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Phase transitions in cubic models with random anisotropic exchange
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A Monte Carlo algorithm has been used to study a three-component cubic spin model with a type of
random diagonal anisotropic exchange on simple cubic lattices, in the strong anisotropy limit. There is a
narrow region of "domain ferromagnet" phase between the ordinary ferromagnet and the spin-glass
phase, which also has a domain structure in this model. Even with the presence of the domain struc-
tures, the spin-glass freezing appears to take place via a mobility edge transition that is similar to the
process which occurs in the Ising spin glass.

I. INTRODUCTION

It was demonstrated over ten years ago' that, if one
wishes to reproduce the spin-freezing transition seen in
many real experimental systems, it is essential to add an-
isotropic interactions to the three-dimensional Heisen-
berg spin-glass model. Within a mean-field theory or
even an c, expansion about six dimensions, this addi-
tion of anisotropic interactions causes the model to cross
over to the Ising spin-glass universality class. Some of
the most carefully studied experimental systems, such as
CuMn and AuFe, are crystalline alloys with an average
cubic symmetry. Until recently, the possible effects of
this average cubic symmetry on the spin-glass freezing
transition have been largely ignored. A renormalization-
group calculation by Aharony gave the result that a
weak cubic anisotropy should not affect the freezing tran-
sition. However, we now know that the lower critical di-
mension of the isotropic Heisenberg spin glass is four.
This invalidates the assumptions of Aharony's calcula-
tion. Reasoning by analogy with the situation for cubic
ferromagnets in two dimensions, ' it might be anticipat-
ed that an average cubic symmetry would cause the spin-
glass transition in a three-dimensional system to become
discontinuous' when the number of spin components is
three or more.

In this work we will present evidence that a transition
with a new type of domain spin glass, bearing some
resemblance to the one seen in CuMn, occurs in a partic-
ular three-d. imensional model which includes three-
component spins, random anisotropic spin exchange, and
a strong cubic anisotropy which favors the cube axis
directions. No clear evidence is seen for discontinuous
behavior, however. If the appropriate compensation is
made for the increase in the number of spin components,
the freezing transition is rather similar to the one seen in
the usual Ising spin glass.

There has been some recent numerical work"' on
models which add a random off-diagonal spin exchange
to the Heisenberg spin glass. Because the probability dis-
tribution of the random spin exchange in these models is
not invariant under rotations, these models have an
effective average cubic symmetry. It has been found, as
expected, that these models have spin-freezing transitions

at some T & 0 in three dimensions. It is fair to say that
the nature of the freezing transition remains somewhat
unclear. In the author's opinion, the crucial di%culty is
the lack of a fundamental understanding of the behavior
of the Hertz, Fleishman, and Anderson model' in a
three-dimensional system.

II. RANDOM ANISOTROPIC EXCHANGE MODEL

%'e consider the simplest model which will suSce for
the questions we wish to study. The Hamiltonian for a
three-component spin model with a random nearest-
neighbor anisotropic exchange and a cubic crystalline an-
isotropy is

3 3
H= —g g S; J;~~S)~ Kg g —(S, )4—1J J

i a=1

In order to make the calculation tractable, we will work
in the limit K~ ao, so that each spin has only six possible
states, parallel and antiparallel to the cube axes. We
choose the spins to be classical and of unit length, and to
lie on the sites of a simple cubic lattice. The notation
(ij ) denotes that i and j are nearest neighbors. In order
to specify the model completely, we must choose a proba, -
bility distribution, P(J), for the exchange matrices. In
this work we assume that each J;~ is independent, and
selected from the one-parameter probability distribution

P(J)=x5(J —Jo)

+ [5(J—J, )+5(J—J~ )+5(J —J3 )],1 —x

where the J„are a set of diagonal 3X3 matrices. Their
diagonal elements are

Jo =(1,1, 1),
J, =(1,—1, —1),
J2 =( —1, 1, —1),
J3 =( —1, —1, 1) .

Thus for x =1 we recover the nonrandom cubic fer-
romagnet, and for x =0.25 the expectation value of each
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component (J ~) is zero. For any value of x, Eq. (2)
treats all three of the spin components equivalently, on
the average. With the restriction that each spin can only
point in one of the six axis directions, Eq. (1) then reduces
to

3
SaJaaSa

&ji'& a=1
(4)

The reader should note that for a simple cubic lattice
where all of the J matrices were, for instance, J2, there
would be no frustration and the model could be turned
into a ferromagnet by a gauge transformation. The
effects which we wish to study arise from the random
mixing of the different J matrices on the lattice. This
model may be thought of as consisting of three Ising
spin-glass models coupled together by the fixed-length-
spin constraint. [Note that if we were to choose a proba-
bility distribution in which each diagonal element J;
was independent, we would require eight difFerent J„ma-
trices, with the additional four generated by multiplying
each of the diagonal elements of the four J„ in Eq. (3) by—l.j Thus, within a mean-field theory or an E expansion
about six dimensions, the critical behavior should
indeed be that of an Ising spin glass. Our numerical re-
sults indicate that new phenomena, not present in a
mean-field theory, can occur in three dimensions. The
spin-glass phase in this model is then of a new type, but it
is not clear that the critical behavior is qualitatively
different.

The four J matrices of Eq. (3) form a group under ma-
trix multiplication. They all have the property that the
product of their diagonal elements (and thus their deter-
minant) is 1. As a result of this, if we consider the prod-
uct of the J; around a plaquette on the lattice, we will
find that either none or else two of the spin components
are frustrated. If two of the spin components are frus-
trated around a plaquette, then it is favorable for the
spins around that plaquette to point along the third, un-
frustrated axis, in order to achieve a low energy. Thus
the choice of J matrices of Eq. (3) is very efficient in gen-
erating a random anisotropy energy. This is precisely
what we wish to achieve.

The effective random anisotropy energy induces a local
quadrupolar order at each site. This effective random
quadrupolar field tends to destroy the long-range magnet-
ic or spin-glass order by encouraging the system to break
up into domains of short-range quadrupolar order. It is
not possible, however, to deduce what the favored axis
will be at a particular site merely by examining the J ma-
trices which connect that site to its nearest neighbors.
The anisotropy comes from going around a plaquette,
just as the frustration in the Ising spin glass does.

Other choices using the full set of eight diagonal J„
which treat all axes equivalently (on the average) would
be expected to display the same qualitative behavior.
Our objective is to choose the set of J's which will show
us the asymptotic long-distance behavior on the shortest
possible length scale. This is necessary in order that our
numerical calculations with limited computing resources
will give us the answers to the questions under study. A

less advantageous choice of the J's might have led to in-
correct conclusions about the nature of the true long-
range behavior of these systems. We do not claim that
this Hamiltonian provides a good microscopic descrip-
tion of any real physical system. We hope that the
behavior which we find in this model is a useful represen-
tation of the complex behavior seen in the physical sys-
tems that we are trying to understand.

It would not be surprising if there were ways of
parametrizing a probability distribution for the eight J„
matrices which maintained the average cubic symmetry
but did not have domain phases. In any event, one could
certainly create a model with such a phase diagram by
adding an attractive biquadratic term

3

Hq= —Kb g g (S;S~. )

&ij & a=1

to the Hamiltonian, with a large Kb. With the inclusion
of this term, it should be possible to find trajectories in
"Hamiltonian space" for which there is a (presumably
first-order) phase transition from the Ising spin-glass
phase to the domain spin-glass phase. Thus we do not
claim that an Ising spin-glass phase transition cannot
occur in a Hamiltonian of this type, but only that it need
not occur, and that other interesting possibilities exist. It
is also likely that the behavior for negative K, where the
spins prefer to point along the body diagonals, is different
in some respects from the E &0 model studied in this
work. This would be similar to the situation in nonran-
dom cubic ferromagnets, ' where the transition never be-
comes first order when E & 0.

III. MONTE CARLO SIMULATION

The Hamiltonian of Eq. (4), with the probability distri-
bution of Eq. (2), was studied using Monte Carlo simula-
tions on simple cubic lattices with periodic boundary
conditions. The computer program used a standard
heat-bath algorithm, and was similar to the one used ear-
lier to study the cubic model with random single-site uni-
axial anisotropy. ' For each Monte Carlo step, the value
of a spin was reassigned to one of the six allowed values,
weighted according to the Boltzmann factors, and
without reference to the prior value of that spin. In order
to avoid unwanted correlations, the random number gen-
erator which was used to Rip the spins according to the
Boltzmann factors was completely different from the one
which was used to choose the Jmatrices. The model was
studied for values of x ranging between 0.25 and 1, on
L XL XL lattices with L between 16 and 48. In many
ways the results for the diagonal random anisotropic ex-
change cubic model are similar to the results for the ran-
dom single-site uniaxial anisotropy cubic model. This is
not surprising, since a coarse graining of the anisotropic
exchange model gives single-site anisotropy terms in the
Hamiltonian. The major difference here is that the aniso-
tropic exchange model has a spin-glass phase at low tem-
peratures for x less than about 0.65. There was no spin-
glass phase in the model studied in Ref. 14 because a
purely ferromagnetic exchange was used. If a random,
but isotropic, exchange is added to the model of Ref. 14,
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this would be expected to have a spin-glass phase also.
The results for the phase diagram of the diagonal ran-

dom anisotropic exchange cubic model on a simple cubic
lattice are shown in Fig. 1. Based on symmetry con-
siderations (i.e., cubic terms in a Landau free-energy
functional), we would expect all of the transitions to be
discontinuous. However, we should expect that strong
enough randomness will smear out the latent heat in this
model. Indeed, for x close to 1 the randomness is only a
weak perturbation of the simple ferromagnet, and the
behavior is not changed qualitatively, except that the la-
tent heat at the freezing transition is smeared out. There
is a narrow region of x, lying approximately between 0.65
and 0.73, in which a "domain ferromagnet" phase, simi-
lar to the one found in Ref. 14, appears to be the stable
phase. For smaller values of x, there is no evidence of
ferromagnetism at low temperatures, and there appears
to be a transition into a spin-glass phase. The domain
structure, with independent ordering' along the three
cube axes, persists into the spin-glass region.

In the spin-glass phase, the characteristic length for a
"blob" of spins predominantly oriented along one of the
axes is about eight lattice constants. A result of this is
that an L =16 system is too small to give useful results.
At low T it tends to become dominated by a single
domain, which wraps around the periodic boundary con-
ditions. This means that large lattices must be used to
understand the long-range behavior. Because of the
domain structure, the spin correlations cannot be de-
scribed by a single characteristic length scale. The spin-
glass phase may appear to be Ising-like at short distances,
but at longer distances the domain structure will become
dominant. The domain structure observed in a layer of
the lattice just above the observed freezing temperature
for x =0.25 is shown in Fig. 2. The amount of local qua-
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FIG. 2. Spatial distribution of the local quadrupolar order
for a layer of an L =32 simple cubic lattice of the diagonal ran-
dom anisotropic exchange cubic model with x =0.25. The sym-
bols 1, 2, and 3 indicate that the spin was observed to spend
more than half of its time oriented along the x, y, and z axes, re-
spectively. The remainder of the spins are denoted with the
symbol 0. The data were obtained from a sequence of 192 states
of a single L =32 simple cubic lattice with T/J =0.675, using
an interval of 2560 Monte Carlo steps per spin between states.
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FIG. 1. Phase diagram of the diagonal random anisotropic
exchange cubic model on simple cubic lattices. The plotting
symbols show actual data points, and the dot-dashed lines indi-
cate phase transitions. The FM-dFM and dFM-dSG phase
boundaries were not observed directly.

drupolar ordering changes smoothly, but significantly, in
this range of T. This, by itself, is a major factor in the
slowing down of the kinetics, but it need not be related to
any long-range ordering.

With only three types of domains, as in our simple
model, it appears that true long-range order persists in
the domain spin glass, just as it does in the three-
component domain ferromagnet. At x =0.25 there
seems to be a true thermodynamic phase transition into a
spin-glass phase at a temperature of Tg /J 0 67 0 03.
This conclusion is, however, based largely on the study of
a single L =32 system, out to times of 5 X 10 Monte Car-
lo steps per spin. It would be highly desirable to study an
L =64 lattice for somewhat longer times.

It should be noticed that, within the statistical errors,
the Tg for this model is equal to the T of the +J Ising
spin glass' divided by &3. This relationship is precisely
what is predicted by a tree-level high-temperature pertur-
bation theory, which finds that T scales like the inverse
square root of the number of spin components. ' Despite
the obvious difference in the natures of the low-
temperature phases of these models, this simple relation
between the T values suggests that the same mechanism
is driving the transition in both cases. In this context, it
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is noteworthy that the freezing transition in the Ising spin
glass can be analyzed in terms of domain walls. '

32 1 1 x =0,250
spinAip rates

temp = 0.675
layer = 1

IV. MOMLITY KDGK TRANSITION

Based on a Landau-Ginsburg theory for the Edwards-
Anderson' spin-glass order parameter, q, one would pre-
dict that in this model q jumps discontinuously at T .
The simulations do not support such a picture of the
spin-glass freezing transition. The freezing occurs in a
highly inhomogeneous fashion, and does not appear to be
well-characterized by the configuration-averaged value of
q.

Qualitatively, the kinetics of this model at T/J =0.675
are similar to those of the random chiral model' just
above its freezing transition. The spectrum of local relax-
ation times at this temperature, shown in Fig. 3, is even
broader here than in the latter model. This is probably
due to the fact that the relaxation times of most of the
spins which sit in a boundary layer between two
differently oriented quadrupolar domains remain very
short even at this temperature. The spatial distribution
of the relaxation times of the spins, for the same layer of
the lattice as in Fig. 2, is displayed in Fig. 4. There are
"nuggets" of slowly relaxing spins, examples of which are
visible in Fig. 4, embedded in some of the blobs. These
nuggets correspond to the localized eigenvectors of the
susceptibility matrix. ' Note that nuggets do not ex-
tend across domain boundaries. (This is much easier to
see when the domain structure is displayed in color. )

Due to the broad tail of the distribution of relaxation
times, and the fact that the fraction of the spins which
are in this tail (i.e., the nuggets) is small, the long-time
kinetics are not well-described by the average relaxation
time. The typical distance between nuggets appears to be
about 10—12 lattice constants. Therefore, for L =32, the
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FIG. 4. Spatial distribution of the spin-Aip frequency for the
same layer of the same lattice used in Fig. 2. The data set is the
same one used for Figs. 2 and 3. The scale of relaxation times is
logarithmic, with larger numbers denoting longer relaxation
times, and T/J =O. 675.

number of spins in the nuggets which dominate the slow
relaxation behavior near the freezing temperature is com-
parable to L . This means that a description in terms
of the configuration-average value of q is not even quali-
tatively valid near T . Et may be that a description in
terms of the configuration-average value of q becomes
useful on larger length scales, but a naive extrapolation of
the results on accessible scales leads one to believe that
the glassy structure is fractal on all length scales.

As originally pointed out by Anderson in 1970, the
freezing of a single nugget cannot give true long-range or-
der. However, the nuggets will interact with each other
through the effective medium of the rapidly relaxing
spins, and this can lead to long-range order. This mobili-
ty edge transition' ' ' has no natural counterpart in an
infinite-range model.

Let us define

0 50 100
flips

150

FIG. 3. Histogram of the spin-Hip frequency for individual
spins of the diagonal random anisotropic exchange cubic model
with x =0.25, and T/J =0.675. The y axis is scaled logarith-
mically. The data set is the same one used for Fig. 2.

a=1

where the bracket, ( ), denotes a thermal expectation
value. Now set T=T, and choose to to be some large
finite time, such as 10 Monte Carlo steps per spin. Then,
in a large system, for most choices of the sites i and j,
q;~ (to) will be essentia. lly zero, even if i and j are the
same. If i and j both belong to the same nugget, howev-
er, then ~q J. (to) ~

will be close to 1; this follows from the
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definition of a nugget. Only one of the spin components
makes a significant contribution: the one which lies
along the local axis of quadrupolar order.

Now consider sites i and j belonging to different nug-
gets. If they belong to different domains, then q, (to) will
be zero, because the local quadrupolar axes of i and j are
orthogonal. If i and j belong to the different nuggets in
the same domain, however, then ~g3

&
S;(0)S~(to)~ will

again be close to 1, since to is not a long enough time to
allow relaxation of nuggets. In order to obtain the
therm. al expectation value for this case by the Monte Car-
lo simulation we must allow the system to evolve for a
longer time, t&, of perhaps 10 Monte Carlo steps per
spin, so that the nuggets can equilibrate with each other.
This is similar in spirit to Sompolinsky's analysis of the
infinite range Ising spin glass, in which there is an infinite
hierarchy of time scales for T ~ T .

When the temperature is reduced to 0.65, it is obvious
that a significant fraction of the system has become rath-
er rigid, and it then becomes very dif5cult to run an
L =32 lattice long enough to observe the equilibrium
behavior. It is not completely clear whether this is due to
a true spin-glass freezing transition or is merely a finite-
time effect. In the case of the random chiral model, the
author considers the evidence' for a true phase transi-
tion to be convincing. It is likely that the result for the
model considered here is the same.

V. DISCUSSION

This domain spin glass with three types of domains
resembles, but is simpler than, the 12 Q-domain state
which Werner has suggested for the spin-glass phase in
CuMn. (The allowed Q vectors in CuMn do not lie along
the high-symmetry cube axes. ) Werner's 12 Q-domain
state should not have this kind of "simple" long-range
spin-glass order, because the domains associated with a
particular Q vector will apparently consist of disconnect-
ed finite clusters. Domain structures also exist in Cr anti-
ferromagnet phases, and a conceptually similar domain

structure has been proposed to explain P critobalite.
A domain spin-glass phase with only two types of

domains was studied in the diluted Ising antiferromagnet
in a magnetic field by Nowak and Usadel. These au-
thors were able to study very large systems for their mod-
el, and they found evidence that their domain state had a
fractal structure. Chamberlin and Haines have argued
for the existence of a similar fractal structure in AuFe,
based on their magnetic relaxation measurements.

The relevance of percolation effects of this sort for the
existence of spin-glass phases has been emphasized re-
cently by Celik, Hansmann, and Katoot, ' who studied
the van Hemmen model. It may be, however, that the
presence of all 12 types of Q domains in a low-
temperature sample of CuMn is a nonequilibrium effect,
analogous to polycrystallinity.

Another possibility which must be considered is that
there may be energetic constraints on the ways in which
the different Q domains are arranged, which could force
the existence of some kind of topological long-range or-
der. The experiment of Monod and Prejean indi-
cates that there is long-range rigidity of the domain
structure in CuMn. One might expect the behavior of
Werner's model to be more similar to that of the K (0
model, which has eight favored directions for the spins.
The E )0 model has the unique property that the
favored axes are a11 mutually orthogonal. This simplifies
the energetics of the domain walls, and makes it difficult
for the internal state of a domain to affect the internal
states of its neighbors. This allows the ordering along
different axes to proceed almost independently.

In this work we have used Monte Carlo simulations to
investigate the behavior of a cubic magnet with three-
component spins and a random diagonal nearest-
neighbor anisotropic exchange on a simple cubic lattice.
In addition to the previously known phases, there is a
new type of domain spin-glass phase, which apparently
can exist at finite temperature in three dimensions. This
domain spin-glass appears to be similar to structures
which have been seen in various experimental systems.
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