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Normal-state transport properties in the flux-binding phase of the t-J model
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The normal-state transport properties are studied in the Bux-binding phase of the t-J model
within the framework of gauge theory. We 6nd that the resistivity is linearly temperature depen-
dent with a relaxation rate 5/r 2k~T We .also show that the Hall coefficient involves a second
relaxation rate and the cotangent Hall angle follows a T law. Furthermore, the thermopower ex-
hibits a strong-doping dependence. All these features are in good agreement with the transport
measurements of the high-T copper-oxide compounds.

After several years efforts since the discovery of the
high-T copper-oxide superconductors, the experiments
now have achieved a great deal of consensus about the
anomalous normal-state transport properties in these
materials. For example, it is well known that the re-
sistivity in the Cu02 layers increases linearly in temper-
ature for all the hole-doped compounds in the optimal T,
regime. Combined with the optical measurements, such
a temperature dependence of resistivity has been related
to a linear-T dependence of the scattering rate 5/7
2IcsT Alinear. -frequency dependence of 5/v(u) at ~ )
T has also been implied in the in&ared spectroscopy up
to 0.15 eV. The Hall measurements show the hole charac-
teristic with a strong temperature anomaly. The recent
Hall angle concept proposed by the Princeton group,
with the involvement of a second scattering rate, has
given an excellent account for the temperature depen-
dence as well as the impurity efFects. The thermopower
in these compounds exhibits a monotonic decrease with
increasing doping and its sign could even change in the
overdoped regime.

Several strong-correlation-based normal-state theories
have been developed under the inspiration of the exper-
iments. Among them the gauge field theory for the
uniform resonant-valence-bond (RVB) state and Ander-
son's two-dimensional (2D) Tomonaga-Luttinger liquid
theory have attracted much attention. Nevertheless, a
full and systematic understanding of the aforementioned
transport properties has not yet been attained within the
&amework of these approaches.

Recently a so-called flux-binding phase in the t;J
model has been investigated. The physical origin of this
phase shares some similarities with the gauge theory of
the commensurate-flux phase. Such a phase exhibits
the superconducting condensate in the ground state just
like in a semion system. But the time-reversal (T) and
parity (P) symmetries, which are usually violated in a
&actional statistics system, are found to be restored due
to the cancellation between the charge and spin degrees
of &eedom.

In this paper we study the transport properties of the
normal state in the flux-binding phase. We shall find
a simple and consistent explanation of all the univer-
sal anomalous phenomena mentioned above by using the
gauge-theory method.

The flux-binding phase is composed of three sub- +pt [cj + A]p + qt [8 + P)q j, (la)

systems: The spin degree of &eedom is described by a
semion gas with spin (spinon), while the charge is associ-
ated with a boson gas (holon); a third degree of freedom
also involves a semion gas (eon), which may be inter-
preted as the backflow of holons and takes care of the
&ustration imposed on holons after optimizing the spin
correlations by flux binding. These subsystems are con-
nected by gauge fields which are well known ' for enforc-
ing the density and current constraints in a decomposi-
tion formulation. The real excitations can be dramat-
ically diBerent &om these constituents due to the con-
straints. It turns out that charge and spin excitations
are separated in the flux-binding phase. Their dynam-
ics become rather simple in a normal state where the
Bose condensation is gone for holons while the spinons
and cons remain condensed. As only the normal-state
transport properties are concerned in this paper, we will
start by giving a brief description of such charge excita-
tions and leave the details of demonstration to a separate
publication.

A spinless charge excitation in the flux-binding phase
is a composite particle made up of holelike excitations
p and q in the spinon and eon subsystems, which are
bound together with an excited holon due to the den-
sity constraint. The p and q species are similar to the
charge-fluxoid excitations in a semion gas, except that
the quantized flux tubes bound to the charges are pro-
duced by the internal gauge fields instead of the external
magnetic field. The usual charge-vortex excitations in
a semion gas are forbidden in the present phase due to the
violations of the density and current constraints. The
normal state is obtained when enough holons get excited
as bound to these composite excitations and no residual
holons of a macroscopic number stay in the Bose con-
densation. Above the transition temperature, no more
charge excitations are possible and the semionic conden-
sations in the spinon and eon subsystems can last a wide
range of temperature which sustain the present exotic
normal state. The efFective I agrangian for such a com-
posite charge fluid in the normal state is described by
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The p and q fields describing the charge-fluxoid
excitations ' will always "see" the fictitious flux tubes
carried by the background spinons and cons as well as
the fluxoids bound to other p's and q's, respectively. The
total fluxes are described by the vector potential +A
in Eq. (1b). Since p and q species have finite sizes
which in general are larger than the lattice spacing, a
continuum description of p and q should be appropriate
as given in the Lagrangian (1b), where mq (2tha2)
m„(2Ja2), and m~ (2bt~a ) with b as the dop-
ing concentration, a as the lattice constant, and th t.
In the normal state with the numbers of p and q equal
to the total hole number, a direct counting, with incor-
porating the density constraint, shows that the ficti-
tious magnetic fields corresponding to +A become uni-
form with a strength H = ~/a2. The degeneracy of the
Landau level is then equal to the half of the total elec-
tron number and is large enough to accommodate p or q
species at small doping, which are confined in the lowest
Landau level (LLL) as the hole-type excitations.

In Eq. (la) three species h, p, and q are bound together
as a composite particle by the density constraint

nents of the currents. An important feature in Eq. (1b) is
that the transverse external electromagnetic field u' is
solely applied to the holon part, as a consequence of the
fact that the background spinons and cons are still con-
densed as "superfluids" which show the Meissner efFect
and expel out the magnetic field. Because of the same
reason, the transverse gauge fields remain suppressed
whose strengths on the normal components h, p, and
q will be negligible. This leads to the decoupling of the
charge composite particles in (1) from the spinon and eon
backgrounds, which also implies the charge-spin separa-
tion. With the absence of the transverse spatial gauge
fields in (1b), there is no constraint similar to Eq. (3)
holding for the transverse currents of 6, p, and q. This
is certainly not contradictory to the original current con-
straint because a total current in the spinon or eon sub-
system is composed of both a superfluid component and
a normal one (of p or q), and in order to balance a finite
transverse current of Jh, a fictitious transverse electric
field with an infinitesimal strength would be suKcient to
produce the backflow in the superfluid part to satisfy the
total current constraint.

The dynamics of the temporal gauge fields A and P
can be determined after integrating out the quadratic h, ,

p, and q fields in the Lagrangian (1). The propagators
D" = —(SAbA) and D~ = —(bPbP), where 6A = A —p„
and bP = P—pz with pi, and p~ as the chemical potentials
for p and q species, respectively, are then given by

h'(~)h(r) = p'(r)S (r) = q'(r)q(r) (2)
D"~~l (q, ~) = —[(II„-'+ll-, ', )

-'+ ll„„,]-'.

through the Lagrangian multipliers A and P. [A mini-
mum scale for the constraint (2) to hold is the size of the

p and q species which, in terms of (1b), is approximately
in the order of the magnetic length ao ——H /, and thus
an ultraviolet cutofF q ao in the momentum space is
needed in (la)]. Equation (2) is a natural consequence
of the original density constraint between the holon and
the other two subsystems and leads to the longitudinal
current constraint

where the superscript l denotes the longitudinal compo-
I

Ilh ~„&l is the density-density correlation function for h (p,

q) species, which could all be regarded as fermions here. ii
Ilh for a 2D gas is typically of order of 1/th, whereas II&
and II~ P as can be seen below. Since we are interested
in the temperature range of P =

& & )) ~—, we shall then

approximate D" —1/II& and D~ —1/Ilq in the rest
of the paper.

To get the polarization function II„, we first note that
the p species stay in the LLL. Define p, ~,z

= P&(s'~k +
q)(k~s) where ~s) refers to the degenerate states in the
LLL and ~k) is an eigenstate for a free particle. Then the
"bubble" diagram II„=P i g ~p~~G"G can be written
down in real &equency as

8 8I —OO

where f(u) = 1/(e~ + 1) and pz is the spectral weight
function of the p-particle Green function 0". If there
is no broadening in the Landau level, i.e. , p„(s, ur)

27rb(u —wg) (wo = zuf —p„, where mi' = is the cy-

clotron frequency), then (5) would show that II„(q,m) =
0 for u g 0. The same also happens to II . According

to (4), however, D"'~ would thus become divergent at
& 0. Coupling to such strong fluctuations of D"'~

in (1) would force the Landau levels of p and q broad-
ened. This procedure, of course, has to be treated in a
self-consistent way as follows. One may assume, at the
beginning, a broadeiung F„(u) for p~:

(6)

dO
ImZ~(s, ~) = ——) ~p. ,q~' [n(O) + f(~+ 0)]

g8

x p„((u+ 0)P"(q, 0),
(7)

in which n(A} = (e~ —1) and P" = —2ImD"

2F ( o)"( ) - F„(. ..)+(. .;)'
Then the broadening F„(w —uz) = —ImZ" (ur) is deter-
mined by (without including the vortex correction):
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21mll~/~ 11~~2 . The chemical potential in mo is decided by
an equation b = 1/(2vr) P, f dip„(u) f (u). In these self-
consistent equations, one can rescale all the &equencies
by cu —~o" = (P i and find the quantities Pl'„((P ) =
rl(() and Puz to be independent of both temperature as
well as the coupling constants. Then at $ = 0, one gets

(8)

where the density of states Di, = mi, a /(2m). A rescaling
on the right-hand side of the above equation gives 5/wi, ——
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FIG. 1. The coefficient g(0) (square) as a function of the
doping concentration b. The inset shows a curve of g(() (cir-
cle) vs f at Pcug = 0.

The coefficient rl(0) has a weak doping dependence as
shown in Fig. l. (An ultraviolet cutofF q 1/ao for the
inomentum q has been used in the numerical calculation. )
A typical curve of rl($) as a function of ( is also presented
in the inset of Fig. 1, which is approximately linear in (
at )() » 1, or equivalently, I'„(u) oc ~ur~ at )cu~ && kBT
A similar result holds for the q species. Finally we note
that in the limit b -+ 0, the condition that II„~dominates
over IIh will be no longer valid and one needs to retain
all of the contributions from II„~ h in (4). In this case,
I'„~(0) could deviate f'rom the linear-T dependence.

The relaxation rates 5/w„~ for p and q species due to
scattering to the gauge Quctuations should be obtained
by inserting the vertex correction in the self-energies like
(7), which can be reduced to the well-known 1 —cos8
factors in the quasielastic case. But since D" P (q, 0) have
very weak q dependence, cos8 essentially has no impor-
tant efFect and A/w„, ~ 21'„s. As w~ = r„, one can
use a single relaxation time ~, to represent them later:

= 2il(0)k~T. The transport rate h/wi, for Ii species
can be also calculated &om scattering with D and D~.
Due to the weak q dependence of P" and Pl, we get

—= —21mZ~ (k, 0)
&h

2D d n + P + P~

pock~T . (9)

The corresponding relaxation rate is h/r, 2k~T,
in which the coefficient is independent of the coupling
strength but with a weak doping dependence (cf. Fig.
1). When [ur~ && k~T, one also has h/r, oc ~u(. All of
them agree well with the optical measurements. Gener-
ally one expects to see a small T upturn in (9) from pg
at a sufficiently high temperature.

Hall effect Now apply. the external magnetic field n'"t
u'"t will solely act on the h species since there is no in-
ternal transverse gauge field in (1) to transfer the effect
to p and q species. One may use the kinetic equation to
write down the o8'-diagonal coefficient p"„ for h species
in the form p" = ph, and p"„= —ph~07h where the
cyclotron &equency uH could dier &om the bare one

by an enhanced cyclotron mass mH. This
is due to the fact that in the presence of the external
magnetic field, a wave packet of holon h has to drag the
wave packets of the p and q together to go through the
cyclotron motion. This drag force cannot make the p and
q species performing a coherent cyclotron motion in the
external magnetic field but will enhance the effective cy-
clotron mass of the h species since p and q are confined
in the LLL and thus their e8'ective masses are very large.
Such a big cyclotron mass is in contrast to the longitu-
dinal transport masses discussed before. Note that the
electric field can be directly applied to both the p and q
species inside their orbitals which changes the latter into

q'(k~T) /ti, . The numerical value of rI' is found 8 with
a weak d.oping d.ependence.

Resistivity. Apply the external electric field
e = —V'az"~, with a' = 0. e will not only act on the
holon part because the fields A and P will partially trans-
fer the e8'ect to p and q particles: A ~ A + A „q, and
p -+ p+ p,„t. So the net electric field on h is equal to
ei, = s' —e, where e, = VA,„t + V'p, „t. ei, and a, will
be decided by maintaining the constraint (3). For the li
species, the Drude formula of the resistivity is ph ——

where n is the density of hole, and then eh ——ph Jh. On
the other hand, as p and q species are subjected to the
fictitious magnetic fields, one would expect the nonzero
Hall eKect for each of them. However, in terms of the den-
sity constraint (2), two wave packets of p and q particles,
whose sizes are much smaller than the average distance
of holes, have to be bound together during the relaxation
time. As each of them sees the fictitious magnetic fields in
a diff'erent direction in (1), the pure transverse efFect will
thus be canceled out through the internal force. Using
the center-migration theory, one finds that the center
coordinate of the wave packets for p and q will be simply
accelerated by the external electric field e, added onto
them, with an e8'ective mass m, = m„+ mq. As the
relaxation times for p and q are characterized by a single

w„ the corresponding Drude formula reads p, =
C AT' s

with p, connected to r, = p, J'„where J', = J„=J .
According to the current constraint (3), we find that the
electron resistivity satisfies the loft-Larkin-like combi-
nation rule p = pi, + p, . Since pi, /p, ( & ) "s& (( 1, one
therefore obtains the linear-T resistivity
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the current-carrying states and, as the consequence, the
total longitudinal effects are simply added up in p, as
well as in p.

The total transport coeKcients can be determined as
follows. The current Jg are decomposed into the lon-
gitudinal and transverse components as Jh ——J& + J&,
with J& ——o" eh, J& ——or"„(eh x z). The longitudinal
component J& has to satisfy the current constraint (3),
i.e., J& ——J„which determines the strengths of eh and
e, through s = ep, + e, . Then simple algebra will lead
to p = ph+ p, /(1+cot 20), where the cotangent Hall
angle 8 defined by cot 8 = p /p„ is found as

1cot0 = =nT +C, (10)

with a = rl'k&/(RuHth) and the constant C originat-
ing &om the scattering of h species with impurities. p
shows a magneto-resistance effect through cot 0 which
is usually small, e.g. , cot 20 = 4 x 10 for Y-Ba-Cu-O
at T=100 K. The T law for the cotangent Hall an-
gle in (10) has been a very good fitting2 4 to the exper-
imental measurements of high-T copper-oxide materi-
als. Anderson proposed that a second scattering rate is
needed to interpret the experimental data. It has been
supported by the Zn impurity effect which causes an ex-
tra T-independent contribution in cot 8. The scattering
rate h/wh found in the present work appears naturally in
(10) to serve as such a second scattering rate. The Hall

coefficient R~ can be written as R~
In order to fit the Hall angle data in Y-Ba-Cu-O, it has
been found that the cyclotron mass mH has to be very
large, e.g. , mH 45m„ if tl, 8 x 830 K. A mechanism
for such an enhancement of mH comes naturally in the

present approach.
Finally we brie8y discuss the thermopower 8 = Sh +

8, . Sh for the 6 species gives a small temperature-
dependent contribution but 8, will be dominant. When
the temperature is extrapolated down to zero where the
broadening of the Landau level vanishes, 8, will be sim-
ply related to the entropy of p and q species and one
finds a Heikes-like formula 8, = —"n ln( 2& ), which
agrees very well with the overall doping dependence in
(Lai Sr )2Cu04 (Ref. 16) (taking b = 2x) and other
materials. The broadening effect is expected to become
important with increase of temperature and the corre-
sponding temperature dependence of S, needs to be fur-
ther explored. The absence of the spin effect in the
thermopower measurements also lend a support to the
present charge-spin separation picture.

In conclusion, we have shown that the Lagrangian (1),
describing the composite holon excitation in the fIux-
binding phase, can systematically explain the main fea-
tures of the anomalous transport properties (the resistiv-
ity, the Hall effect, and the thermopower) in the normal
state of the high-T superconductors. In order to explore
other normal-state properties, one needs also to include
the spin excitation which has been decoupled &om the
charge component in the Qux-binding phase and will be
discussed elsewhere.
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