. 6.
p= 033
The best
v= 1.0+

Finite-size scaling analysis for I = 32, 64, 128,
and the lower transition temperature T = 0.375.
agreement is obtained for P = 0.115 + 0.01 and
0.1.
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TABLE I. Parameters of finite-size scaling analysis (see text).

mr
P
0.33
0.33

T32
C

0.38
0.581

T64
C

0.376
0.577

T128
C

0.375
0.574

0.115+0.01
0.085+0.01

1+0.1
0.9+0.1

mi 0.558 0.555 0.553 0.12+0.01 1+0.1

P of the order parameter (magnetization) and of the ex-
ponent v for the correlation length. The exact values
are P = 1/8 = 0.125 and v = 1 for the Ising model,
and P = 1/9 = 0.111 and v = 5/6 = 0.8333 for the
q = 3 Potts model. In Fig. 4 the order parameter is
shown. The reduced data ml(T)L~~ as a function of
(T —T )Li~ is also shown in Fig. 6 for p = 0.33. The
agreement is good, and the universal function is clearly
seen.

The low-temperature transition is associated with the
appearance of type y bonds, while the high-temperature
transition is associated with the appearance of type z
bonds (this will be inversed in the upper triangle p & 1).
Therefore we have used the Quctuations of n„and n, as
a second criterion to locate the transition lines. In par-
ticular the coincidence of the maxima of these two Huc-
tuations determines point B. The corresponding curves
for p = 0.5 and 0.8 are shown in Fig. 4.

The situation in the triangle 0 & v & u & 1 is very
reminiscent of that encountered in the (q„qi) modelz4
(see also Ref. 25) and in the Ashkin-Teller model. The
one-component six-state BMV model can be decomposed
into a (3, 2) two-component model: if we consider the six-
state spin 8 as being composed of a two-state spin w and
a three-state spin 0 according to the following rules,

8012345
0 0 0 1 1 1

o 0 1 2 0 1 2

we end up with the following single-bond Hamiltonian
for the BMV model:

H(7o, r'o') = —(J —Jy+ J,) h 8 —(Jy —J, ) b

—(—J, ) b —J,
—(J„b + +i+ J,8 i)b

(4.3)

The last term of Eq. (4.3) is due to the cyclic submatrices
A of Eq. (2.2). Its form prevents the exact results of Au-
Yang and Perk ' from being applied to this model,
but in the region 0 & v & u & 1 of the phase diagram it
turns out that one can neglect this term, since p & 1, and
one recovers the Hamiltonian of the (q„q|) model. 4'z

To summarize the phase diagram in the lower triangle
0 & e & u & 1 of the ferromagnetic region, we have found
a first-order transition line with equation 2u+3v = ~6—1
extending from the standard Potts transition point P to
the point B of enhanced symmetry. For smaller values
of p the model almost decouples into a three-state Potts
model and. an Ising model. Two critical lines separate
a two-color phase from a disordered phase and from a
one-color ferromagnetic phase.

0.8

0.7

0.6
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e

r

p=1.5

0.3 one —color
'.0

0.2 0.3

FIG. 7. A part of the ferromagnetic region of the phase
diagram of the BMV model with simulation points and lines
of constant asymmetry (see text).

This decoupling does not hold anymore in the up-
per triangle 0 & u & v & 1 (or equivalently p & 1)
of the ferromagnetic region. The results are summa-
rized in Fig. 7, where the phase diagram in the region
(0 & u & 0.34, 0.28 & v & 0.80) is reproduced. The
transition line near the transition point P of the stan-
dard model seems to diverge from the self-dual line 4,
even though it is a curve with slope —2/3 at the point
P. The transition remains first order for 1 & p & 1.6.
Our results are then consistent with a second-order crit-
ical line for 1.6 & p & 2.0. For p & 2 we have found
two transitions, and another phase occurs between the
ordered jqw-temperature phase and the disordered high-
temperature phase. Note that point B', where the transi-
tion line splits into two branches, is significantly far from
the self-dual line A. As an example, the specific heat and
magnetizations for two diferent values of the asymmetry
p are shown on Fig. 8. The low-temperature transition is
clearly seen, but the high-temperature transition is much
weaker. We had to go to sizes as large as L = 128 and
perform extensive averages to see the size eKects convinc-
ingly. The intermediary phase is not easy to characterize.
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FIG. 8. Specific heat and the order pa-
rameters as functions of the temperature for
p = 2.0 and p = 2.5 (see text). For the spe-
cific heat the lines were obtained by extrap-
olation with the histogram method, for the
order parameters they are only a guide to the
eyes.

We checked by inspection that typical configurations in
this phase have no obvious structure (as stripes). The
full comprehension of this phase deserves more work and
especially the computation of correlation functions, but
we suggest that this phase is a trace of the Boating phase
present in the isotropic three-state chiral Potts model;12
the submatrix A of W (2.2) is indeed the generic ma-
trix of the general three-state chiral Potts model where
Boating phases have been found. The additional degrees
of freedom present in the BMV model could prevent the
stabilization of the Qoating phase. Note also that the in-
termediary phase does not extend into the nonferromag-
netic region, by contrast with the intermediary phase in
the u & v ferromagnetic region.

cy(T)

2.5

1.5—

C' p = —0.'2
0.25
0.28—

—0.3
—0.4

stripe dq. The form of the Boltzman weight matrix (2.2)
imposes choosing one among two possible colors. For ex-
ample, if the color of do is 0, then the color of d1 can
only be 1 or 3. Applying L —1 times the same procedure
completely determines a ground state. Taking into ac-

V. NONFERROMAGNETIC REGION

The nonferromagnetic regions of the phase diagram are
characterized by low-energy physics. In contrast with the
ferromagnetic region (where x is larger than both y and
z) the ground state in the nonferromagnetic regions is
highly degenerated. Two cases have to be considered
depending on whether y or z is the largest of the three
weights x, y, and z.

If y is larger than x and z, then the analysis of the
ground state and the evaluation of the residual entropy
can be done. The simple inspection of all possible four-
spin plaquettes with only type y bonds shows that the
spins of the upper-right and the lower-left corners are al-
ways of the same color (arrows are oriented from the left
to the right and from the top to the bottom). Therefore
the states of lowest energy will be composed of diagonal
stripes of spins of the same color. A ground state will be
determined by the color of each of the L diagonal stripes
of unit width running accross the sample. To construct
a ground state we start by choosing the color of a first
diagonal do. There are six possible choices. We then
have to choose the color of the first adjacent diagonal

mP(T)

0.8—

0.6—

0.4 W

~ K f I
~ ~ I.~

p = —0.2
p =, —0.28

p = —0.3
p

——04

0.8—
0 p = —0.25
& p= —0.4

0.6
fAg (T)
ma(T)

0.4

0.2

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

FIG. 9. Specific heat, magnetizations and next neighbor
correlations as functions of temperature for diferent values of
the asymmetry in the mixed region u & v.
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FIG. 10. A part of the mixed region u ) v of the phase
diagram with simulation points (see text).

(5.2)

The quantity n~ measures the correlation in the direc-
tion of the stripes (lower-left corner to upper-right cor-
ner), while n~ measures the correlation between adja-
cent stripes. A value of mD close to unity indicates that
the configuration has a band structure. Figure 9 shows
the behavior of these quantities as functions of the tem-
perature for diferent values of the asymmetry p. The

count the periodic boundary conditions, it appears that
it is possible to construct states with only type y bonds,
which means that there is no frustration. Moreover, there
are exactly 2 such states, and therefore the residual en-
tropy ln 2/~N is vanishing in the thermodynamic limit.
It is also possible to estimate the energy barriers between
two ground states: using a single spin-fIip algorithm the
cost in energy to go &om one ground state to another one
is independent of the size L of the sample, and therefore
all the ground states are "close" to each other, but note
that the optimum path in configurational space to reach
a given ground state &om a random one is very con-
strainted. The band structure of a configuration can be
quantitatively characterized by the following quantities:

specific heat is also shown. The location of the iso-p
lines in this part of the phase diagram can be found in
Fig. 10. Figure ll(a) shows a typical configuration of
the diagonal stripe phase. When p & —0.3 our results
show that the system goes from the disordered phase at
high temperature to the ordered striped phase at low
temperature without undergoing a phase transition. The
specific heat presents a broad maximum without size ef-
fects (see Fig. 9). The broken line p in the phase diagram
(Fig. 2) corresponds to the locus of this maximum. Con-
versely when —0.3 & p ( 0 the specific heat as a function
of temperature presents two maxima becoming sharper
when the lattice size is increased. The behavior of the
magnetizations and of the two quantities n„and n, intro-
duced in the preceding section shows that the interme-
diary phase is a two-color phase. The high-temperature
transition line is the continuation of the line P2 from the
ferromagnetic region, and the two-color phase is also the
same as the two-color phase of the ferromagnetic region.
The low-temperature transition points define a line CJ,
which, according to our results, is a line of second-order
transition.

If now z is greater than both x and y, there is also no
frustration in the ground states. Their number is much
greater than in the preceding case so that the residual
entropy per spin is nonvanishing in the thermodynamic
limit, even though we can only give an approximate ex-
pression of it. In principal, the same procedure as in
the case where max (z, y, z) = y can be carried out to
construct a ground state. The system is now less con-
strained: spins s of the upper-right corner and spin s' of
the lower-left corner of a plaquette need not to be of the
same color any longer. Instead, if s has a given color, then
s' can have up to two colors. Figure 11(b) shows a typ-
ical low-temperature configuration. For an enumeration
of the ground states one has to proceed now in diagonals
from the upper-left to the lower-right, and one finds that
the number of ground states behaves like 3(2 ), where
N is the number of sites and o. is a constant of about
1/2. So we get a finite value for the residual entropy per
spin at zero temperature. Figure 12 presents the specific
heat as a function of temperature along iso-p lines. The
maximum of the specific heat shows no size dependence.
The locus of these maxima has been traced as the dot-
ted line 8 in the phase diagram (Fig. 2). The mean-field

T=0.2 p =—0.3 T=0.2 p=-1

DO+ -+:::

-::C?:' $.'.

0
B

x 3
o

5

FIG. 11. (a) A typical configuration for
T = 0.24 and p = —0.3 in the mixed re-
gion u ) v. (b) A typical configuration for
T = 0.2 and p = —1 in the mixed region
u & v.
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