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Two-dimensional difFusion of hydrogen in ZrBeqH& 4
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The dift'usion of hydrogen through the hexagonal metal hydride ZrBe&H& 4 has been studied by
measuring the H nuclear spin-lattice relaxation rate T~ as a function of frequency and temperature.
At high temperatures, where the hopping rate of the H interstitials is faster than the nuclear magnetic
resonance (NMR) frequency, the relaxation rate has a frequency dependence much larger than
expected for random diffusive motion in three dimensions. A previous NMR study of ZrBe2H& 4

did not account for the anomalous frequency dependence. Our data more fully define the frequency
dependence, and we find that it is consistent with a model in which the motion of the hydrogen is
restricted to two dimensions. Two-dimensional motion allows a self-consistent analysis of the T~
data for all the measured frequencies and provides an improved measure of the activation energy,
E = 0.27 + 0.02 eV. The frequency dependence of T~ can be used to identify two-dimensional
motion in a randomly oriented powder sample.

I. INTRODUCTION

Metal hydrides are technologically attractive materials
due to their ability to store high volumetric densities of
hydrogen safely and their applications in commercially
viable rechargeable batteries. However, common metal
hydrides are quite heavy, rendering them less optimal for
applications where portability is desired. Hence, there
has been interest in developing light, beryllium-based
metal hydrides (pure beryllium is not suitable for hydro-
gen storage). Of the beryllium-containing intermetallic
compounds (and one amorphous alloy) previously tested,
only ZrBe2 (and the very similar HfBe2) showed promise
as a hydrogen storage material.

ZrBe2 crystallizes with the hexagonal AlB2-type struc-
ture. The Zr atoms lie at (0,0,0) while the two Be atoms
are at (1/3, 1/3, 1/2) and (2/3, 2/3, 1/2) in the unit cell
(see Fig. 1). The structure of ZrBe2Dr s has the same
symmetry as ZrBe2. Room temperature neutron diKrac-
tion studies show that the deuterium atoms reside in the
hexagonal Zr planes at the centers of triangles formed
by the Zr atoms. The Be atoms lie directly above and
below the D atoms in the c direction. The addition of
1.5 deuterium atoms per unit cell to ZrBe2 causes a 7.3%
elongation of the c axis and a 2.7% contraction of the a
axes. It is beheved that this structura1 distortion indi-
cates that the Zr-D attraction is much stronger than the
Be-D attraction in ZrBe2Dq 5. No ordering of the site
occupancy of the D atoms was observed at room temper-
ature.

Westlake has predicted, based on geometrical consid-
erations, that H atoms in ZrBe2H» 4 will reside in sites
just above and below the Zr planes. These two sites

are separated by only 0.12 A. . Occupation of the off-
plane sites has been observed for T & 260 K by neutron
diKraction. The NMR relaxation rate Tz is not sensi-
tive to the presence of this small oB-'plane displacement.

The difFusion of hydrogen through the metal is crucial
to all the technological applications of metal hydrides.
The efFective repulsion between the Be and H atoms,
which gives rise to the elongation of the c axis, suggests
that the H atoms will avoid coming near the Be atoms.
Since the Be atoms block direct H jumps from one Zr
plane to the next, H hops may well be constrained to lie
within the Zr plane. Indeed, the present work presents
a demonstration of two-dimensional motion in this metal
hydride. We note that two-dimensionally restricted mo-
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FIG. 1. The hexagonal unit cell of ZrBe&H&. 4. The Zr
atoms form hexagonal planes. The H sites are at the centers
of triangles formed by Zr atoms. The Be atoms lie between
two H sites. Full occupation of the H sites would correspond
to ZrBe2Hg.
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tion has been postulated for TiCuHp p4 in order to ex-
plain the difFerence in activation energies for H motion
in this sample and in TiH2. 5

In elemental hexagonal hydrides (e.g. , n YH ) the hy-
drogen motion is not two dimensional. In these materi-
als, the hydrogen atoms occupy tetrahedral sites between
(equivalent) planes of metal atoms. The situation is quite
different in ZrBe2H& 4. The hydrogen atoms are at hexa-
hedral sites in the Zr planes and are separated &om ad-
jacent planes of sites by (inequivalent) Be layers. Hence,
hydrogen motion in ZrBe2H~ 4, unlike motion in elemen-
tal hexagonal hydrides, is expected to be substantially
anisotropic.

Measurements of the H nuclear magnetic spin-lattice
relaxation rate Tz are often used to determine the dif-
fusive hopping rate wD as a function of temperature. A
theory linking a model for the H motion to the relaxation
rate is necessary to determine 7.

D &om Tz . The &e-
quency dependence of the relaxation rates due to diffusive
motion in one, two, and three dimensions is well under-
stood in certain limits, and this &equency dependence
helps identify the proper model for the H motion. When
the hop rate is slow compared to the NMR &equency (do

(MpTD )) 1), Ti oc ~p regardless of the dimensionality
of the motion. However, in the limit of motion fast com-
pared to the NMR frequency ((dp7~ && 1), the frequency
dependence of Tz depends on the dimensionality of the
motion. For isotropic three-dimensional motion, there
is no frequency dependence to lowest order [that is, the
spectral density J(u) tends to a finite limiting value as
u -+ 0], while for motion restricted to two dimensions,
there is a logarithmic dependence of Ty on coo. We have
measured a &equency dependence of Tz for a powdered
sample of ZrBe2Hq 4 in the fast motion regime that indi-
cates that the H motion is not isotropic in three dimen-
sions. Instead, the frequency dependence is consistent
with the model of H motion constrained to the Zr planes.
We note that NMR allows the determination of the di-
mensionality of the motion without requiring orientable
single crystal samples.

A previous NMR study of ZrBe2H~ 4, which focused
on the behavior of T~ when ~0&D & 1, determined an
activation energy of 0.18+0.02 eV. However, the analysis
leading to this value could explain the &equency depen-
dence of Tz only by including an unphysical &equency
dependence (or, equivalently, field dependence) in ~&
By accounting for the two-dimensional nature of the mo-
tion, the analysis of our T& data provides an internally
consistent description of the hydrogen motion and an ac-
tivation energy of E = 0.27 + 0.02 eV.

II. EXPERIMENTAL DETAILS

The preparation procedures for the powdered sam-
ples have been reported previously. Measurements were
made in magnetic fields up to 2 T in a Varian XL-
100 electromagnet fitted with a NMR field stabilizer.
H nuclear spin relaxation rates were measured using a

computer-controlled pulsed NMR spectrometer. The res-
onance line was never more than 2 kHz wide [full width

at half maximum (FWHM)] and so always fell entirely
within the bandwidth of the radio&equency pulses. T~
was measured using an inversion-recovery technique and
fitting the integrated &ee induction decay as a function
of recovery time t:

M(t) = M(oo) [1 —A exp( —t/Ti)]

The parameter A was typically 1.95, indicating nearly
full inversion. The recovery curves were exponential over
at least two orders of magnitude.

The spin-spin relaxation rate T2 (the rate of irre-
versible dephasing) was measured using a siinple spin-
echo sequence, 7r/2 w vr r-e-ch-o-, as well as the Carr-
Purcell-Meiboom-Gill (CPMG) sequence m/2-w(-vr-&-
echo-r)" In .both cases, some of the echo amplitude ver-
sus time plots were not exponential, and in these cir-
cumstances we defined T2 as the 1/e point on the decay
curve.

The applied magnetic fields were chosen to reproduce
the resonance &equencies of the previous NMR work on
ZrBe2Hq 4. Our data extend the previous data to tem-
peratures high enough to fully demonstrate the high-
temperature &equency dependence of T& . Our data at
34.5 MHz agree exactly with the earlier work, while for
the other &equencies our relaxation rates deviate sys-
tematically toward lower values for temperatures below
275 K. In our experiments, temperatures were varied and
controlled by thermostatted Qowing gas. The tempera-
tures were steady to within +1 K and were measured
with a copper-Constantan thermocouple placed within
0.5 cm of the sample. In light of the discrepancy with
the previous work, we have been careful to check that the
temperature measurements were independent of detailed
placement of the thermocouple and that the NMR results
did not depend on the thermal history of the experiment.
In the previous work, the 34.5 MHz data were taken on
a different spectrometer/magnet system than the other
&equencies. It has been suggested that the discrepancy
between our results and the previous publication reQects
errors in thermometry in the earlier measurements. We
believe our temperatures are more accurate.

We note that our Tz data at 34.5 MHz agreed with
the previous work to within & +5% over the entire tem-
perature range. Hence, in our plots of Ti vs 10s/T, the
uncertainty in Tz is comparable to the size of the sym-
bols. This is also visible in the scatter of our data about
the smooth curves expected for relaxation rate peaks.

III. EXPERIMENTAL RESULTS AND
DISCUSSION

Figure 2 shows the relaxation rates Tz as a function
of temperature, measured at four resonance frequencies
tdp/2'ir. The relaxation in the temperature range shown
is due to two mechanisms: interaction with conduction
electron spins and modulation, due to diffusive motion, of
the hydrogen magnetic dipole-dipole interactions. Since
we are interested in studying the H motion, we subtract
the contribution of the conduction electrons to T& . The
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FIG. 2. The measured spin-lattice relaxation rates T~ de-
termined at four resonance frequencies. The rate maxima
correspond to ~07 1. Note the nonvanishing frequency
dependence at temperatures above the maxima. The dashed
curve shows the relaxation contribution from conduction elec-
tron spins; the remainder of the relaxation is due to H motion.
The uncertainty in T~ is comparable to the size of the sym-
bols.

FIG. 3. The T~ data corrected for the contribution of
the conduction electron spins, at the same four frequencies
as in Fig. 2. The solid line drawn through the rate peaks
corresponds to 7 0 = 9 x 10 s and E = 0.2? eV. The
dotted lines show the range of acceptable lines through the
peaks. The inset shows the three-dimensional (3D) theory
prediction for the same four frequencies. The dotted line on
the inset passes through the theoretical relaxation peaks.

conduction electron relaxation has a simple temperature
dependence:

TleT = K

where Tl, is the relaxation time due to interaction with
conduction elect;rons and K is a sample-dependent con-
stant. Bowman et al. found K, = 290 s K by measuring
Tq at low temperatures (T ( 150 K) where H motion
is too slow to affect the relaxation and (presumably) all
of the relaxation is due to interaction with conduction
electron spins. We use this value of K, to calculate Tl
and then determine the difFusional contribution to the
relaxation, Tyg

T—1 T—1 T—1
ld 1 le

Tl in this equation is the measured value, shown in
Fig. 2. The values of T~& calculated using Eq. (2) are
shown as a function of reciprocal temperature in Fig. 3.
The size of the Tl, correction is shown by the dashed
curve in Fig. 2.

Figure 3 has some unusual features. At temperatures
above the temperature of the relaxation rate peaks, the
data retain a significant and unexpected &equency de-
pendence. Normally, one expects that Tz& data from a
crystalline system such as this will be well described by
the theory of Bloembergen, Purcell, and Pound (BPP),
in which a single correlation time is used to describe the
motion of the hydrogen atoms and the correlation func-
tions for the stochastic motion have exponential forms.

Under these assumptions the relaxation rate is propor-
tional to 7 /[1 + (tdpT ) j, where 7 is the correlation
time. 14 An estimate which includes only nearest neigh-
bors shows that the contribution of the Be nuclei to the
local magnetic field at the H site is roughly half the size of
the contribution &om other H atoIns in the plane. There
is little average contribution &om the Zr nuclei due to the
low abundance of Zr. H motion modulates the H-Be
interaction with 7 = 7D. H Inotion modulates the H-H
interactions with w = 0.5v.D, since either spin in an inter-
acting pair can move. The relaxation rate is expected to
be independent of &equency wheIl cdp7 (Q 1, i.e., when
the temperature is above the Tz& peak. More recent
Monte Carlo-based theories of relaxation in 3D systems
give relaxation rate peaks that differ slightly &om the
BPP-predicted peaks; these differences do not afi'ect
the present discussion. The inset in Fig. 3 demonstrates
the Monte Carlo-based prediction (for 3D motion) for
logzo(T~ ) vs 10 /Tsfor the four frequencies of the data.
Our Tz& data clearly do not follow the 3D prediction,
retaining a noticeable &equency d.ependence at temper-
atures above the peaks.

The BPP theory also predicts that the relaxation rate
is proportional to v at temperatures above the relaxat;ion
peak (caIo7 (( 1). If one assumes that the H difFusion is
activated,

7 = 'r o exp(E /k~T) (3)
then the slope in the high-teInperature region of Fig. 3
should give the activation energy E (The high- and.



TWO-DIMENSIONAL DIFFUSION OF HYDROGEN IN ZrBe2H& 4 6339

low-temperature limiting slopes of the data in Fig. 3 all
agree to within 10'.) In addition, the BPP theory pre-
dicts that the relaxation rate peak should occur when
cd()7 1. Since the peak values of Tz in Fig. 3 are pro-
portional to 1/up (see below), the condition up+ = 1 im-
plies that the slope of the line drawn through the peaks
in Fig. 3 should also yield the same activation energy.
For the BPP theory (and other 3D theories), this is in-
deed the case, as shown in the inset. But it is clear &om
Fig. 3 that the line through the data peaks does not have
the same slope as the T&& data in the high-temperature
region. The fact that these two slopes differ, a direct
consequence of the &equency dependence in the high-
temperature region, means that it is impossible to use
the BPP theory (with a single temperature-dependent
w, ) to simultaneously explain all four sets of T~& data.

The positions of the T~& peaks as a function of 1/T
provide a relatively theory-independent determination of
the activation energy. In many physical systems the cor-
relation function has a shape independent of temperature,
but with a temperature-dependent time scale. That is,
the correlation function at all temperatures is the same,
after suitable adjustment of the time scale. In these cases,
the Tz& peak will occur at a fixed numerical value of
~O7, of order 1. Ptuthermore, the maximum rate T&& is
predicted to vary as uo . The BPP theory is an exam-
ple, but many non-BPP systems are also so described.
The key condition is that there must be a single charac-
teristic time describing the dynamics; thus essentially all
crystalline systems obey this scaling.

For the above reasons, the line drawn through the
Tz& peaks in Fig. 3 can be used to determine 7D(T).
By choosing &07 = 1 at the peak, we find that 7 p

9 x 10 s and E = 0.27 eV. A range of param-
eters yields lines that pass satisfactorily (as assessed
by eye) through the broad peaks in Fig. 3: roughly,
E = 025eV, 7 p = 2.5x10 stoE = 032eV,
'T p = 1.6 x 10 s, as indicated in Fig. 3. These v 0
values are of the expected order of magnitude, namely,
the inverse of a phonon &equency ccppp 10 s

The measured relaxation rate T~& in Fig. 3 does obey

(Tz& ) oc (up) . In amorphous metal hydrides, one
also finds that (Tz& ) oc (wp) ~, while the slopes of
the high-temperature logzp(T&& ) vs 10 /Tsdata are not
consistent with the slope of the line drawn through the
peaks. For amorphous samples, the unequal slopes arise
&om a distribution of activation energies present in the
material due to static disorder. There is no evidence for
such disorder in ZrBe2Hq 4 &om the neutron diffraction
experiment. In this crystalline hydride, the anomalous
&equency dependence and the corresponding breakdown
of the (3D) BPP model can be explained by assuming
that the diffusive hydrogen motion is constrained to two
dimensions, as discussed below. The correlation func-
tions for motion in two dimensions differ significantly
&om the exponentials that form the basis of the BPP
theory; in particular, the correlation functions have long-
time tails that decay as power laws, t, not as exponen-
tials. We note the T~& data in Fig. 3 at low temperatures
(up7 )) 1) are consistent with T~z oc ~p, as expected.

Figure 4 shows evidence that the hydrogen motion in
ZrBe2Hq 4 is indeed long range. The two-pulse (m/2'T-'7I-

v-echo) T2 data are independent of resonance &equency
at low temperatures. As the temperature is increased and
the H atoms move faster (and farther in a given time),
the T2 values deviate &om the line defined by the lower-
temperature data. The temperature at which this devi-
ation occurs rises as the resonance &equency is lowered.
The deviation is due to long-range H atom diffusion in the
presence of a magnetic field gradient. The CPMG pulse
sequence ' partially compensates for the effects of dif-
fusion in a Geld gradient, and hence the CPMG T2 data
show less deviation in Fig. 4.

For a linear field gradient, G = dB, /dz, the echo decay
curve for the two-pulse T2 experiment is given by:

M(2v) = Mp exp ———p G D
2~ 2 2 (2~)
T2 12 (4)
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FIG. 4. The T~ data, from spin echoes. The solid sym-
bols are from the two-pulse experiment and the open symbols
from CPMG. The plateaus in the two-pulse data are due to
difFusion in the field gradients that arise from the suscepti-
bility of the metal particles. The line is an eye guide drawn
through the low-temperature data.

The magnetic Geld gradients in our sample arise because
the sample is powdered (to permit radio&equency field
penetration). Since ZrBe2Hq 4 has a nonzero magnetic
susceptibility y, each nonsymmetric powder particle cre-
ates its own inhomogeneous internal magnetic field and
contributes to the field at its neighboring particles. The
rms gradient will scale as the inverse of the mean par-
ticle size Lx and will be linear in the applied field, Ho..
G = BH/Ex oc Hpy/Ex. Thus the &equency depen-
dence in Fig. 4 is more fundamentally a dependence on
the applied magnetic field. In the region where the T2
values do not depend on applied field, the spin-echo de-
cay curves are observed to be exponential, reBecting the
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fact that diffusion in the field gradients has a negligible
effect. T2 is large enough and. D is small enough that
the first term in Eq. (4) dominates. In the region of field
dependence, the decay curves have a slight curvature,
corresponding to the (27)s term in the decay. We do not
observe a well-defined cubic dependence on 27", the sam-
ple does not consist of uniformly shaped particles and so
a distribution of G values is present. The distribution
of G values leads to a nearly linear decay curve with a
1/e point (our definition of T2 in this case) that is almost
temperature independent (see the plateaus in Fig. 4). As
the applied Geld is increased, the plateau values of T2
are larger because the field gradients are larger.

Effects of dimensionality. Spin relaxation is governed
by G(t), the two-spin relative position correlation func-
tion describing the Huctuating spin-spin interactions.
The relaxation rate Tz& is proportional to J(uo),
where J(m) is the Fourier transform of G(t). The fol-
lowing simple but general argument can be made for
the effects of dimensionality on the shape of G(t) for
a short-range, isotropic interaction. For times not too
much larger than vD, the correlation function decays ap-
proximately exponentially in time. In crud. e terms, the
exponential decay reQects the probability that either of
the (neighboring) interacting spins has jumped at least
once, since one jump is enough to decorrelate the spin
interactions. At long times, there is a finite probability
that the two spins (H and metal, or two H spins) will
have returned to each other's proximity. Prom simple
random-walk theory on a d = 1, 2, or 3 square/cubic
lattice of unit length, the rms distance &om the origin is
r = 1Vi~2 after K steps, where % = t/7~. The number
of lattice sites within an interval/circle/sphere of this ra-
dius is proportional to r", or N"/ . Thus the probability
of a spin being at any one site in this volume, in particu-
lar back at the origin, is proportional to N "/ . Hence,
the long-time tail of the correlation function G(t) decays
ast /, t, andt / for d = 1, 2, and 3. The long-
time tail also appears for the dipole-dipole interaction
(neither short ranged nor isotropic); only the amplitude
of the tail is sensitive to the details of the model.

The IIrequency dependence of T~& in the high-
temperature region (nor, (& 1) has been shown to be7 is C)

CU

1-D 2-D 3-D

theory. The constant E for the one-dimensional equa-
tion is not known. It is not known how quickly the
asymptotic limits given by Eq. (5) are approached.

The 2D result in Eq. (5) is for a single isolated plane
of spins. The general argument given above shows that
the inclusion of spin-spin interactions with off-plane spins
(either the Be atoms or the neighboring H planes) cannot
change the existence of a logarithmic dependence of T1
on 4)p in the limit &p7 (( 1. However, the relative sizes
of the BPP-like peak and the logarithmic variation will
be affected.

Equation (5) gives the frequency dependence for rigor-
ously 1D, 2D, or 3D motion. In a real material, motion
may be anisotropic, yet not strictly 2D. There are no
theoretical predictions for the shapes of the Tz& max-
ima for this intermediate case, although one expects that
as the motion becomes more isotropic there will be a
smooth transition between the ~o dependences in Eq. (5).
Qualitatively, if interplanar (IP) jumps occur at a rate
7 yp 'TD, the 2D frequency dependence should apply
for frequencies up such that w&p (( up (( wD . Although
we will find that our data are consistent with 2D hy-
drogen motion, relatively infrequent interplanar jumps
cannot be ruled out.

We proceed by assuming our data for 10s/T ( 2.7
lie in the asymptotic regime and attempting to fit the
&equency dependence of Fig. 3 with each of the lim-
iting forms, Eq. (5). Unfortunately, it is not possible
to span a wide frequency range while remaining in the
high-temperature regime without heating the sample to
excessive temperatures. As a consequence, the frequency
dependence of our data does not definitively identify the
dimensionality. However, the dependence of Eq. (5) on
the mean residence time ~D can be exploited to iden-
tify the motion of hydrogen in ZrBe2H14 as being tzoo-

dimensional.
In Fig. 5, T~& is plotted versus (uo/2vr)

ln(~o/2~), and (uo/2m), appropriate for one-,

T,„' = C, ~D 1n((uo/(u„) in 2D,

1/2 —1/2—E~ ~D ~o in 1D.

T,„=A~D —B,~D ~o in 3D,3/2 1/2

(5)

+
cj

0
oO
+& 0a+o~0

(w, accounts for the choice of units for uo). The
4)p dependence for 3D motion has been confirmed1/2

experimentally. The ln(wo) dependence for 2D motion
has been observed in graphite intercalation compounds
and other patently 2D systems. ' The proportionality
constants A and. B in the equation for three-dimensional
motion can be calculated for a particular model of hop-
ping motion on a given network of atomic sites. The
proportionality constant C for a single two-dimensional
plane of spins can also be calculated. , using mean-field

0.1 0.2 0.3 0.4 2 3 4

(roJ2ic) In(coJ2ir) (coJ2ir)

30

FIG. 5. Fits to the high-temperature frequency dependence
of T~&, using models for one-, two-, and three-dimensional
motion. The frequencies are measured in units of MHz. In
each panel, the data correspond to 10 /T = 2.7, 2.6, . . . , 2.0,
from top to bottom; all of these temperatures are above the
T~z maxima in Fig. 3. The lines are least-squares best-6t
lines. The uncertainty in the T~& values is comparable to the
symbol size.
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two-, and three-dimensional motion, respectively. Data
are shown at temperatures such that 10 s/T
2.0, 2.1, . . . , 2.7. Linear 6ts to Fig. 3 were used to inter-
polate Tz& at these texnperatures. The data for a given
temperature should fall on a straight line when plotted
for the correct dimensionality. The lines shown in Fig. 5
are least-squares best-fit lines. The three-dimensional
plot shows a large systematic deviation &om linear be-
havior, indicating that the &equency dependence of the
Tz& data is inconsistent with a model of isotropic three-
dimensional hydrogen motion. Furthermore, in compari-
son with lattice-speci6c three-dimensional calculations,
the magnitude of the &actional variation in the measured
Tz with frequency is much too large (see the inset of
Fig. 3). The two- and one-dimensional plots are more
linear. However, the scatter of the data and the narrow
&equency range do not allow the determination of the di-
mensionality of the hydrogen motion directly &oxn Fig. 5;
both the 1D and 2D analyses 6t straight lines in Fig. 5.

Equation (5) shows that the slopes of the lines drawn
in Fig. 5 are related to the mean residence time 7~.
For the one- and two-dimensional plots in Fig. 5, we
have determined w~ [multiplied by the constants C and
E2—see Eq. (5)] as a function of 10 /T. We plot
logM(~~) vs 10 /T in Fig. 6.

Both the two- and one-dimensional plots in Fig. 6 show
simple activated behavior for v~. However, only the two-
dimensional plot yields an activation energy in agreement
with the value determined by the positions of the peaks in
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FIG. 7. Fit of the mean-field prediction for T~& of a 2D
system to the data. Spherically averaged spectral densities
appropriate for a single plane of square lattice (Ref. 22) were
multiplied by 0.7 to generate the curves shown. The motional
parameters are ~ o ——4 x 10 s and E = 0.27 eV. The
dotted lines give the 3D theoretical prediction (using the same
motional parameters) for the highest and lowest experimental
frequencies.
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FIG. 6. vo (in arbitrary units) vs 10 /T for the 1D and
2D models. The constants C' and E are defined in Eq. (5).
The points plotted are from the slopes in the corresponding
panels of Fig. 5. The error bars indicate estimates of the
errors in determining these slopes. When error bars are not
explicitly shown, they are smaller than the symbols. The
lines correspond to the activation energies indicated. Note
the agreement of the activation energy of the 2D 6t with the
slope of the solid line in Fig. 3 passing through the relaxation
rate peaks.

Fig. 3. Hence, by assuming two-dimensionally restricted
motion for the hydrogen atoms in ZrBe2H~ 4, one can self-
consistently explain the peak positions (Fig. 3) and the
&equency dependence of Tz& in the high-temperature re-
gion (Fig. 5), taking T o = 9 x 10 ~4 s and E = 0 27 eV.

A simultaneous 6t to all the data points in Fig. 3 would
be convincing proof that; our two-dimensional model with
an activated H hopping rate is correct. We have used
the mean-6eld results for the spectral densities for two-
dimensionally restricted motion 2 to make such a fit,
which is shown in Fig. 7. We have used the spherically
averaged results for a single square lattice of spins to cal-
culate the curves in Fig. 7. Hence we have not included
the contribution of Be-H interactions, nor the interplanar
H-H interactions, to Tz& . The H sites in ZrBe2Hq 4 form
a honeycomb "lattice, " not a square lattice. We 6nd that
the calculated values of Tz& must be multiplied by 0.7
in order to reproduce the maxima of the data.

Figure 7 shows that the 2D theory is very successful
in explaining the high-temperature half of the relaxation
rate peaks. A precise determination of the activation
energy is difBcult because the shapes of the theoretical
curves do not match the data exactly. The optimal E
depends whether one exnphasizes the quality of fit in the
high- or low-temperature region. We emphasize the high-
temperature region. The curves shown in Fig. 7 corre-
spond to E~ = 0.27 eV and 7~o = 4x 10 s. The values
E = 0.25 eV or E = 0.29 eV yield visibly worse fits,
by eye. Although there are small systematic deviations
between the 2D model and the data, the good fit clearly
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demonstrates that the 2D model explains the temper-
ature and &equency dependence of Tz&, using a single
&equency-independent, temperature-dependent correla-
tion time 7,. The 3D model, as shown in Fig. 7, cannot
explain the data using a single, temperature-dependent
7c

In the high-temperature region, the &equency depen-
dence of the data is slightly weaker than the &equency
dependence of the 2D theory. The most obvious possible
source for this is in&equent interplanar hops that intro-
duce a small amount of 3D character into the motion.
A more subtle source for the weaker &equency depen-
dence is the relaxation due to interactions between H
spins and "off-plane" spins, either Be nuclei or H spins
on another Zr plane. These interactions do not share
the ln uo divergence of Eq. (5), even uthen II motion is
strictly 2D 22 The. off-plane spin interactions (expected to
be weaker than in-plane interactions) introduce apparent
3D character to the relaxation, weakening the observed
frequency dependence. Hence the observed deviation of
the data from the 2D theory does not necessarily imply
interplanar motion. We note that the 2D theory is not
expected to be exact; it is a spherically averaged mean-
field result for a square lattice. Further theoretical work,
perhaps Monte Carlo simulation of H motion in the ap-
propriate structure, could distinguish whether the weak
uo dependence arises &om interplanar hops or interpla-
nar spin interactions.

The data and theory also dier on the low-temperature
sides of the rate peaks in Fig. 7, perhaps indicating a
breakd. own in the applicability of the mean-field theory
in this limit: the hydrogen concentration in our sample
is high, c = 1.4/2. 0 = 0.7. Another possible explanation
for the discrepancy is that the square lattice theory does
not accurately predict the correlation function for slow
motion on the honeycomb "lattice" of ZrBe2Hq 4. (We
find that the use of scaling factors designed to adjust
the square lattice results for application to the honey-
comb lattice2s does not improve the fit. ) Yet another
possibility is that cross relaxation to the metal nuclei

occurs at lower temperatures, augmenting the relaxation
rate. Cross relaxation was observed at low temperatures
(10s/T ) 5.0) in a previous studys and may contribute
to the distortion of our T~& peaks, especially at the low-
est temperatures. Cross relaxation would be ineffective
at higher temperatures, where the H motion is fast.

From a visual fit of the 2D theory to the Tz& in Fig. 7,
we find E = 0.27+0.02 eV. The value and uncertainty of
this result encompass the measurements of E &om the
peak positions (0.27 eV) and the frequency dependence
(0.26 eV).

ZV. CONCLUSZONS

Measurements of the spin-lattice relaxation rate Tz
for H in a powdered sample of ZrBe2Hq 4 have been
made. The temperature and &equency dependences of
the difFusional contribution to the relaxation, Tz&, indi-
cate that the motion of hydrogen is highly two dimen-
sional. T2 measurements demonstrate that the hydro-
gen motion is long ranged. The two-dimensional motion
is consistent with the siting of the hydrogen atoms in the
Zr planes of the hexagonal ZrBe2 host lattice. A sim-
ple application of the mean-field results for relaxation
in a two-dimensional system shows that it is possible
to describe both the frequency dependence of the high-
temperature T~& data and the positions of the T~& max-
ima using a single set of hydrogen motion parameters:
7 p = 4 x 10 s and E = 0.27 + 0.02 eV.
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