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Vortex unbinding and layer decoupling in a quasi-two-dimensional superconductor
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The role of thermal vortices in the absence of applied magnetic 6elds is studied theoretically for
anisotropic layered superconductors such as the high-T cuprates. Using a quasi-two-dimensional
model and a real-space renormalization-group approach, the vortices are found to Josephson-
decouple the superconducting layers slightly above T, . The results are consistent with recent exper-
iments and Monte Carlo simulations.

Dimensional crossover and other issues of dimension-
ality are of perpetual interest in statistical mechanics.
The interplay between two-dimensional (2D) and three-
dimensional (3D) physics has received special attention
with the discovery of high-temperature superconductors
(HTSC's). These materials are composed of stacked, cou-
pled, 2D superconducting layers. Possible decoupling of
these layers in the absence of an applied magnetic Geld
has recently been d.emonstrated experimentally by Wan
et al. , and in computer simulations by Minnhagen and
Olsson, but is not yet understood theoretically.

In this article a quasi-2D model is studied in an at-
tempt to resolve some of the fundamental dimensional
aspects of the layered superconducting transition. The
model is well suited to investigate the layer decoupling
which may be triggered. by interlayer phase Quctuations
of the order parameter. Although the superconductors
are considered here in the absence of any external field,
the model also has important implications for finite mag-
netic Gelds. In zero Geld the Quctuations of interest are
thermally excited neutral vortex pairs. In an applied
Geld, H )H, , vortices are induced with a temperature-
dependent density which remains smaller than a maxi-
mum value of H/Po. As the transition temperature is
approached &om below, thermal vortex pairs begin to
proliferate, thus playing a central role in the layered su-
perconducting transition in low fields. It is shown below
that layer decoupling can occur for anisotropic supercon-
ductors, and is mediated by thermal vortex pairs.

The high-temperature superconductors display a wide
range of 2D and. 3D thermodynamic and transport phe-
nomena in the absence of an applied magnetic field. How-
ever, the theories employed to study particular aspects of
the HTSC superconducting transition are not generally
designed to address the full range of 2D and 3D behav-
ior. For example, resistance measurements taken above
the transition temperature T show excellent agreement
with predictions of Qux Qow theory associated with the
2D vortex unbinding theory of Kosterlitz and Thouless
and Berezinskiis (KTB). Yet this theory predicts an ab-
sence of heat capacity anomalies, in conQict with recent
observations. The anomaly is commonly understood to
require a 3D interpretation near the transition. Unfor-
tunately 3D models cannot explain behavior such as the
"universal jump" of the superQuid. density, observed in
HTSC's through measurements of I- V characteristics.

A unified theory of 2D and 3D behavior could therefore
serve as a useful foundation for existing theories in their
interpretation of specific experimental situations.

Attempts to explain the observation of' 2D behavior
within 3D theory usually rely on the following line of
reasoning: Due to the high anisotropy of HTSC's (quan-
tified by the Ginzburg Landau anisotropy parameter
p = (~~/(~), the relevant small fluctuations of the or-
der parameter 'are neutral vortex pairs which reside in
the same layer. Only as Quctuations become larger than
some length scale r3D is it energetically favorable to form
structures, such as vortex rings, which thread through
multiple layers and eventually drive the transition. The
observation of this 3D behavior may be obstructed by
finite size effects induced by the application of external
probes. For the case of a current probe, vortex pairs
which are normally bound below the transition are more
easily dissociated by currents when the pair size is large.
The saddle point of the vortex-vortex interaction de-
fines a probing length scale rI (I), which in turn describes
a cutoff' for scaling transformations such as the renormal-
ization group (RG). Assuming rr ( rsD leads to the con-
clusion that I-V characteristics probe the 2D nature of
HTSC's.

A complete understanding of the zero-field transition
must therefore have a 2D model as its starting point.
However, the necessary inclusion of 3D Quctuations near
the transition is not a straightforward procedure. Chat-
topadhyay and Shenoy have resolved this difhculty by
adjoining a modified 2D KTB theory as input to an
anisotropic 3D XY model. In this picture, the layered
system appears uniformly more isotropic upon renormal-
ization, but it does not include the effects of Quctuations
which eventually lead to layer decoupling.

Besides the Monte Carlo simulations mentioned
above, decoupling of layers has been investigated in
other similar contexts for layered superconductors. It has
been addressed theoretically in the mean Geld region
(T (( T,), in the region of strong fluctuations, and as
a result of Quctuations of the Qux lattice. Layer decou-
pling has also been discussed in terms of Quxon vortices
which lie entirely between superconducting layers.

Following previous theoretical approaches, the
zero-field layered problem is viewed here in terms of the
Lawrence-Doniach modelis (similar to the layered XY
approach of Ref. 9) in which 2D Ginzburg-Landau layers
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are stacked and coupled via the Josephson mechanism.
The logarithmic interactions of 2D vortices are modi6ed
by the Josephson coupling to become
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Here, J is the in-plane coupling constant (proportional
to the superfiuid density), and rp is the vortex "diame-
ter, " representing the smallest scale of fluctuations. Ag
is the length scale associated with Josephson coupling
and characterizes the decay of the gauge-invariant phase
difFerence between layers due to fluctuations such as vor-
tices. As discussed below, we are only interested here in
the interactions between vortices of small separation.

Our eH'ective Hamiltonian is written as
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with the sum taken over all vortices i and. j. We take
8; = +1, according to the orientation of vortex i, and

P,. s; = 0. This form of the Hamiltonian assumes that in-
teractions beyond two-body interactions may be ignored.
While such an assumption has precedent, ' there are
other indications that three- and four-body terms also
play an important role. These latter arguments are not
considered in the following analysis.

The fluctuations of a full multilayer system are mod-
eled in terms of a 2D superconducting layer sandwiched
between two superconducting slabs, as shown in the in-
set of Fig. 1(a). Thermal vortices are formed in the
2D layer (but not the slabs) and interact via V(r), de-
fined in Eq. (1). This geometry ensures that vortex fluc-
tuations remain 2D. The picture is similar to that of
a true multilayer superconductor at temperatures such
that (~(T) ( d, with d the interlayer spacing. In this
case fluctuations remain primarily 2D, and by definition
are not expected to correlate between layers. It seems,
likely therefore that the efFective Hamiltonian of Eq. (2),
with Josephson interacting vortex excitations (JIVE's)
defined through Eq. (1), will closely approximate the full
multilayer system outside of the temperature regime near
T, . (Near T, the characteristic fiuctuation length scales
are large and therefore of 3D nature. ) A full multilayer
analysis is required to test this assertion, and is not at-
tempted here.

A phenomenological, real-space RG procedure is
employed to investigate the transition in the model
system. Results are conventionally presented in terms
of recursion relations for the renormalized coupling con-
stants and the fugacity y. The fugacity is related to the
energy 2E, required to create a neutral pair of vortices of
smallest separation through the expression y = e
Adopting the KTB logarithmic scale E = ln r/rp and the
standard change of variables, x = (T/m J) —1, gives re-
cursion relations

—= (4vry)
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=

FIG. 1. (a) The I Vexp-onent, a —1, from V oc I, is
calculated using a —1 = 2/(1 + x ). x is the terminal
value of x along a RG trajectory which has been truncated
at length scale I. = 1.7 (solid line) or E = 3.0 (dashed
line) and is related to the partially renormalized super8uid
density (Ref. 10). The parameter t = 1.7 is chosen to
fit the displayed data points, taken from a single crystal of
¹iSr-Ca-Cu-0 (Refs. 8, 25). The horizontal axis is temper-
ature in the Coulomb gas system (see Ref. 4). The inset
shows the model system. (b) z is the terminal value of z
along RG trajectories terminated as in (a) at t = 1.7 (solid
line) or t = 3.0 (dashed line). z is the Josephson (inverse
anisotropy) parameter, as described in the text. z is normal-
ized as z = z /(zpe ) and drops strongly from one to zero,
demonstrating effective layer decoupling. The horizontal axis
is temperature in the Coulomb gas system.

dy 2y x+ z (z +lnz)
dE x+1 (4)

The dimensionless Josephson parameter z is defined as
z = rp/Az. These results are very similar to those found
in Ref. 17 and Eq. (11) of Ref. 9, except that we assume
here the interaction of Eq. (1) which is appropriate to
pairs of small separation. The in-plane coupling J is
weakened in the usual way by the polarization of small
intervening pairs. As expected, the recursion relations
reduce to KTB as the Josephson coupling is turned ofF

(i.e., when z is set to zero).
In the previously mentioned theories9, 16,1v it is cor-

rectly assumed that the Josephson parameter z (de-
scribed above) must also be renormalized. By rescal-
ing lengths, these authors arrive at a third recursion
relation dz = zdE, which is solved as z = zoe~, with
zQ —rp/A jo being the small initial value of z associated
with highly anisotropic materials (e.g. , zp = 0.5 for Y-
Ba-Cu-O, zo 0.04 for Tl-Ba-Ca-Cu-O, and zo —0.03
for Bi-Sr-Ca-Cu-O).

The exponential divergence of z at large scale (z
zper ), which is independent of temperature, is the result
disputed here. It reflects only the apparent change in
the interlayer spacing as lengths are rescaled. To deter-
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mine whether decoupling is possible, the weakening of
interlayer coupling due to fluctuations must also be in-
cluded in the calculation. The details of this calculation
are sketched below.

Current conservation in the 2D layer is expressed as
V~~P+ 2A& sing = 0, where P is the local phase differ-

ence between layers. The response to a weak "probing"
phase hP in the presence of vortex-induced phase fluctua-
tions P„ is approximately 9'~~8/+2(AJ cos P„)

sining

= 0.
Performing a spatial average cos P„and a statistical av-
erage over vortex configurations (denoted by brackets)
gives the prescription, A&

——A& (cosP„), for inclusion
of interlayer fluctuations. Similar prescriptions are ap-
plied jn other analyses of layered superconductors. ~ ' 3

The spatial average cos P„ for P„(r', r) which describes
the gauge-invariant phase difference between layers at
location r' due to an isolated small pair of separation
r is given as cosP„= (7rL ) I d r' cos$„1+
(1/2)(r/L) 1nr/AJ, where 7rL is the area of integration.
The statistical average is performed using a RG technique
in the spirit of Ref. 24, by which we integrate out con-
figurations of the partition function which include vortex
pairs of smallest separation. We define C(r) = (cos P„) to
include renormalization effects of all pairs smaller than r.
The density of pairs whose size is in the range (rp, Tp+dr)
is dn = (2vrrpdr)(y/rp) . The correction to C(rp) then
becomes dC = (cos P„—1)7rL dn. Here cos P„—1 is the
contribution to the average from a single small pair and
vrL dn is the number of pairs.

Changing variables from C to z = rp/Ag and rescaling
lengths gives dz = z(dg + dC/2). The third recursion
relation becomes

dz 1—= z + —(z y) z ln z.
dS 2

Apparent in this equation are the length rescaling of AJ
[flrst term on the right-hand side (rhs)] and the renor-
malization due to fluctuations (second term).

Since AJ is the screening response length associated
with Josephson coupling, it is expected to grow in the
presence of vortex pairs (ignoring length rescaling). To
see this we note that the Josephson screening response
amounts to an attempt by the superconductor to "expel"
phase differences between layers. This is accomplished
by the flowing of Josephson (and in-plane) currents. The
response of the superconductor to large fluctuations is
hampered by the presence of small JIVE pairs in their
vicinity. The weakened response is manifested through
an increased response length scale. This effect competes
with the reduction of AJ due to RG length rescaling, as
observed in Eq. (5). As demonstrated numerically be-
low, this competition leaves z to grow exponentially at
low temperatures (the expected result in the absence of
fluctuations), but drives z strongly to zero at teinpera-
tures slightly above T (signifying decoupling) .

The recursion relations (3)—(5) are numerically inte-
grated to give RG trajectories in x-y-z parameter space.
E' = 0.74 is used throughout this paper and has been
chosen so that the I-V exponent a, described below,
matches experimental data. This sets the starting points

for the fugacity yo ——e / . The unit of energy is 4'J.
The starting point zp ——0.03 (appropriate for Bi-Sr-Ca-
Cu-0) is used. Temperatures are given in reference to the
Coulomb gas (CG) system and may be scaled appropri-
ately for 2D and 3D superconductors using Minnhagen's
Ginzburg Landau Coulomb gas model.

As discussed above, RG trajectories flowing into the
3D region are not accurately determined by recursion re-
lations (3)—(5). The fixed point itself is in the 3D region
and may not be studied. The 3D region here corresponds
to AJ ( r p (or z ) 1) where rp, A 1, and z are renor-
malized quantities. The region y & 1 is similarly un-
physical in KTB problems d.ue to associated high vortex
densities. Numerical results therefore must incorporate
finite scale cutoffs. Here these cutoffs are interpreted
in terms of finite system size, defect length scales, or
probing lengths (described above). The choice of cutoff'
has a nontrivial effect on results, and must be carefully
considered in a complete analysis. In this work two cut-
offs X = 1 are employed in the RG iteration: small
(E = 1.7) and intermediate (I = 3). The smaller is
chosen to flt experimental data in Fig. 1(a) which is de-
scribed below. Both cutoffs allow the conditions y, z ( 1
to be everywhere satisfied, and are therefore congruous
with a 2D interpretation of results.

As a basic test of the theory we calculate the I- Vexpo-
nent a, which is related to nonlinear current flow, through
the equation V oc I . Below T„a is determined accord-
ing to the 2D theory:i a —1 = 2/(1+ x ), where x
is the terminal value of x along a given trajectory with
length scale cutoff E . Results are presented in Fig. 1(a).
The core energy E and the cutoff E = 1.7 act as the
two main fitting factors, and allow for satisfactory repro-
duction of the experimental features observed in Bi-Sr-
Ca-Cu-0 single crystals ' as shown. A purely 2D KTB
result with a similar cutoff is not pictured, since it gives
a fit nearly identical to the 2D JIVE curve. Although
the fitting parameters used here may not be justified due
to the lack of a microscopic theory, the same qualitative
features are nevertheless obtained over a wide range of
parameters. This suggests that I-V characteristics are
indeed probes of 2D phenomena in this system and may
be interpreted through the quasi-2D theory.

Layer decoupling is demonstrated by plotting the z val-
ues z, obtained. at the cutoff E . As a result of the cut-
off, z is merely peaked at low temperatures, rather than
divergent, as shown in Fig. 1(b). z has been normalized
here as z = z /(zpe~ ) to keep its peak value unity. An
effective decoupling of layers occurs as evidenced by the
rapid drop of z towards zero, even under the severe finite
size restrictions of Z = 1.7. These results show that
decoupling is well underway before fluctuations become
3D. Layer decoupling at high temperatures is therefore a
quasi-2D property of this system.

These results are entirely consistent with the simula-
tions of Minnhagen and Olsson who have observed signs
of decoupling slightly above T . Additionally, Wan et
al. have measured a sequential resistive transition in ¹i
Sr-Ca-Cu-0 in which the high-temperature transition is
thought to be associated with layer decoupling. These
measurements are also compatible with results found
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here, although further work is required to theoretically
characterize the sequential transition.
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