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Non-Fermi-liquid behavior for holes in doped two-dimensional antiferromagnets
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Spin and hole excitations are investigated in the doped two-dimensional (2D) antiferromagnets de-

scribed by the t-J model based on the spin-wave approximation. The polarizability of spin excitations is

found to be consistent with the marginal-Fermi-liquid hypothesis. As a consequence, the imaginary part
of the self-energy for holes scattered by the spin excitations is demonstrated to give a linear dependence
in temperature T (for co & T) and in frequency co (for co) T).

It has been realized that the anomalous normal-state
properties in the high-T, cuprates are diScult to explain
in the framework of the conventional Landau Fermi-
liquid (FL) theory. There is a rising interest in two-
dimensional (2D) models which possess low-energy non-
canonical Fermi-liquid properties.

The most striking normal-state properties of the cu-
prate superconductors, which deviate from the conven-
tional FL behavior, are that the resistivity is linear in T
over a wide temperature range' and the inverse electron
lifetime r '(k, co) seems to be proportional to the fre-
quency co. The phenomenological marginal-Fermi-
liquid (MFL) theory proposed by Varma et al. showed
that quite a number of experimental results can be ex-
plained by use of a single hypothesis: the characteristic
frequency and temperature dependence of polarizability
for both charge and spin-density excitations. It has been
shown that MFL behavior can come about if the quasi-
particles scatter from an assumed bosonic spectrum
which is Hat over a frequency scale from T & co & co, (co, is
the cutoff frequency), but the origin of the bosonic spec-
trum is not yet clear. Aristov et al. have observed a
crossover from Fermi-liquid to Luttinger-liquid-like
behavior in the 2D small-U Hubard model, and argued
that it reproduced in the fermionic channel of the t-J
model. However, because of the interaction between
holes and spin excitations in the doped antiferromagnet,
it is important to consider the behavior of holes (fer-
mions) in the channel of the fermion-boson (spin excita-
tions) interactions. In this paper, we show that, under
adequate assumptions, the hole quasiparticles formed by
the hole doping in 2D antiferromagnets behave as a non-
canonical Fermi liquid when they are scattered by the
spin excitations, and the polarizability arising from the
damping of spin excitations into particle-hole pairs has
the same form as the MFL hypothesis.

The physics of undoped high-T, cuprates are well de-
scribed by an isotropic, spin- —, Heisenberg model on a
square lattice. Hole doping quickly destroys the long-
range antiferromagnet (AF) order and eventually gives

rise to the metallic state with a superconductive ground
state at a small hole concentration. The essential aspects
of the low-energy dynamics of a doped 2D antiferromag-
net may be described by the so-called t-J model with the
Hamiltonian given by

I=—t g (C;+C +H. c. )+J g S; Sl-
(ij )o (ij )

n,-n.

I= t g ff+(b,+—+b )+H c. .
(ij)

+—J g(1—f;+f;)(1 f,+f,)—
(ij )

X fb;+b, +bj+bj+b, b +b,+b+ —1] . . . .(2)

Here (ij ) indicates pairs of nearest neighbors,
n, =g C,

+ C, and C;+,C; are creation and annihilation
operators of electrons with the constraint of no double
occupied sites, and S,. is the electronic spin operator at
site i.

We consider a 2D square lattice with spin —,. At 6nite
temperatures or a small hole concentration, the system
has no long-range order. Nevertheless, it has been
shown that the dynamical properties of the quasiparti-
cles depend only on the short-range order, and come out
practically the same with or without long-range order.
So, to make the problem tractable, we divide the lattice
into two sublattices (spin-up and spin-down), and apply
the linear-spin-wave (LSW) approximation for the spin
fluctuations, which gives reasonable results in compar-
ison with the exact calculations on small clusters. '

We define the fermion operator f;+ which generates a
hole at site i, and the boson operator b;, such that
S,+ = (1 f;+f; )b; on the —spin-up sublattice and

S; =(1 f;+f;)b; on the spi—n-down sublattice. " With
these definitions and in the LSW approximation, the
Hamiltonian (1) can be changed into
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The hopping part of the Hamiltonian preserves the con-
straint of no double occupancy because f, b, =0. The fac-
tor (1 f;—+f;)(1 f,—+fj.) projects out the antiferromag-
netic coupling when one or two sites of nearest-neighbor
pairs are occupied by a hole. It introduces the disorder
effect on the antiferromagnetic background and accounts
for a loss of magnetic energy due to hole doping. The cal-
culations' have shown that, for low concentrations of
dopant holes, the softening of spin waves is mainly due to
the strong coupling of spin waves to doped holes, the per-
turbations produced by solitary holes in the spin system
is less important. We may replace (1 f;+f—;)(1 fj.+f—j)
by 1.

The standard Fourier transformation and the Bogo-
liubov transformation for spin-wave variables gives

H=gtv, pq pq pf gfk fk

G (k, r) = —( T,f (r)fk+(0) &,

D(k, r) = —( T,pk(&)p+(0) &

(4)

(5)

co =J(1—y )' /2, gk =t(yk u +ykv ),
1+(1

2 )i/P i/2
Yq

q 2( 1 y2 }i/2

(1 z)in
vq

= slgli(yq )
2(1 —

yq )

We have set t =zt, J=zJ, with z the number of nearest
neighbors. Here, yk =(cosk„+cosk~ )/2, pf is the chem-
ical potential of holes, and N the number of lattice sites.

Introducing the Matsubara Green's functions for holes
and spin waves, respectively,

with

1/2

+
iV g [fk+ qfk(gkqpq++gk q qp q)+H. c. ]

kq

(3)

Then, from the Hamiltonian (3) we can obtain the
Dyson's equations for these Green's functions. After an
analytical continuation to the upper half part of the corn-
plex plane, we can write the retarded Green's functions
and self-energies for holes and spin excitations as'

GR ( k, co ) = [co+pf —X~ (k, tv ) ]

Dg ( q, tv ) = [ tv tv —II~ ( q, co ) ]

&R(k, co)= —
3 f d p f dc'„ f dx tanh

" +coth
(2qr )'qr oo oo 2T 2T

z ImDz (k —p, x )ImG~ (p, co„)

~+CO„ l 6

I

II (q, to)= f d k f dco' f dx tanh
(2qr)'m. oo oQ 2T

ImGii (k, x )ImGit (k —q, co')—tanh gk q2T k, q X N 6) l 6

1
E'k =E'k + k2' (10)

where we have substituted the vertex functions (the suin
of all diagrams which connect one spin excitation and
two hole lines) by the bare vertex gk, because recently
Sherman and Schreiber' have shown that the Migdal
theorem' is also valid for the system considered above.

The motion of holes in a 2D quantum antiferromagnet
has been investigated entensively. "' ' The results for
the dynamics of holes obtained so far may be summarized
as (1) a single hole becomes mobile in the spin back-
ground and is accompanied by spin distortion around it;
(2) the hole spectrum is strongly renormalized by the in-
teraction with the spin excitations and that the holes can
be described by a narrow quasiparticle band with a band-
width of order J', (3} the quasiparticle energy has its
minimum value at the points (+qr/2, +qr/2) in the Bril-
louin zone. According to the above results, we will as-
sume that hole quasiparticles form a weakly interacting
Fermi gas. In the vicinity of four minima (+qr/2, +m. /2),
the quasiparticle energy ek can be expanded as '

where k' is given by k = (+qr/2, +qr/2) +k', with
~

k'
~

&& 1, and ek are the quasiparticle energies at four
t

minima, m is the effective mass of hole quasiparticlesI=3.8/t, for J/t=0. 3. As a starting point, the hole
Green's function (6) may be approximated by the one-
pole expression

Z/,
G~(k, co}=

Q) —6k+Pf +&5

The quasiparticle residue Zk is determined from Eq. (8)
with Dz(k, cg) replaced by D&0(k, co) (the noninteracting
Careen's function for spin excitations), one finds, '

Zk =2(J/t) /qt
The Fermi surface of holes for finite hole concentra-

tions is shown in Fig. 1, inside of which the number of
states equals the number of holes, so the Fermi wave vec-
tor of holes is of the form k~=m. 5, with 5 the hole con-
centration.
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As for the spin excitations, we consider the wave vec-
tor q near I (0,0) point, i.e., the case of long-wavelength
excitations, such that ~q~ &&1.

Because k' and q are all small, the interaction constant
gk [see Eq. (12) for reference] can be approximated by

q

gk~
= g gk q

= —(qk' —2V 2q.k'+ 2q) .
i=1

(12)

Inserting Eqs. (11) and (12) into Eq. (9), we obtain the
imaginary part of self-energy for spin excitations

Zkt q
2 2 E'k Py CO

Imilz(q, co)= — J k'dk' f d8(k' 2&—2k'cos8+2) tanh
2T

~k Py—tanh
2T

~( ~+~. ek —, ) .-

(13)

Performing the integration over k' in Eq. (13), one finds

Zkt m K K
Imiiz (q, co) = — d 8

8&2m 0 cos 8 cos 8
—2&2K +2

(Km cos 0—kF /2mT
e

1

(K /cos 0—kF —2m')/2mT
e

where K =m(co+q /2m )/q &k~-O(5' ), 8 is determined by cos8 =m(co+q /2m)/kzq.
First, we consider the case co/T ( 1, then the imaginary part of self-energy of spin excitations is approximated by

(14)

ZktmK T ~ K 1
Imllz (q, co) = — d 8 2 t/2K—+2

4V2vr o cos 8 (4mT k~)cos 8—+K (4mT k~ 2m—co)co—s 8+K

(15)

The straightforward calculation gives

Zkt mkF ~2 2

ImII (q, co) = — — —(1—V'2K )Q 1 —(K /k )
16&x~ m m F

Zkt mKm ~m 1
Imll~ (q, co) = — I d 8

8 2m o cos
2mTcos L9

(4mT k~)cos 8+K—
(K /cos 0—k+ —2m')/2mT—1+e

Second, for the case co/T ) 1, the imaginary part of Imiiz (q, co) in Eq. (14) can be represented in the form

K —2+2K +2
0 cos t9

(17)

Performing the integration over 0, one finds,

Zkt mkF
ImII~(q, co) = — — (1 &2K )—

s&z~

calculations in the electron-electron interaction, what
comes into the calculation of the self-energy of holes here
is the imaginary part of the Green's function for spin ex-
citations, i.e., the spectrum for spin excitations, as can be

kF' —K'
SmT

X+1—(K /k, )'.
For both the cases, neglecting terms of O(k~)-O(5 ),
we obtain

ImII~(q, co & T)=—Zk t 2mkF

16&a~

Zkt mkF
Imilz(q, co) T)=—

8 2'

(19)

The polarizability (19) has the same form as the MFL hy-
pothesis. ' Yet, unlike the second-order perturbation

FIG. 1. A schematic plot for the Fermi surface of holes at
low concentrations in the reduced Brillouin zone.
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seen from Eq. (8). So, we will first evaluate the real part
of the self-energy for spin excitations in the following.

Performing the similar calculations, we can And the
real part of the self-energy II+(q, co) in the limits of our
interest,

ReIIz (q, co)=—Z tmq k Z t~m~
1+ + co . (20)

8 2ir 2 8'
Thus the spectrums for spin excitations which is involved
in the calculations of hole self-energies are given by

CkF co

[(1—2v'2mc)co —[VZJ —C(2+kF ) ]q ] T

2Ck,
lmDR(q, ~) T)=—

[(1 2&—2mc)co [&—2J—C (2+ kF ) ]q ]
2 2

(21)

with C=Zkt m/16&2m. =&2mJ /~ =0.16J.
The imaginary part of hole self-energies ImX~ which arises from the scattering from spin excitation spectrum given

in Eq. (21), may be evaluated from Eq. (8),

ImX (k, co)= — — —fdp'~, , f dx —M(x)+ f dx M(x)+ f dx M(x)
T 00

(22)

where

[tanh[(co —x)/2T]+coth(x/2T)]5(co x —e +—pf )

[F(x,k', p')]

F(x, k', p') =(1—2&2mc)x —V2[1—mJ(2+kg)/~2]J(k' —p')

mk~ Jt
ImX~ ( k, co & T ) =—

2 6),
2&2vr~~ [vr mJ(2+k~)—]

,. ImX~(k, co & T)
(23)

mkF Jt
(1+ln2)T .2&2+' [ir —mJ(2+k )]'

Thus our calculations provides an explanation for the
linear temperature dependence of the resistivity, and for
the linear frequency variation of the inverse hole lifetime,
which is an indication of noncanonical Fermi-liquid
behavior for holes.

It should be noted that the quasiparticle peak of holes
occurs at the low frequencies (co ~ J), above this quasi-
particle band, there is the incoherent part of hole spec-
trum (co&J), which was shown to be important for the
softening of spin waves. ' ' In the evaluations of polar-
izability, we just consider the coherent part of hole spec-
trum as shown in Eq. (11), so one would wonder if the re-
sults obtained in Eq. (19) will be changed when the in-
coherent part of the hole spectrum is taken into account.

For hole states near the Fermi surface, which give the
essential contributions to the transport properties, we can
expand e~

—pf =(p' kF)kF/m. —Since for low hole con-
centrations, the velocity of spin excitations is larger than
that of holes near the Fermi surface, i.e.,
mJ /kp = 1/kg & 1, we can approximate

F(x,k', p') = —U'2[1 mJ(2+ k~)/—~ )J(k' —p') .

Then, from Eq. (22), we find,

However, to our knowledge, there is no explicit expres-
sion presented for the incoherent spectrum of holes. In
order to estimate the e6ect, we adopt the approximate
form given by Khaliullin and Horsch, '

ImG'"'(k, co) = — 8(
~ co~

—J )8(2I —co)
1

R (24)

exp( J/T) +1—
X 2ln

exp[ —
(J+co) /T]+ 1

exp( 2I /T) +1—
exp[ —(2I —co) /T]+ 1

(25)

Another contribution is provided by the transitions be-
tween the incoherent spectrum and quasiparticle band, its
leading term is given by

Z&t mq
Imllz'(q, co)=-

8&v~
for co —J & T . (26)

It is obvious I /T ))1. For the typical value of super-
change coupling constant in high-T, cuprates
J=1.3 X 10 K, we have J/T ) 1 in the range of our in-
terest. So, provided we limit the range of frequencies of

with I -zt. This leads to the contribution to polarizabili-
ty from the transitions within the incoherent spectrum,

qkFt Tlmll" (k, ~)=—
64 Z~'r'
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spin excitations to co( coc=t+J=5.6X10 K (it intro-
duces the cutoff frequency co& for the spectrum of spin
excitations considered here), we can expect the in-
coherent part of hole spectrum will not change our re-
sults obtained above.

The essential difference between our model and the
standard calculations of the electron-boson interaction is
the four pocketlike Fermi surfaces of holes situated at the
points (km/2, Rm/2) in the Brillouin zone. It is derived
from the self-consistent perturbation calculations of the
motion of one-hole in an antiferromagnet background at
zero temperature"' and also at finite temperatures. In
other words, the effect of strong correlations is believed
to be included when this special Fermi surface of holes is
taken in the calculations. As the first step, we can treat
the hole quasiparticles as a weakly interacting Fermi gas.
On the other hand, with a finite concentration of holes,

the spectrum of spin excitations will change due to the in-
teraction between hole quasiparticles and spin excita-
tions. It turns out that the polarizability of spin excita-
tions has the same form as the marginal-Fermi-liquid hy-
pothesis, and leads to the linear dependence in co (for
co) T) or T (for T & co).

In summary, we have shown that the interaction be-
tween holes and spin excitations associated with the gen-
eration of particle-hole pairs may lead to the noncanoni-
cal Fermi-liquid behavior for holes in doped two-
dimensional antiferromagnets. The special pocketlike
Fermi surface of holes, which contains the effect of strong
correlations, may be responsible for the behavior of holes.
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