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Energy transport in one-dimensional harmonic chains
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We study the spatial evaluation of a localized energy pulse in one-dimensional perfect as well as
mass-disordered (uncorrelated and correlated) harmonic chains. In the classical case the behavior
of the second moment M2(t) of energy distribution strongly depends on the initial excitations,
especially in disordered systems. Two types of initial excitations are considered here, namely (a)
impulse excitation and (b) displacement excitation. The excitation is applied at a particular mass of
the chain. We have shown that Mz(t) can be expressed in terms of the velocity-velocity correlation
function in the case of impulse excitation. On the other hand, it is the energy-current —energy-current
correlation function for the displacement excitation. The origin of these results has been shown to
appear due to the difFerent kinds of initial occupation probability of the modes of the system. For
a perfect harmonic chain the difference is seen at the amplitude of M2(t). On the other hand, the
effect is observed in the time exponent of Ms(t) in disordered systems. The effect of mass correlation
on the energy transport is investigated. Our numerical calculations support the analytical results.
The possible implications of these results are also mentioned.

I. INTRODUCTION

Several unusual features have been recently observed
in amorphous systems. For example, thermal conduc-
tivity shows quadratic temperature dependence at low
temperatures, plateau at intermediate temperatures and
further increase at higher temperature. 2 The behavior of
the thermal conductivity &om the plateau to the high-
temperature region appears to be determined by disorder
and anharmonicity. It is, therefore, essential to study
thoroughly the effect of disorder and anharmonicity in
the transport of energy. As a prelude, we, therefore,
study here the transport of energy in different kinds of
uncorrelated and correlated disordered harmonic chains
to understand the role of residual nonscattered modes.
It has been shown previously4' that uncorrelated mass-
disordered systems contain a set of nonscattered modes
around the zero kequency. We further showed that the
correlations in masses produce extra nonscattered modes
in the system. We investigated transmission coeKcient,
individual bandwidth scaling and density of states to
prove the presence of extra nonscattered modes. The
number of such modes has also been estimated. Non-
scattered modes have also been found in classical one-
dimensional harmonic chains with dimeric correlation in
spring constants. Generalized moments, the second mo-
ment of which is inverse participation ratio, have been
analyzed to show that such systems indeed sustain a set
of nonscattered modes.

Recently, the spatial evaluation of a localized energy
pulse and the second moment of energy distribution have
been studied to gain a better understanding of the
energy transport in amorphous systems. It should be
noted that the second moment is related to the ther-
mal conductivity by the Kubo formula. One advantage
to study the second moment is that the quantity does
not depend upon the boundary conditions of the sys-

tern. Consequently, the results obtained from this study
is very reliable. The most conspicuous feature, however,
is that it exhibits different behavior for difFerent kinds of
initial excitations, especially in disordered system. Two
types of initial conditions are considered here, namely,
(a) impulse excitation and (b) displacement excitation.
They are given at a particular mass of the system. In
earlier worksM ~2 the origin of this feature, however, has
not been traced. The dependence of the second moment
on the nature of initial excitations requires a thorough
understanding. This is a further motivation behind this
work. Another important point to note is that our work
is completely done in Fourier space. This type of calcu-
lation is invariably done in real space. To the best
of our knowledge we show here for the Brst time that
such a calculation can be done in the Fourier space with-
out using directly the properties of Bessel functions. As
the results of perfect harmonic chain is known we Grst
study this system. Inasmuch as we show that the sec-
ond moment of energy distribution is nothing but the
velocity-velocity correlation function, we clearly estab-
lished that the second moment discussed in the text has
a status similar to the mean-square displacement of an
electron in electronic systems. Although the second mo-
ment appears to be energy-current —energy-current cor-
relation function in the case of displacement excitation,
we further show that the difFerence appears due to the
different kinds of initial occupation probability given to
the modes of the system. This work also gives us further
opportunity to check the formula of Dunlap, Kundu and
Phillips (DKP) which is used to predict the time expo-
nent of the mean-square displacement of an electron in
correlated disordered systems.

II. FORMALISM

We consider here a one-dimensional perfect and in6-
nite harmonic chain, called Hamiltonian chain, consist-
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ing of masses M and springs with spring constant f The
Hamiltonian H for this system is

H=) h (t)

co q —i OO

m~J' = ) ) ~

~
~( m)~J'+- ) J'.

:Oi=i 4 m= —oo

Then for q = 1, we obtain

) mJ' =-) J'. (io)

/2
(&)= + — (Q+ —Q ) +(Q —Q -)

(2)

Here P and Q define the momentum and the displace-
ment of the mass at the mth site. We now define

The explicit solution for J (w) and P (w) can be ob-
tained &om the lattice Fourier transform of these quan-
tities. We define

Fs(~) = ) e'" f (r),

= f/M,
P = P /Mar,

where f (w) is either J (w) or P (w). Then from (8) as
well as (9) we obtain

r=~t,
h (t) = h (t)/Mur2

Then the transformed Hamiltonian can be written as

(s)

where

Fi, (~) + O'„Fi, (~) = 0,

0& ——4sin (k/2).

(i2)

(is)

(4)

The solution of (12) is

Fi, (~) = Fi, (0) cos(Og~) + sin(Qi, ~),
FI (o)

OA,
(i4)

(~) = + — (Q +i —Q )'+(Q —Q —i)'
where Fi, (0) and Fi, (0) are obtained from the initial con-
ditions. Before passing to the next section we would like
to note that for any integer, q

The Hamilton's equations obtained &om (4) and (5) are

(r)=~ = ((Q + Q ) (Q Q —))
OH

= —(J +i —J )

.,f. ( ) 2' Bkq
m —1r

Although this is a trivial result, to the best of our knowl-
edge, this is the first paper where this result will find its
applicability.

Q (~) = - = P(7). -OH
(7)

III. MOMENTS OF HAMII, TONIAN CHAIN

J (~)=J+,+J

P (~) =P +i+P i —2P (9)

By P (v) and Q (v) we imply dP /dr and dQ /d7,
respectively. From (6) and (7) we finally obtain

We note that h (w) being a sum of positive quantities,
satisfies h (w) & 0. Furthermore, H is a constant of
motion and 0 & Ii (7)/H ( 1. The quantity h (7)/H
gives the &action of energy that resides at the mth site
at time v. Consequently, it can be interpreted as the
probability measure of a localized energy packet of unit
strength to be found at the site m at time w. With this
interpretation of h (r)/H the qth moment of the energy
distribution, Mq~ is defined as

Since the perfect system is translationally invariant, if
we introduce excitation at a mass, called origin, then the
following conditions must hold good:
(a) P =P
(b) Q =Q-
Condition (b) further implies that
(c) J =J

( i).
Because of condition (c) it can be shown that if q is an
odd integer

M~„(~) = ) (m —n) ih „(~)/H,

where the initial excitation is introduced at the nth mass.
For a translationally invariant system, Mq is indepen-
dent of n. Furthermore, the corresponding first moment
Mi(w) and second moment M2(v) attain a status similar
to the average displacement and the mean-square dis-
placement, respectively, of an electron in a crystal. It is
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a trivial matter to show that Mi (7 ) is identically zero for
a perfect harmonic chain. So, the diff'usion coefficient, D
of an energy packet through the harmonic chain is

1 . dM2(r)D = —bin
2 &~~ d7

while by defination Mp(7) = 1. M2(7) in Eq. (16) is
given by

M2(~) = — dk + (18)
1 1 BPy 0Jy

2H 2'

and

7r

H = ) h (r) = — dk ~Pi, ~'+ (Ji, ~'

Equation (18) is obtained by using Eqs. (10) and (15).
Equation (19) follows from Eqs. (5) and (15). Higher
moments can also be calculated by this procedure. We
discuss below the analytical calculation of M2(r) for two
difFerent types of initial conditions, namely, (a) impulse
excitation and (b) displacement excitation.

A. Impulse excitation

The initial excitation is given at the mass at site n = 0.,
i.e. , P (0) = ~' and Q (0) = 0 for all n. This yield.

2M, and1

1 1
M2(~) = —+ —+ —[1+Jp(4T) —J2(4T) ].

4 4 8 (24)

lim M2(r) = r /4.
TWoo

(25)

These results have already been obtained in Ref. 9. Pre-
dictably our results agree with the published results.
However, this calculation has a few distinctive features
which require special mention. First of all, this type
of calculations is invariably done in the real space. To
the best of our knowledge we show for the 6rst time
that a calculation of this type can be done in the re-
ciprocal space with the help of Eq. (15). Furthermore,
this method is quite simple because it does not directly
deal with Bessel functions. Instead it exploits the prop-
erty of their generating function. We would also like to
emphasize that the explicit expressions for the leading-
order term of M2(r) for both the impulse excitation and
displacement excitation are now obtained. This clearly
shows the power of this method.

Inasmuch as the definition of M2(v) employed here
gives it a status of the mean-square displacement of say,
an electron in a perfect crystal, it is worthwhile to dis-
cuss the significance of the leading term of Eqs. (20) and
(23). We write

(26)

Furthermore due to the boundedness of the last term in
Eq. (24) we obtain

(BOI, I 1
M2(r) = —

~ ~

dk+ — sin (Oi,~) dk,
2m ( Bk ) 27r

which 6nally yields

M, (r) = ~'/2+ [1 —Jp(4~)]/8. (21)

Since the last term of the above equation is bounded we
obtain, therefore,

with

BOA,, I '
4~ ( Bk )

&BE(k))
2m q Bk

E(k) =

(27)

(28)

lim M2(~) = ~ /2.
Taboo

(22)

B. Displacement excitation

Bk ) + .& Bk )

O2 cos'(Oi, ~) dk .
4

(23)

From Eq. (23) we ultimately obtain

In this case the initial excitation is P„(0) = 0 and
Q (0) = b„p. This, in turn, gives II = 1 and

P and Q stand for impulse and displacement excitation,
respectively. The significance of Eq. (26) can be under-
stood if we use the phonon language. We take a phonon
with wave vector k and mix with it adjoining phonon
to form a wave packet with a spread of a few lattice
sites. The group velocity of this phonon wave packet
vg = BO~/Bk. Hence, M2~(v) is simply the phonon-
velocity —phonon-velocity correlation function. Conse-
quently, the propagation of an energy packet through a
harmonic chain can be thought of as diffusion of phonons
through the chain. In the case of position excitation, we
obtain the electron-velocity —electron-velocity correlation
function of an electron in a perfect tight binding crystal
with E(k) given by Eq. (28). Hence, the propagation of
an energy packet in this case may be interpreted, albeit
misleadingly, as the diffusion of an electron in a perfect
crystal. Since we are considering a phonon system not
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an electronic system it is, therefore, prudent to interpret
Eq. (27) as the energy-current —energy-current correla-
tion function. The apparent disimilarity of these two
expressions can be understood &om the standard defini-
tion of the velocity-velocity autocorrelation function, as
we show below.

The Hamiltonian of the system can be written as

(29)

Due to the initially given impulse excitation the initial
occupation probability of the modes pg(0), is hA, (0)/H =
1/N. The expression of h~(0) can be obtained by com-
paring Eqs. (29) and (19). As the second moment M2(r)
is equivalent to the mean-square displacement in an elec-
tronic system, it should be expressed in terms of velocity-
velocity correlation function. So, the second moment can
be written as

7-2

Mg(r) = r2) v2pg(0) = — v2dk.2'

This is exactly obtained in Eq. (26). In the case of
initially applied displacement excitation the initial occu-
pation probability of the modes is p&(0) = 0&/2N Using.
the same formula for the second moment we obtain

7-2

M2(r) = — (&A, vg)' dk,
7t

which is nothing but Eq. (27). So, the difFerence arises
because of the difFerent kinds of initial occupation proba-
bility of the modes of the system. For the case of impulse
excitation the initial occupation probability of all the
modes are equal and it is 1/N. On the other hand, dis-
placement excitation makes the initial occupation prob-
ability of the modes to depend on k through A~&/2N.
The relevance of this d.iscussion will be transparent in
the subsequent sections where we discuss the behavior of
M2(r) in the totally disordered and correlated disordered
systems.

IV. THE BEHAVIOR OF Mg(r) IN
UNCORRELATED AND CORRELATED

DISORDERED HARMONIC CHAINS

There is one-to-one correspondence between the eigen-
states of site disordered tight binding Hamiltonian
(TBH) and the normal modes of a mass-disordered har-
monic chain. It is a well established result that all
eigenstates of a site disordered TBH are exponentially
localized. Hence, by corollary all normal modes of a
harmonic chain are exponentially localized with excep-
tion of modes around 00 ——0. Since disorder in a mass-
disordered harmonic chain vanishes at 00 ——0, it has
been shown that the system sustains ~N nonscat-
tered modes in the neighborhood of the zero-&equency
mode. N defines the size of the sample. ReBectionless
modes at &equencies other than zero can be obtained
in disordered harmonic chains by introducing correlation

A. Impulse excitation

Suppose the system has l sets of nonscattered modes
and the width of the ith set in the reciprocal space, b k;
N ~'f and P, ) 0. We further assume that group velocity
of phonon, i.e. , dO~/dk does not vanish in the sets under
consideration. Then according to DKP,

~i(xnin)

) cos k(&,sl/) 2/N'.
i=1

(So)

A o( ) in the above equation determines the reBectionless
mode of a single cluster of impurity atoms in the perfect
chain for the ith set. Furthermore, if v is the average
group velocity of the phonons which is constant for the
systems discussed here then we can write N = ev. Con-
sequently equation (30) yields

among the masses. For example, consider a disordered
binary system composed of masses m„with say, mz ——1
and m . The spring constant is considered to be unity.
If m is constrained to appear in pair, we obtain a ran-
dom dimer chain. This chain has another reBectionless
mode at A~, = g2/m provided Ag, lies inside the com-
mon band of the mass-spring system. Similarly if m
is constrained to appear as n-mer, we obtain random n-
mer chain. This chain can sustain (n —1) refiectionless
modes along with the mode at Oo ——0. Another inter-
esting example is a disordered binary chain composed of
unit masses and a symmetric trimeric mass system. The
central mass of this trimer is mo and other two masses
are m, . When mo ——m, (l 6 /4m, —3) and m, )
two reBectionless modes of this disordered binary sys-
tem coalesce at A~, ——gl/m, + 1/mo. Similarly, if
mo ——3 —2m, and 0 & m, & 2, a doubly degenerate
reBectionless mode is obtained at 00 ——0. The nature
of the modes around the reBectionless mode in these sys-
tems has been thoroughly investigated in our previous
work.

Although the exact calculation of M2(r) for the uncor-
related and correlated disordered systems is desired, the
calculation by the present method or by the real-space
method will be quite arduous. However, the asymptotic
behavior of M2(7) in time, r can be discerned by simple
physical consideration. If 7~, is the time taken by the
phonon wave packet to traverse the most probable local-
ization length /~, of the normal modes, for v

M2(r) can at best grow subdifFusively due to contribu-
tion from localized modes. So, if M2(r) grows difFusively
or superdiffusively in the asymptotic limit, the propaga-
tion of phonons through the nonscattered modes must
be responsible for it. DKP formula used this concept
and predicts the asymptotic time exponent of the mean-
square displacement of an electron in correlated disor-
dered systems. So, we employ here the DKP formula to
calculate the asymptotic behavior of M2(r) in r for the
two difFerent initial conditions.
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—P'
M, (r) - —) (1 —n'„.. ./4).

i=1
(31)

locity here is considered to be unity around np —0 and
this gives N 7. So, we obtain

Note that if all P s are the saxne, we obtain from the
above equation

M2 (r)
p l

E — O' 4
2vre~ i=1

(32)

So, the amplitude of M2 (7) will increase. This is actually
observed in the case of random dimer chain (discussed
later). We now consider various cases.

2 &max

M2(r) ~ — sin kdk4' p

12' (33)

1/2
M2(r)- 12' '

Since for the completely random system P = 2, Eq. (33)
gives

Unco~fated rendom chain

Here we have a set of nonscattered modes around Op ——

0. Furthermore, Lk N / and v ~ l. So, the second
moment for the system is

2. Random dimes chain

Here we have two sets of nonscattered modes. One set
is around Op ——0 and the other one is around Og,
g2/m with Akx and Ak2 1/~N. So, &om formula
(32) we obtain

~3/2
M2(7.) (2 —n„,/4).

So, the presence of an extra set of nonscattered modes
with the same nature of width only alters the amplitude
of M2(r).

8. Symmetric rendom ttimet chain
neith degener ate resonances

Here also we have nonscattered modes around Op
0 and nx„= gl/m, + 1/mp. The assumption is that
m, ) 4. Furthermore, Akx 1/~N and b, k2 1/N ~ .
Then,

1 1 ~1.75

M. (r) - — + 1 —-(1/m. +1/mp)2' v1/2 v

When two resonances merge at Op ——0 we have Lk
N x~s and e 1. Hence, from formula (32) we obtain

~11/6
M2 (r) 2'

B. Displacement Excitation

W'e 6rst examine the situation where a set of nonscat-
tered modes is obtained around Op ——0. The group ve-

On the other hand, for the symmetric trimer model with
degenerate resonances at (np ——0, P = s). Consequently,
for this system we obtain.

r2 ™xt'
OnymyM(r)- — jn, "~ dk

47I' g . ( Bk

1 2 2 r cos(2kp) r
leo ko p 12

(34)

For randoxn dimer chain P =
2 and including the contri-

bution from the nonscattered modes around np ——0 we

6nally obtain

cos(2ko)

)12vrv3/2

nx..(1 —n~. /4)
4~V1/2

Similarly the symmetric random trimer model with de-
generate resonances for which P = 4x yields

M2 (r)
r cos(2kp)

48~v 3/4+ 7

n2 (1 —n2 /4)
4%v 1/4

Consider now the situation when OA, , ~ 0. In the ran-
dom dimer mass chain for the second term to dominate
we need 7 )& v, and 7 is determined by v O&

1/2 2 3/2

This in turn yields v O& . Since in the second model
0

the second term always dominates the first term, ~ is ob-
tained by comparing the second term and the last term
and this consideration yields v = O&0

~1.5
M2(r)- 12' '

We now analyze the random dimer chain and symmet-
ric random trimer chain with nonzero degenerate reso-
nances. If we consider the constant value of v we ob-
tain 1V v. . These systems contain another reQectionless
mode along with the zero mode. If we consider the width
of the nonscattered zone around the nonzero reBection-
less mode behaves like Lk N ~, we obtain



6292 P. K. DATTA AND K. KUNDU
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FIG. 1. Plot of Mq(t)/t ' with time t for uncorrelated
mass-d. isordered harmonic chains with the initially given im-
pulse excitation. The concentration of the defect masses md,
is c = 0.5.

FIG. 3. Plot of M2(t) as a function of t for symmetric ran-
dom trimer chain with degenerate resonances at Ap = 0 with
the initially given impulse excitation. Here concentration of
trimer is c = 0.25.

V. NUMERICAL CALCULATIONS OF Ms(T)
AND DISCUSSION

ln this section &re present our numerical calculations
of M2(t) for the uncorrelated and correlated mass dis-
ordered harmonic chains. VA consider both the impulse
excitation and displacement excitation. For a chain of
N masses we have N coupled second-order differential
equations of P (t) and Q (t). These difFerential equa-
tions are solved on expanding lattice using fourth order
Runge-Kutta method. Furthermore we employed binary
distribution of masses. Our results are discussed below.

A. Impulse excitation

%e first consider the uncorrelated disordered binary
harmonic system. The system is composed of a unit mass
and a second mass with mass ratio mg. The spring con-
stant f is considered to be unity in all the cases discussed
here. M2(t) for the system is calculated for different mass
ratios and in diferent samples. A set of prototype results
is shown in Fig. 1. We find that M2(t) At ~ . The
value of the exponent is in agreement with our analytical
result. M2 (t) for random dimeric mass chain is also calcu-
lated. Since both sets of nonscattered modes should give

2.0

150000—

100000—

0.5
50000—

0.0
1000 2000 3000 4000

0 "
I I I t I I I I I ] 3 I I I T I I I 1 ) I I I I I I I ~

J
I I t I I I I I~

0 1000 2000 3000 4000
t

FIG. 2. Plot of Mg(t) jt with time t for random dimer
chain with initially given impulse excitation. The concentra-
tion of dimer impurity is c = 0.33.

FIG. 4. Same as Fig. 3 but Qq g 0. Here m, = 3 and
mp ——6.
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1.5 for the exponent, we expect that M2(t) Ct3/2

for this system. This is observed and shown in Fig. 2.
M2(t) for random symmetric trimer model with doubly
degenerate resonances is also studied. When 00 ——0 is
the position of the doubly degenerate resonances, we ex-
pect that the exponent should be 1.83. Our numerical
result also agrees and it is shown in Fig. 3. When the
doubly degenerate resonances is not at Op = 0, M2(t)
according to our formula is a linear combination of two
terms with exponents 1.5 and 1.75. We indeed find
that M2(t) for this model is better described by such a
combination (see Fig. 4). A single exponent fitting of
M2(t) with exponent of 1.75 is also included in Fig. 4.
This suggests that the nonscattered modes are primarily
responsible for the superdifFusive behavior in the random
and this type of correlated disordered chains.

B. Displacement excitation

1.00

~ 0.80

4

~ o.6o

O

V3 0.40

~ 0.20

0.00--
0.00

)'t
1 I I I I I I T I I

0.01
Il, II 5 lzIIII & J & (L,~ u „,)& a &, „

0.02 0.03
2

We mostly discuss here the behavior of the second mo-
ment, M2 (t) in uncorrelated random system. It is pointed
out in Ref. 10 that the time exponent of M2(t) with
displacement excitation is significantly difFerent &om
the corresponding exponent of the impulse excitation.
However, neither any rigorous estimation nor any con-
vincing explanation of this observed behavior has been
provided. Inasmuch as our analytical calculation pre-
dicts that the exponent of M2(t) is 0.5, some of our
protype results are shown in Fig. 5. In this case we ob-
serve the oscillating behavior in M2(t) as well as the in-
creasing tendency with time t. We fitted the plots with
the exponent 0.6 of time t. The exponents, however, in
this case are significantly larger than the expected value
(0.5). To understand this we analyzed the transmission
coefhcient of this system as shown in Fig. 6. It should

FIG. 6. Plot of transmission coefBcient as a function of
0& for uncorrelated mass-disordered harmonic chain of length
N = 5000. Here, mq ——2 and c = 0.5.

be noted that the spectrum contains many &inge res-
onances. The position of these resonances depends on
the sample length as well as on the sample. Since all
the nonscattered modes have equal occupation pro a i-bil-
ity as (1/N) in the case of momentum excitation they
contribute equally to M2(t). On the other hand, for dis-
placement excitation the occupation probability of the
nonscattered modes is given by 02&/2K. Therefore, the
contribution of these modes to M2(t) is weighted by AA, .
So, the contribution of the fringe resonances to M2(t)
is not significantly suppressed. The fIuctuation occurs
because &inge resonances appear randomly. To prove

100 ~ 0.30

80—

~ 0.15

W 0.10

m, = 0 25 2.5

20—
0.05

0 1000 2000 3000 4000
0.00 I I I I I I I

(
I f I I I I I I I

I I I I I I I I I I
f

I I I I I I I I

1000 2000 3000 4000

FIG. 5. Plot of M2(t)/t ' against t for uncorrelated
mass-disordered harmonic chains with the initially given dis-
placement excitation. Here c = 0.5.

FIG. 7. Plot of M2(t)/t as a function t for symmetric
trimer chain with degenerate resonances at = 0 with the
initially given displacement excitation. ere c == 0.25.
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this we studied M2(t) with the displacement excitation
of the symmetric random trimer model with degenerate
resonances at Op = 0. The expected value of the ex-
ponent is 1.5. The observed value agrees well with the
prediction. Furthermore, the evolution of M2(t) does not
show any perceptible fluctuation (see Fig. 7). This is ob-
tained because the width of the nonscattered modes is
large compared to that in the uncorrelated disordered
system. Hence, the contribution &om the &inge reso-
nances is suppressed. We also studied the behavior of
M2(t) in the random dimer mass chain as well as in the
symmetric random trimer model with a degenerate reso-
nance at Al„g 0. The predictable values of the exponent
for these systems are 1.5 and 1.75, respectively. This
is observed. The behavior of M2(t) in these systems is
also studied by bringing the resonance &equency OI,p

to-
wards zero. According to the analytical calculation, we
should not observe the above exponents within the criti-
cal time. Qualitatively this trend is observed in both the
cases. However, no quantitative estimation is done.

VI. CONCLUSION

We conclude the paper by mentioning primarily the
salient features of this study. First of all, we show how
the second moment M2(t) of the energy distribution in a
Hamiltonian chain can be calculated in the Fourier space.
To the best of our knowledge, this procedure has not
been applied before. The power of the technique is fur-
ther revealed by obtaining compact as well as revealing
expressions for Mq(t) for two different kinds of excita-
tions, namely (a) impulse excitation and (b) displace-
ment excitation. In the case of impulse excitation, the
asymptotic expression of M2(t) is predictably found to
be phonon velocity-velocity correlation function. On the
other hand, for the displacement excitation, the expres-
sion can be interpreted as energy-current —energy-current
correlation function. The apparent dissimilarity of these
two expressions is shown to originate from the way modes
are populated by two different kinds of excitations. In
the case of impulse excitation, every normal mode is oc-
cupied with a probability 1/N whereas it is 0&/2N for
displacement excitation. This is one of the thrust results
of this paper. The importance of this' understanding is
best appreciated. by noting that the observed growth of
Mq(t) in uncorrelated disordered systems with displace-
ment excitation is subdiffusive. On the other hand, it is

superdiffusive with a time exponent 1.5 in the case of
impulse excitation. We also predict a time exponent of

0.5 for the first case. The observed discrepancy be-
tween the numerical result and the predicted exponent
is also resolved by studying further M2(t) in a symmet-
ric trimer model with degenerate resonances at 00 ——0.
Hence, the role of &inge resonances in the energy trans-
port is discerned. Although the subdiffusive behavior of
M2 (t) for displacement excitation has been observed pre-
viously, this paper rigorously established its origin. In a
continuation, we also studied the effect of mass corre-
lation on the energy transport. In the case of impulse
excitation, the symmetric trimer model with doubly de-
generate resonances at 00 ——0 yields a time exponent
of ll/6. This is the largest value of the exponent in
correlated disordered systems ' so far obtained. Al-
though it is theoretically possible to improve upon this
value, this will most probably lead to a very complicated
system. In the case of impulse excitation we have shown
explicitly that the widths of the nonscattered modes with
same exponent can only increase the amplitude of M2(t).
We further showed that the critical time t beyond which
the desired value of the time exponent is obtained goes
as 0& and 0& for the dimeric and. trimeric chain, re-
spectively, as OA,, -+ 0. Hence, we conclude that the time
exponent of M2(t) in disordered systems depends on the
correlation as well as on the initial occupation probability
of the modes in the system. So, the correlation and the
initial occupation probability of the modes can be used as
control parameters to monitor the low-temperature ther-
mal conductivity of amorphous materials. This study
also suggests that the electrical conductivity in correlated
disordered systems can be altered by selectively populat-
ing the nonscattered states. Hence, the idea of selective
population may be useful in developing better electronic
filters.

It should be noted that thermal conductivity of uncor-
related mass-disordered. systems depends on the bound-
ary conditions of the system. This is observed in both
analyticals and numerical calculations. Thermal con-
ductivity diverges as N / for &ee end boundary con-
dition whereas it vanishes as N / for fixed boundary
condition. We obtain the same type of behavior in dif-
fusion coefficient for different types of initial excitations.
Inasmuch as we are dealing with infinite systems, it is
quite likely that the dependence of the thermal conduc-
tivity on the boundary condition in finite systems is man-
ifested here in initial conditions. This aspect therefore,
needs closer scrutiny. This work is presently in progress.
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