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We propose a quantum-mechanical theory of depinning of dislocation kinks. The interaction of the
pinned state with the Auctuating host lattice is treated within the framework of the adiabatic approxima-
tion. It is shown that the polaron distortion of the lattice near the pinned kink affects essentially the
magnitude of energy fluctuation required to activate a jurnp over the pinning barrier. The effect of quan-
tum lattice fluctuations on the kinetics of breakaway at low temperatures is analyzed. We address also
the question of the role of underbarrier tunnel paths in the Auctuation-induced escape of the kink from
the pinning well and introduce the concept of a (temperature-dependent) quantum stress, above which
the tunneling regime of breakaway becomes operative. The stress and temperature dependences of ac-
tivation parameters characterizing the depinning process are discussed.

I. INTRODUCTION

It is well recognized that kink excitations play a de-
cisive role in establishing the peculiar dynamical behavior
of dislocations in crystals possessing pronounced Peierls
potential relief. ' Being mobile defects, associated with
the dislocation core, kinks are regarded by the well-
known model' as one-dimensional quasiparticles con-
strained to move along the otherwise straight dislocation
line. In the isotropic continuum model of a crystal with
host atom mass M and elastic modulus G, the effective
mass p of the continual kink is related to its geometric
width tv ( w »a -b ) by the relation'

1/2
Tp

G
«1,

where a is the lattice spacing, ~p is the Peierls stress, b is
the Burgers vector, and it is assumed, as usual, that the
dislocation line tension is S—Ga .

Owing to the smallness of p, the continual dislocation
kink can be naturally incorporated into the family of
light mobile defects (defectons) in solids, the physical
properties of which have been thoroughly studied. ' At
the same time, the specific feature which distinguishes the
kink from ordinary defectons is its geometric width. In
particular, the important role played by the extended na-
ture of a kink in formulating the law of its interaction
with elastic crystalline waves has been demonstrated in
the classical paper by Eshelby.

In view of the considerable interest, connected with the
studies of the Peierls mechanism of plastic deformation
and dynamical behavior of kinked dislocations under
internal friction conditions, there has been much effort
invested in the study of kinetic behavior of kinks in pure

materials. A number of accounts ' reAect the accumu-
lation of knowledge and the progress achieved in this
field of research. At the same time, numerous stud-
ies" have been exploring more complicated situations,
where the motion of kinks in real crystals is hindered by
local pinning agents. Of fundamental importance for the
further progress in this direction of research is under-
standing of physical mechanisms which control the pro-
cess of the breakaway of kinks from efficient pinning
centers. It is the purpose of this study to present a
description of the kink breakaway phenomenon from the
standpoint of a microscopic theory.

The traditional, phenomenological descrip-
tions" ' ' ' of the depinning process rely on an as-
sumption that in a wide range of temperatures T a kink
acted on by a stress ~ less than ~p breaks away from its
pinnor with an effective rate

E(r)v=v exp0

where vo is a rather ill-defined attempt frequency, and
E(r) is the activation energy (we take the units such that
k~=1). As regards the stress dependence of E(r), it is
usually assumed that E(r)= Uo vow, where t—he pinning
barrier height at ~=0, Uo, is decreased by the work Uo~

done by the stress, and vo=T[Bln(v/vo)/t)r]T is the ac-
tivation volume of the process, maintained by environ-
mental fluctuations.

Several remarks should be made regarding the
aforementioned rate constant (2). It is, of course, reason-
able to expect that at sum. ciently high temperatures,
when the fluctuating environment can be well described
classically, the depinning rate can display classical
thermal-fluctuation Arrhenius dependence on T. On the
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other hand, it is clear that at low enough temperatures,
when quantum environmental fluctuations will acquire
importance, deviations from the Arrhenius temperature
dependence will inevitably occur.

One can further upset the absolute-reaction rate for-
mula (2) by noting that the form of the activation energy
involved tells one nothing about the physical mechanism
by which the energy is transferred to the activated kink.
Since this energy must be supplied to the kink by some
crystalline degrees of freedom (e.g., by phonons, elec-
trons, etc.), one should expect E (r) to be a sensitive func-
tion of parameters directly related to physical properties
of that crystalline subsystem which supports the process
of activation. In the particular case, where the mecha-
nism of energy gain from lattice fluctuations is provided
by the kink-phonon coupling, proper attention must be
paid to the relative magnitude of the coupling
coefficients. If strong enough, the kink-phonon interac-
tion may be able to produce a noticeable polaronic distor-
tion of the host lattice near the pinned kink. In such a
situation the lattice relaxation effects can essentially
modify the simple phenomenological picture of the brea-
kaway process.

An essential issue, which a theoretical description of
the breakaway process must also address, is determina-
tion of conditions under which the kink can fluctuational-
ly leave the pinned state utilizing effectively the under-
barrier tunnel trajectories. Following the pioneering pa-
per of Mott, where the question of the importance of
quantum tunneling effects for the dynamical behavior of
dislocations at low temperatures was addressed, a great
deal of attention has been attracted by the problem of
quantum dislocation motion through crystalline barriers
of various nature. (A good description of these investiga-
tions can be found in a number of review papers or
in the recent book of Suzuki, Yoshinaga, and Takeuchi ).
It has been suggested by Alefeld that, in view of the
condition p &(M, tunneling effects for kinks can play an
even more pronounced role than for a dislocation itself.
The work of Petukhov and Pokrovskii has to be men-
tioned in this connection, where the question of the tun-
nel penetration of kinks through the Peierls potential was
analyzed.

Let us note that in theoretical schemes, developed for
the description of the environmentally activated motion
of dislocations, the method of stochastic Langevin equa-
tions has been commonly used as an effective tool. '
In the present study of the kink breakaway process we
shall, however, abandon this method. Instead, wishing to
explore the role of the lattice deformations in establishing
the physical picture underlying the phenomenon of fluc-
tuational depinning, we are formulating our approach by
utilizing methods developed in polaron theory, and
theories of nonradiative transitions and quantum
diffusion in solids. ' Proceeding in this way, we intend
to treat unifiedly both the regimes of over-the-barrier
and tunneling escape of the kink from the pinned state.

Our paper is organized as follows: Sec. II is devoted to
the model description of the pinning potential and to the
discussion of the parameters characterizing - the pin-
dislocation kink interaction. By incorporating the lattice

fluctuations into our analysis, we investigate in Sec. III
the effect of the lattice reorganization on the bare pinned
state. In Sec. IV the contribution of overbarrier escape
paths to the overall depinning rate is found, whereas the
tunneling regime of breakaway is studied in Sec. V. We
conclude our paper by discussing the stress and tempera-
ture dependences of activation parameters that describe
the breakaway process.

II. MODEL DESCRIPTION
OF THK PINNING POTENTIAL

U;„(x)= ~

0, /x/ ~xo .

Uo =
—,'(xo

Here x denotes the position of the kink center of mass on
the dislocation line, and the spring constant g character-
izes the strength of the pin-kink interaction. The range
of interaction is denoted by xo, and the depth of the pin-
ning well is Uo when the zero of the kink energy is taken
at the bottom of the kink band. On the parameters,
characterizing the interaction, the following condition

a~x, (( a (4)

must be imposed, which is necessary for the model (3) to
be free from self-contradiction. In (4), g, = Ga -McoD is
the standard atomic spring constant in solids, and
AcoD=OD is the characteristic Debye energy of the lat-
tice. The left-hand inequality in the above condition im-
poses a natural lower bound on the range of interaction,
whereas the right-hand one serves to guarantee that the
(maximal) pinning force acting on the kink is less than
typical atomic scale forces in solids (i.e., ensures that the
model describes a breakable pin, rather than an anchor-
ing one).

Henceforth, it will be assumed that the pinning poten-
tial is sufficiently strong; more specifically, the case will
be considered in which the inequalities

k»k, —M4
1/2

»1

are supposed to hold, where co=(g/p)'~ is the oscilla-
tion frequency in the pinning well. For such a strongly
pinned kink the effect of the crystalline resistance on its
dynamics can be safely ignored. Indeed, taking advan-
tage of the circumstance that the Peierls energy of the

Consider a kink pinned down by a single immobile pin-
nor located at x =0. [Let us assume, for definiteness, that
the parent dislocation is a screw one, with its Burgers
vector b=(b, 0,0) directed along the dislocation axis
chosen as x direction]. Since the true interaction between
a kink and a pin is not known, we construct a simple
model in which an attractive potential of interaction is
taken to be

—Uo+ ~Ex
~ ~x~ ~xo
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second kind, Up', is less than ~pa, it is easy to verify
that

III. QUANTUM STATES OF THE INTERACTING
KINK-PHONON SYSTEM

1/2

((1

We now turn our attention to the question of the total
potential felt by the kink upon application of a constant
external stress. Following previous works, " ' ' ' ' we
shall exclude the inAuence of the lattice resistance on the
kink motion outside the pinning well; correspondingly,
we shaH assume that no hopping processes occur during
translational kink motion. The condition for such as-
sumptions to be admissible can be written as
r) rP- Ui', /a . Then, for the total potential under the
applied stress we can use the expression
U, (x)= Uz,„(x) fx, wher—e f=rab. ' If we now shall
transpose, for the sake of convenience, the zero of the
kink energy to the bottom of the shifted well in this po-
tential, we then can present the total potential in the fol-
lowing physically equivalent form:

—,'g(x —x, ), ~x~ (xp
U(x)= '—

Up —f(x —xp), ~x~)xp .
(8)

In Eq. (8), x, =yxp, y =r/r, and

Up = Up(1 —y )

X&Fp
Tp

' 1/2

«1 .
xp

(10)

Finally, to complete the description of the constructed
model, a comment on the quantum-mechanical nature of
the pinned state in (8) should be made. Strictly speaking,
the applied stress renders the pinning well metastable,
since it opens the channel of tunnel crossing of the pin-
ning barrier. In view of the condition (10), however, the
Wentzel-Kramers-Brillouin (WKB) tunnel widths of the
low-lying quantum levels in the well (8) are exponentially
small compared to the characteristic energy parameters
R~, AcoD. Therefore, in the limit

T «%co

is the stress-dependent height of the pinning barrier. It is
evident that in our model r =2Up/v plays the role of
the stress that would be required to produce a mechanical
breakaway, and the volume associated with the pinnor is
U=abxa. Let us note that the upper limit for the varia-
tion of the parameter (dimensionless stress) y can be
found from the requirement that ~ & ~p. Denoting the ra-
tio ~p/~ by yp, one obtains

The foregoing discussion has been carried out in the
rigid-lattice approximation. Now, in order to incorpo-
rate the lattice fIuctuations into the present analysis, one
has to specify the many-body Hamiltonian of the entire
kink-phonon system. For the sake of simplicity, our in-
terest will be concentrated here on the case of coupling to
longitudinal acoustic phonons with the Debye spectrum.
Then, guided by the analogy with successful descrip-
tions ' of various one-dimensional quasiparticles, cou-
pled to three-dimensional (3D) phonons, we present the
full Hamiltonian in the following form

2
d

2p dx

+&Int

+ U(x)+(2M) ' g[Pq+M co Q ]
q

H;„,=g C~Q~exp(iq, x ) .
q

(12)

b(q n)

q
(13)

where X is the number of unit cells in the fundamental
volume and n is a unit vector normal to the dislocation
slip plane.

We have now reached the point where we are prepared
to address the quantum states of the Hamiltonian (12).
Recalling the condition, Eq. (5) one can note that the
pinned kink moves faster than the lattice can respond.
This circumstance makes it possible to separate the
dynamical variables of the kink and phonons, using the
scheme of the adiabatic approximation. ' In this ap-
proximation one can present the eigenfunction of the full
Hamiltonian as 'Pkl(x, Q)=itji, (x, Q)yi(Q —Q"), where
the indices k and l label the adiabatic states of the kink
and lattice vibrational states, respectively. It should be
noted that, due to the kink-phonon interaction, the host
lattice has to sufFer local reorganization in order to ac-
commodate itself to the presence of the pinned kink. One
can find Q&

= 's, the shifts in the equilibrium positions of
the phonon coordinates, pertaining to the ground state

p by using the prescriptions of the standard polaron
theory. The result can be presented compactly in the
following form:

Here the set Q =
I Q I is representing the normal coordi-

nates of phonons of wave vector q and frequency co =sq,
where s is the sound velocity in the crystal. P is the
momentum conjugate to Qz, and the relevant features of
the kink-phonon interaction are contained in the cou-
pling coefficients C . These coefficients can be found us-

ing elasticity theory ' and following the original method
of Eshelby. If the case is considered, where the shape of
the Peierls potential for the parent dislocation is
sinusoidal, then

1/2
1

C =2i sech(q tv/2),

assumed hereafter, the pinned state is adequately de-
scribed by a quasistationary state, occupying the
ground-state level ep=irico/2 in the well in (8).

/ Q ~ /

= g'~
'

[ C [exp '—
2

(14)
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where gq=Mcoq and x=(fi/@co)' is the localization
length (quantum size) associated with the pinned kink.
The effect of this polaron lattice distortion on the bare
pinned state is that the latter becomes dressed by a cloud
of virtual phonons. As a result, the energy of the dressed
pinned state reduces to so= eo —26, where

(15)

ln —+1a W

m a

(Ga b)
~Ms

(16)

is the elastic strain energy stored in the self-consistently
deformed lattice. Making use of Eq. (14), one can find
this energy by transforming the sum in (15) into an in-
tegral throughout the Brillouin zone. To zeroth order in
the quantity x/w-(ep/Up)'~ (g,xp/ga) &&1 the result
is given by

means of either underbarrier tunnel paths (if e& Up), or
overbarrier ones (if e) Up). Correspondingly, the overall
depinning rate v(y, T) can be presented as a sum of two
terms

v(y, T)=v, (y, T)+vk(y, T) . (19)

The first term in Eq. (19) originates from the fiuctuation-
assisted events of tunneling through the barrier region
(tunneling regime of breakaway), whereas the second one
refers to Auctuationally induced jumps over the pinning
barrier (hopping regime of breakaway),

The jump rate vk (y, T) is defined as follows:

vk(y, T)= J ipk(e)de, (20)
p& Uo

where the integrand is the (differential) rate at which the
kink Auctuationally leaves the pinned state using the
overbarrier continuum state g, . In the considered case of
the strong coupling of the pinned kink to the lattice dis-
tortion, the expression for wk(e) can be explicitly written
as'4

from which it can be seen that the polaronic distortion of
the lattice turns out to be larger in materials where kinks
are more heavy. Further insight into the situation can be
gained by considering the abrupt kink limit, u~a. In
this limit the kink can be regarded as an atomic-scale
particle with self-interstitial mass M, and Eq. (16) qualita-
tively correctly yields for the lattice deformation energy
b, —+5, —Ga .

It will be assumed in the following that the polaron
effect is sufficiently strong. That is

2~
W k(E) = ~2 phexp

'
(~—e'p)'

20

where

g +P~qgqlQql nq+
2

q

+fico ~R ~
n +-

M
(21)

A»OD . (17)
R =C (e—ep) '(g, (x,O)~exp(iq„x)~fp(x, O))

Physically, this condition means that many lattice vibra-
tional quanta participate in the formation of the polaron
cloud so that the latter is capable of sustaining against a
single-phonon fluctuational disintegration.

IV. CONTRIBUTION OF OVKRBARRIER PATHS
TO THE DKPINNING PROCESS

After the strong polaron effect is removed from the full
Hamiltonian (12), the residual weak interaction which
mixes the adiabatic kink-vibrational states is described by
the nonadiabacity operator L the action of which on
the wave function 4' is given by

L %ki = (2M) ' g [2Pqfk(x& Q)Pq&ki(Q)
q

T
t9D «T,

OD

o (T)=2bHD r)(T, Tp)g '(Or, Tp), Tp «T «OD,

(22a)

(22b)

'g (OD Tp), T« Tp (22c)

where the characteristic temperature

is the kink transition matrix element in the Condon ap-
proximation, ' n = [exp(Acoq/T) —1] ' are the mean
occupation numbers for phonons, and cr measures the
half-width of the Gaussian function in (21).

With the aid of the Eq. (14) the temperature depen-
dence of o. can be found to be

+Xkl( Q)~q Pk «Q) ) (18)
(23)

%hen sandwiched between the different adiabatic states
of 8, this operator gives rise to a quantum transitions be-
tween the kink states accompanied by simultaneous rnul-
tiquantum excitation and redeformation of the lattice. A
single activation event, contributing to the overall rate of
breakaway, may be therefore viewed as a two-stage pro-
cess involving (i) a fiuctuation induced jump of the kink
to an excited state e in (8), and (ii) a successive resonance
transition of the kink through the barrier region by

is equal to the energy of a phonon with wavelength -ta,
and the function g( T, Tp ) is defined through the relation

q(T, Tp)=1+ ln
T T

D To
(24)

It can be noticed from Eqs. (22a) —(22c) that the tempera-
ture dependence of o is characterized by three qualita-
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tively different regions. Let us consider 6rst the region of
high temperatures above 8~. This is the region where the
motion of the lattice distortion about the pinned kink
behaves essentially classically. Here the phonon occupa-
tion numbers are large (n —T/hco »1), and cr varies
linearly with T. Below the Debye temperature, phonons
with energies Acoq& T are frozen, so that now both the
classical and quantum lattice fluctuations determine the
T dependence of the Balf-width. When the temperature
is further lowered through Tp, the last essential phonons
with q-w ' become frozen and o- is controlled by
quantum fluctuations.

To obtain the value of the phonon sum ph it is useful
to observe that, due to the localized character of the har-
monic oscillator wave function fo, the main contribution
to the transition matrix 8 comes from the integration

region lx —x, I
-x. Using the smallness of the parameter

(eo/e)' for calculating R in the WKB approxima-
tion, one can then present the expression for =

h as

coD ( Ga b ) 8D To
F(T)Ph 6 1/2 M2 3 E'0

exp
6'0

(25)

where the asymptotic behavior of the function F ( T) is as
follows: for T »8D, F(T)=3T/28D, whereas in the op-
posite limit, T( (8 D, F( T)-1.

Inserting now Eqs. (21) and (25) into Eq. (20) and car-
rying out the integration over e, we obtain the following
expression:

(Ga b) 8DTO eo
vp(1, T) co~

6K MS 2U02O Up

' 1/2

F(T)I '(y, T) exp
( Uo —Fo)

20

Uo

60
(26)

with

EO( Uo 60)r(r T)= 1+
a (T)

(27)

(2)

D(&)= J—„, Ip(x) ldx,
t

1/2

(29)

Physical intuition would say that the overall rate of
breakaway can be well approximated by the jump rate,
Eq. (26) in the limit of sufficiently low stresses and/or
high temperatures. In such a limit one expects that
several stress-dependent terms in Eq. (26) can be safely
discarded. It is clear that in order to find out the re-
quired criterion, one has to explore the role of the under-
barrier tunnel paths in the kinetics of breakaway.

p(x)= 2p[e U(x)] —.

is the WKB barrier penetration factor, and where, sup-
posing that the condition (E/eo)'~ &&1 is again satisfied,
we can use for wh(e) the expression obtained in the previ-
ous section. The classical turning points, determining the
barrier thickness, are easily found from the condition

p (x, ) =0 and Eq. (8) to be

V. TUNNELING REGIME OF BREAKAWAY x"'=x + 2E'
t c

' 1/2

(30)
In choosing an underbarrier path for a Auctuation-

assisted escape from the pinning well, the kink is faced
with the necessity to pass through the region of the pin-
ning barrier via the quantum-mechanical tunnel process.
Hence the contribution of the tunnel path with e & Up to
the breakaway rate can be presented as

r

U —e
x,'"=x + 0

0 (31)

By splitting the integration region in (29) into two
parts, one can present the barrier penetration factor as a
sum of two terms,

w) ( E)=w
p, ( E)'xpe' D ( E)'

where

(28)
D (e) =D&(e)+D2(e),

where

(32)

xp Up
D&(e)= J Ip(x)ldx =2x'" Ado Up

1/2

ln
E'

Up

I
1/2

U0
1/2

Uo

E'
(33)

and

xt 4 Up
Dz(e) =—J Ip(x)ldx =— (y ' —1) 1—

Xp 3 Aco

E'

Up

3/2

(34)



6324 L. B. HOVAKIMIAN, K. KOJIMA, AND I. OKADA

The following observation will now facilitate our task
of determining the tunnel breakaway rate v, (y, T). Let
us note that the first factor in Eq. (28) is exponentially de-
creasing with e. This factor is effectively regulated by
temperature. The second factor in (29) is exponentially
increasing with e and is controlled by the applied stress.
Therefore, one encounters a typical saddle-point situa-
tion, where the underbarrier path chosen by the kink as
the most effective one for an escape will be determined by
an "interplay" between the temperature and the applied
stress.

To avoid interrupting the main arguments, let us as-
sume that the requirements for the applicability of the
saddle-point approximation are fulfilled (we shall return
to this essential question below). Then the tunneling
breakaway rate can be written as

~»2 (Ga b) 8 DT o o.,
v, (y,T)=, F(T) exp —P(e, ) . ,

Ms'(roe,')'"
(35)

where the function in the argument of the exponential
has the form

where

V(x, )= Up
I (y, T)x,

E'p

Uo

E'p
x, —(1—x, )arctanhx,

2 ) 3 1 Uo+ —(y —1)x,
3 2 0

2

4X (42)

Uo
[y x, +(arctanhx, —x, )]+

6'p

Up
XS

Up
I(y, T) .

6'p
(43)

We can now use the structure of this equation to simplify
the expression for V(x, ). Multiplying Eq. (43) by x, and
inserting it into (42), we get

With the help of the same transformation (40), Eq. (38)
for the saddle point can be brought, after being multi-
plied by Uo, to the following form:

'2

(e—eo)
P(e) =

2
+—+D(e),

2o 2
&o

(36)
V(x, )= Up

Ep
arctanhx, —x, —

3
Xs 1+ X
3 3y'

, (y, T)= [P"(e, ) ] (37)

and the effective width of the saddle is characterized by
Uo+—

2 0

2

4X (44)

The saddle-point e„corresponding to the optimal under-
barrier escape path, has to be determined from the equa-
tion

P'(e, )=0=(E, Fo)o +Fo '+A—'T(c, ),
in which

(38)

(2)

T(e) =2
x,'" ip(x)i/p

1/2
2 Uo

1

1/2
Uo+ 1

+(y ' —1) 1—
Uo

1/2

(39)

has the meaning of the period of oscillation of a classical
particle with energy e in the inverted pote—ntial —U(x).

At this stage of development it will prove useful to in-
troduce a new variable x, through the following transfor-
mation:

e, =Uo(1 —x, ) . (40)

This transformation will now be used for disclosing an
important connection that exists between v, (y, T) and
vh(y, T). Introducing Eq. (40) into Eq. (35), we find, after
some algebra, that

v, (y,T), o., 1(y T)=(2vrs)'~ ' exp V(x, ), (41)

Let us now turn our attention to the transcendental
equation (43) for x, . We shall consider it in the limit of
low stresses,

r 2

3'o

yo(T)=1 '(0, T)- «1,o (T)
eo(Uo —eo)

(45)

and seek the solution to it under condition
x,' «1 «(E /Eo)' . Tak'ing advantage of this condition,
we can use the asymptotic expansion of the hyperbolic
function to convince ourselves that the classical particle
spends most of the time during its oscillation in the in-
verted potential in the region xo&x &x,' '(e, ). In this
way we find that, to the lowest order in y,

x, (y, T)= »y .
yo(T)

(46)

It now can be seen from the obtained result and Eq. (40)
in what manner applied stress and temperature change
the location of the optimal escape path under the barrier.
While high stress levels and/or low temperatures force e,
to go deeper under the barrier, at small ~ and/or high T
the optimal path is pushed closer to the barrier's top.
Clearly it is this property of e, to move under the action
of ~ and T that establishes the actual regime of the
breakaway kinetics.

If we now introduce Eq. (46) into the expression for
P(x, ), we can present the leading term of the right-hand
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side of Eq. (44) in the form
2

y
3 yg(T)

yg(T) = &o

Uo
y,'"(T)«y, (T) .

where the quantum stress y & is defined as
1/2

(47)

(48)

cess in the WKB limit, which can be applied, strictly
speaking, only to those underbarrier paths, for which the
condition D(e)))1 is fulfilled. Physically, this cri-
terion means that many wavelengths of the tunneling par-
ticle are spanned by the barrier region. We can, there-
fore, still apply qualitatively the WKB approximation in
the range of energies, lying close to, but below some criti-
cal energy e„which has to be determined from the con-
dition

Using now the same inequalities, under which the expres-
sion for x, was obtained, we can bring the expression for
0, to the following form:

eoUo
o (y, T) —(yx e U )' -ys s 0 0 (T)

(49)

which shows explicitly that, when the applied stress is de-
creased, the effective width of the saddle (the quantum
window for the escaping kink) becomes smaller. With
the help of Eq. (49) we can now find that the pre-
exponential factor in Eq. (41) becomes proportional to

CT y
&oyo( T) yg ( T)

(50)

P"'(e, ) —(y co Uox,')
4

yp(T)
I:yo(»&oUo j (51)

With the help of this formula and Eq. (49) the desired cri-
terion is easily obtained. It is just

y (T)
1 ))

(p")'"
This result shows that the saddle-point method works
only in the stress range above y&, and, what is essential,
here it guarantees that v, (y, T)))vi, (y, T). The special
attention, paid by Eqs. (47), (50), and (52) to the quantity
y&, emphasizes its significance for the present study, and
it is, therefore, of direct physical interest to reveal the na-
ture of origination of this characteristic stress. The fol-
lowing remark will be useful for achieving this goal.
Above, we have been treating the barrier penetration pro-

Looking now at Eqs. (41), (47), and (50), one can notice
that in the stress range defined jointly by Eq. (45) and the
inequality y))y&, the contribution of underbarrier tun-
nel paths to the overall rate of breakaway turns out to be
overwhelmingly larger than that of the overbarrier paths.
In other words, in this stress range the process of breaka-
way proceeds via fluctuation-assisted tunneling through
the pinning barrier. Furthermore, now the form of Eq.
(41) indicates that in the range of small stresses, y « yg,
the regime of the tunnel breakaway will be replaced by
hopping regime. This conclusion, being true in essence,
needs some further clarification, and here the criterion
for the applicability of the saddle-point method will serve
as a guide. In order to write down this criterion, we need
the expression for the third derivative of P(e), which
takes the form

D(E, ) —1 . (53)

If we now introduce a dimensionless quantity
a, =(1—e, /Up)', and assume that a, «1, then, using
Eqs. (32)—(34) we can find from Eq. (53) that a, is given
by

1/3
E'p

y (54)

After this preliminary remark, let us now see what will
happen if the applied stress, being initially in the range
above y&, will be gradually decreased. Obviously both
the WKB borderline level e, and the optimal escape level

e, will now move towards the top of the barrier. If we

compare the functional dependences of a, and x, on y,
we can conclude that the motion of the saddle point to
the top is much faster. This means that, eventually, at
some characteristic value of the applied stress, the op-
timal escape level will reach and cross the WKB border-
line. It is easy to find, from Eqs. (40), (46), and (54) that
this meeting of e, and e, will happen at

(55)

At this characteristic value of the applied stress, the dis-
tance remaining between the barrier's top and «, (yg ) will
become of the order of

Up(yg ) e (yg ) 0' (yg ) Epyp( T) «Ep (56)

The foregoing observations, combined with the analysis
carried out in Ref. 44, suggest that at low stresses below

y& the tunneling regime of escape will lose its importance
and the hopping regime will dominate.

Let us now turn our attention to the characteristic
features of quantum stress. A remarkable property of
y g ( T) is that this quantity is itself temperature depen-
dent, increasing by about a factor il (HD, Tp) between
its low-temperature ( T —To ) and high-temperature
(T-8~ ) values. Furthermore, at elevated temperatures
above OD, when the whole phonon bandwidth becomes
unfrozen, yg(T) begins to display a rapid increase with
temperature as T . These observations imply that the
higher the temperature of the crystal, the higher levels of
the applied stress are required for the onset of the tunnel-
ing regime of breakaway. Having noticed this, one thus
naturally approaches the question of comparison of the
characteristic stress yg(T) with y~. Since it is this latter
quantity which determines the upper limit of the actual
stress interval in the present study [see Eq. (10)j, one con-
cludes that the quantum tunneling window can exist for
the escaping kink if only y& will be smaller than y~.
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' 1/2

P(TO)-

(57)

Denoting the ratio y&(T)ly~ by P(T), we can exploit
our results obtained above, Eqs. (10), (16), (22), and (48),
for writing down an order-of-magnitude estimate for
P(T) at two characteristic temperatures, To and 8n, that
appear in our study. We find

' 1/2 1/2
0D 0D Uo 0D

a' ~o Ga' To
' 3/2

Ga a

coming process. It is interesting, therefore, to see what
kind of a prediction gives the above presented theory for
the stress dependence of the activation volume in the tun-
neling regime of the kink depinning process. For this
purpose we need, together with Eqs. (41) and (47), the
stress-dependent terms that are contained in the exponen-
tial figuring in the expression (26) for vz(y, T). Extract-
ing these terms, one can see that the condition (3yo) «1
is sufticient for the activation volume V& in the tunneling
regime to display growth with the applied stress,

0 0U —F V

P(8n ) P( To )rj (8n To ) (58) V&(r, T) =Ua(T) 1+ b( T—)
1 7

m

(65)

A number of small and large parameters of our theory
are contained in these relations. It is possible to simplify
somewhat the latter by noting that

1/2 1/2
a 0D 0D a ~D M
v 6p To xp ct) P

(59)

Using (59), we can continue our order-of-magnitude esti-
mates as follows:

P(TO)-
0D

Ga

1/2 3/2
Ga

Uo —
&0

(60)

from which it can be noticed that the condition P & 1 may
be fulfilled when

' 3/2
U )1

Ga
(61)

where
1/3

U-(U —e )
Ga

0 0 0D
T Tp (62)

U-(Uo —e())

1/3

'(8~, T ),oT —8D . (63)
D

0D

Ga
p( To)~13(8D )- «1 .

An essential circumstance is the appearance of the small-
ness parameter (8D/Ga )'~ in the above relations, Eqs.
(57) and (58). To clarify this point, it will be helpful to
pass in these relations to the abrupt kink limit [see the
discussion after Eq. (16)]. In this limit our model gives
xo~a, co~coD, g'~g„T0~8D, rI(8~ To)~1, etc The.
fundamental crystalline parameters, which survive in this
limit are the characteristic Debye energy 0D and the
atomic scale energy Ga, and from Eqs. (57) and (58) we
can conclude that qualitatively

1/2

where the temperature-dependent coefficients of the
linear form are given by

a(T)= —yo (T),T
60

b(T)=yo '(T)

(66)

(67)

v =voexp
( Uo —eo)

2cr (T)
Uo —

e()
, (68)

2V

21/2
vp — coD

Xexp

' 1/2
0(Ga b) cr8DTO Uo

F(T)
Ms Uo Uo Eo ~0

Uo v7

6'0
(69)

We can now reach rigorous conclusions regarding the
temperature behavior of the depinning rate in the hop-
ping regime. Combined with (22a), Eq. (68) suggests that
in the classical temperature limit above 0D the rate may
be presented in an Arrhenius form:

E'(r)v=v exp0 T

The attempt frequency exhibits a T dependence, while
the activation barrier height is given by

We thus see that the sensitive dependence of the optimal
escape level on ~ and T plays an important role in estab-
lishing the stress and temperature dependence of the ac-
tivation volume in the tunneling regime of breakaway.

Let us now turn our attention to the activation param-
eters, describing the hopping regime of breakaway. We
have concluded above that this regime will take over in
the stress range below minIy&, y ], Here we can safely
ignore several stress-dependent terms in Eq. (26) and
bring the expression for the rate constant to the following
form:

VI. ACTIVATION PARAMETERS

A quantity, which is known to be informative for the
purposes of identification of mechanisms by which dislo-
cation segments overcome local or extended lattice bar-
riers under uniform deformation or internal friction con-
ditions, is the activation volume associated with the over-

E*(r)=Uo 1—

( Uo —
F())Uo—

(71)

This result shows that the fluctuating lattice affects the
activation energy of the breakaway process through the
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iJ(T, To)il '(&D, T, ), To «T «OD
jef D —1'g (eD To) T«To

(72a)

(72b)

We conclude from Eq. (72) that in the ultraquantum tem-

polaron effect.
When the temperature is lowered, Eq. (22b) states that

below OD quantum lattice fluctuations do come into ac-
tion. As expected, the thermal-fluctuation Arrhenius law
now ceases to give a correct description of the breakaway
kinetics. However, one can preserve the formal structure
of the Arrhenius exponent, if the actual T in Eq. (70) will
be replaced by an effective temperature T,ff. From Eqs.
(22b) and (22c) and (68) we can find that

perature region below To the process of breakaway
proceeds athermally, and the rate constant exhibits a typ-
ical low-temperature plateau.
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