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Low-temperature increase of resistive critical fields in certain superconductors:
A simple fluctuation approach
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The resistive critical fields of several types of superconductor such as T12Ba2Cu06+, , lr-(BEDT-
TTF)2Cu(NCS)2, and Ba, ,K,Bi03 show an unusual increase at low temperatures. We argue that this arises
from thermodynamic fluctuations which are strongly enhanced because of the reduction in condensation energy
density U(H, T) by a magnetic field. This effect should be significant for any material for which UA ksT, at

low temperatures and zero field, where A is the coherence volume, which probably includes most cuprate

sup erconductors.

The resistive transitions of T12BazCu06+, (Tl 2201) (Ref.
1) and Bi2Sr2CuOy (Bi 2201) (Ref. 2) are reasonably sharp
when T, is low (unlike cuprates with higher T, where there
is substantial field broadening, e.g. , Refs. 3 and 4). This al-
lows a rather unambiguous estimate of the resistive critical
field H*(T) at all temperatures (T). In contrast to the be-
havior of H, 2(T) for conventional superconductors, which
show little T dependence below T,/2, H~(T) for these
materials' curves upwards and continues to increase
strongly below T,/10. Similar behavior of H*(T) is also
observed in the two-dimensional organic superconductor
tc-(BEDT-'I I'F)2Cu(NCS)z (Ref. 5) and for single crystals of
the three-dimensional, cubic compound Ba&,K,Bi03.
Here we propose an interpretation involving thermal Auctua-
tions and make numerical estimates for Tl 2201 using high-
resolution specific-heat data. We briefly discuss other inter-
pretations involving flux lattice melting or thermally
activated flux motion.

In zero applied field (H), fluctuation effects start to be-
come important when the following condition is
satisfied:

In this expression F, and F„arethe free energies per unit
volume of the superconducting and normal states at a tem-
perature T, U is the condensation energy density, kz is
Boltzmann's constant, A is the coherence volume, and u is a
model-dependent numerical factor, of order unity, to be dis-
cussed later. For isotropic compounds II = ( where ( is the
T-dependent coherence length. For an anisotropic material'
with layer spacing d, A=/id in the two-dimensional (2D)
region [d)g~(T)] and II = (fgi in the 3D region
[d~gi (T)], where

g~~
and g~ are the in- and out-of-plane

coherence lengths. Here we consider mainly the 2D limit
which should be appropriate for Tl 2201 crystals which have

0
d = 12 A and effective-mass and critical-field anisotropies of
900 and 30, respectively, although similar conclusions apply
to the 3D case.

If Eq. (1) is satisfied then superconducting Quctuations
will occur in the normal state above T, . These can be
viewed as superconducting droplets of volume 0 which

F —F =—
s n

(H —H )2

8mp(2K —1) 8 sr H, 2
(2)

for materials with large values of tc, using H, 2= K+2H„
where H, is the thermodynamic critical field. Equation (2)
gives the correct value for U—= lF, F„l=H, /8', at H—=O
(to within a factor p) and in the present context is an ad-
equate approximation well below the mean-field H, z(T) line
[actually, using the London formula M~1 (Hn/, H) 2gives
almost identical results]. Equation (2) can also be viewed
as the product of a local free energy density

spontaneously appear and disappear on time scales of
fi/kJilT T, l. C—onversely, below T, , transient normal re-
gions of volume 0 will exist on a similar time scale.

For H=O, the width of the true critical region, in which
the fluctuations are strong and universal power-law diver-
gences are expected, is usually taken to be T, ~ 7.&T, , where
the Ginzburg parameter rG is defined in terms of the tem-
perature at which the lowest-order (Gaussian) fiuctuation
contribution to the specific heat equals the mean-field step. "
Using weak-coupling BCS parameters, for the 2D case this
gives rG =0.013k,tT, /U(0)fl(0). At T=T,~ DDT, ,

U(T) A(T) =0.03kitT, i.e., cr=0.03. However, fluctuations
will still be important at 10—100~&, i.e., ~=0.3—3.

As described below we propose that the increase in
H*(T) at low T arises from the enhancement of thermal
fluctuations by a magnetic field, even though the tempera-
tures are very low and the values of 7.& in zero field are not
excessively large. The primary effect of the field is to reduce
U, greatly extending the range of validity of Eq. (1) if
U(0)A(0)/k&T, (1 in zero field, rather than reducing the
effective dimensionality. H*(T) of conventional supercon-
ductors is not unusual because they have much larger values
of U(0)Q(0)/k&T, .

We assume that at T=O, when thermal fluctuations are
absent, the materials in question would display a standard
magnetization-field curve described by Ginzburg-Landau
(GL) mean-field theory. As discussed in many textbooks, if
the applied field H is reasonably close to the upper critical
field H, 2 (H) 0.5H, z) the magnetization M (in cgs units) is
given by (H H, 2)/47r p(2tr 1)—where tc is the GL—param-
eter, and p= 1.16. Integrating M(H) from H, 2 to H gives
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FlG. 1. Reduced critical fields versus reduced temperature
t= T/T, calcu—lated from Eqs. (4) and (5) in the 2D (dashed lines)
and 3D (solid lines) limits for the zero-temperature values of
To /T, shown.
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H, (T)(1 H/H, z)/8—rr [A. M. Campbell (private communi-

cation)] and (1 H/H, z),—which represents the fraction of
superconductor outside the vortex cores.

As H is increased, U(H, T) falls, so that at a certain field,
H*(T), Eq. (1) will be satisfied and fiuctuating normal re-
gions of volume 0 will be formed. For H*(H, 2 the char-
acteristic magnetic area Po/H (where Po is the flux quantum
for pairs) is always larger than 2m/~~(T) and we therefore
assume that A is the same as in zero field, i.e., (I(T) d for
the 2D case and ((T) for the cubic compound. (The case
where the in-plane area is r/io/H is discussed later. ) By com-
bining Eqs. (1) and (2), and taking A=('I(T) d the field
H* at which fluctuations become important is given by

(3)
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FIG. 2. (a) Fit of the experimental (Ref. 1) resistive critical-field
data H*(T) for a single crystal of TlzBazCu06+& with T, = 15.5 K
and H perpendicular to the CuOz planes (symbols) to Eq. (4) (solid
line), with H, z(0)=16.8 T and Ta(0) =2.6 K. (b) Fit to Eq. (6)
shown on a semilogarithmic scale, with H, z(0) =17.1 T and

To(0) = 1.5 K. The long dashed line is an estimate of the melting
line using the appropriate value of To(0) (0.15 K) and the theory of
Refs. 8—10.

giving

where

H*(T) =H, z(T)[1—gT/To], (4)

H, (T)z
ktiTo(T) = $I(T) d, (5)

i e , k&TO i.s .proportional to U(T)A(T), the condensation
energy per coherence volume in zero field This is th.e crucial
equation; if To(0)&) T, as in conventional superconductors
then H* will behave regularly, like H, z(T), but if To~ T, , it
will show unusual T dependence because of fluctuations. In
the 2D case, with H perpendicular to the layers, To(T) varies
as H, z(T) and in 3D as /H, z(T). For Tl 2201, zero-field
heat-capacity data confirm that H, (T)/H, (0) approximately
follows the usual (1—t ) law, where t= T/T, , and so ne-
glecting the small T dependence of tr, H*(T) can be found
from Eqs. (4) and (5). Calculations for the 3D and 2D cases
with various values of To/T, are shown in Fig. 1.

Fitting the H*(T) data for Tl 2201 (Ref. 1) to Eq. (4)
[Fig. 2(a)] gives H, z(0) =16.8 T and To(0) =2.6 K for a
crystal with T,= 15.5 K. For T,=21.5 K (Fig. 3 of Ref. 16)
a similar fit (not shown) gives H, z(0) = 25 T and To(0) = 7

K. The Bi 2201 film data also fit Eq. (4) with H, z(0) = 31 T,
T, =19 K, and To=6.2 K (not shown). H, (0) was deter-
mined by integrating the specific-heat data for Tl 2201 and

(I(0) is given by Po/27rH, z(0). The values used were
H, (0)= 0.059 and 0.096 T, $I(0) =44 and 36 A for T, equal
to 15.5 and 21.5 K, respectively, giving UA/k&T, = 0.15 and
0.19 at T= 0. Thus for Tl 2201, the To(0) values determined

by fitting the H*(T) data to Eq. (4) are consistent with Eq.
(5) if the unknown parameter n= 0.6—0.9.

We note that a 2D analysis for YBa2Cu30695 using
H, (0)=1.1 T (Ref. 17) and H,z(0)=130 T, ' leads to
UA=k&T, , i.e., to To(0)=T, . For overdoped Tl 2201
there is a substantial linear term in the specific heat below
T, , caused by an unknown "pair-breaking" effect, and this
is what makes UA/T, particularly small. Nevertheless the
above values of UA/T, give zo values of 0.09 and 0.07 for
this material which are comparable with estimates for some
other high-T, oxides. ' Thus although thermal fluctuations
strongly affect H*(T), in zero field the true critical region is
only reached within 1—2 K of T, . In fact the parameter

To(0) is directly related to rG. Using the definition of zG

given above " and with ti = 1 we have rG = T, /[76To(0)].
From Fig. 1 there should be significant upward curvature in
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FIG. 3. Comparison of perpendicular resistive critical-field data
for the 2D organic superconductor ~-(BEDT-TTF)2Cu(NCS)2 (Ref.
5) (symbols) with Eq. (6) (solid line) for the parameter values
H, 2(0) =12.6 T, To(0) =1 K and T, =10.7 K. Main figure: hnear
scale, inset: log-log scale. The dashed line in the main figure shows
a fit to Eqs. (4) and (5) with H, 2(0) =8 T, Tp(0) =6 K.

FIG. 4. Resistive critical fields of a crystal of Ba& „K,Bi03
(symbols) (Ref. 6). The solid line shows a fit to Eq. (4)
with H, 2(0) =37.6 T, To(0) =60 K, and To(T)/To(0)
= V'H, 2(T)/H, 2(0). The short dashed line is the H*=A(1 —t) ~

power law expected (Ref. 14) in the true critical region. The mean-
field line used for 8,2 is shown by the long dashed line.

H*(T) for any compound with To/T, ~1, i.e., rG )0.013,
and there may be an observable effect at low T even for
To/T, = 10.

Tesanovic and colleagues ' obtain a condition for the
melting of a 2D vortex lattice into a dense vortex plasma
which has a similar form to Eq. (3), by finding a new solu-
tion to the GL equations in which the positions of the vorti-
ces are allowed to vary. But their condition contains the mag-
netic area Po/H. If we use Po/H instead of $~~(T) in Eq.
(3) then for the 2D case,

TH*=H, 2(T) 1+
0

(6)

It is the same as Eq. (4) as T~O; Eq. (5) for To still holds
(with an extra factor of 27r in the numerator) and it fits the
data for the Tl 2201 crystal over a wider temperature range
than Eq. (4) with To(0) = 1.5 K and n=6 [Fig. 2(b)]. How-
ever, near T, , Eq. (6) gives H*~(1—t)" with n=2, while
the experimental value is certainly in the range n= 1—1.5,
and appears to be close to the value n= '; expected for
critical fluctuations. ' Therefore the deviations from Eq. (4)
which are invariably observed for H( H, (2)T/2probably
represent a gradual crossover to field-induced critical behav-
ior with n = —,', rather than clear evidence in favor of Eq. (6).
The lattice melting condition ' corresponds to much larger
values of u (the parameter g =—a=60) because the melting
transition occurs when the free energy difference between
triangular and square lattices (multiplied by Pod/H) is
=ktiT, and this difference is U(H, T)/50. The expected
melting line for the Tl 2201 crystal with T,=15.5 K is
shown by a long dashed line in Fig. 2(b).

Another possibility which has been discussed by several
groups, e.g., Ref. 21, is that in the high-T, oxides, the same
condition, Eq. (6) [but with d replaced by g(T)], sets a field
scale for which the vortex pinning energy is =k&T.

In the latter two cases the resistivity just above H* is a
vortex plasma or a flux flow resistivity, respectively, while in

the present picture it is the normal-state conductivity plus the
field-dependent Aslamazov-Larkin fluctuation term. In 2D
and at zero field this term only depends on T/T, , the inter-
planar spacing d, and fundamental constants' and is rapidly
dominated by the large normal-state conductivity of Tl 2201
crystals. So the fact that the resistivity data' do seem to
reach the normal-state value just above H* is consistent with
the present approach.

The bipolaron model also gives an unusual increase in
H, z(T) at low T. However, there is mounting evidence that
a band picture may apply to the superconducting cuprates.
We note that as shown in Fig. 3, a similar upturn in H*(T) is
observed for the 2D organic superconductor a.-(BEDT
-TTF)2Cu(NCS)2 (Ref. 5) and can also be fitted to Eq. (4) or
(6). For this compound there is definite experimental evi-
dence for de Haas —Shubnikov oscillations, i.e., a Fermi sur-
face, in the normal phase.

Finally as shown in Fig. 4 the cubic compound
Bai,K,Bi03 also has an upturn in H*(T) (Ref. 6) which
can be fitted to Eq. (4) and the 3D form of Eq. (5) with the
parameters H, 2(0)= 37.6 T, T, = 27 K, and To(0) = 60 K. As
can be seen from Fig. 4, in this case measurements to even
lower temperatures are needed to distinguish between the
present picture and the —,

' power law expected for true critical
behavior. However, the relatively large value obtained for

(To)/0Ttends to favor our approach at low T.
In conclusion we have outlined a simple fluctuation pic-

ture which describes the increase in the resistive critical
fields that is often observed in unusual superconducting ma-
terials at very low temperatures. It predicts that such behav-
ior will be significant whenever the zero-field value of UA is
less than k&T, and may be observable for values as high as
10ksT, (Fig. 1). In this case the reduction of U by a mag-
netic field extends the region of large fluctuations to tem-
peratures well below T, . In order to confirm this picture a
theoretical model is needed to calculate the unknown param-
eter u and see whether it is indeed consistent with the value
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n=1 determined experimentally. For some of the com-
pounds mentioned, measurements of H*(T) to much lower
temperatures and more specific-heat data would also be help-
ful.

We are grateful to A. S. Alexandrov, A. M. Campbell, A.
Carrington, J. Clarke, N. E. Hussey, A. P. Mackenzie, P.
Monceau, E. J. Tarte, and J. M. Wheatley for helpful discus-
sions.

On leave from The Institute of Physics of the University, Zagreb,
Croatia.

A. P. Mackenzie, S. R. Julian, G. G. Lonzarich, A. Carrington, S.
D. Hughes, R. S. Liu, and D. C. Sinclair, Phys. Rev. Lett. 71,
1238 (1993).

M. S. Osofsky et al. , Phys. Rev. Lett. 71, 2315 (1993).
A. Carrington, A. P. Mackenzie, D. C. Sinclair, and J. R. Cooper,

Phys. Rev. B 49, 13 243 (1994).
A. Carrington, D. J. C. Walker, A. P. Mackenzie, and J. R.

Cooper, Phys. Rev. B 48, 13 051 (1993).
K. Murata et al. , Synth. Met. 27, A341 (1988).
C. Escribe-Filippini, J. Marcus, M. Affronte, H. Rakoto, J. M.

Broto, J. C. Ousset, and S. Askenazy, Physica C 210, 133
(1993).

J. M. Wade, J. W. Loram, K. A. Mirza, J. R. Cooper, and J. L.
Talion, J. Supercond. 7, 261 (1994).

Z. Tesanovic and L. Xing, Phys. Rev. Lett. 67, 2729 (1991).
Z. Tesanovic, Phys. Rev. B 44, 12 635 (1991).

' L. Xing and Z. Tesanovic, Physica C 196, 241 (1992).
M. Tinkham, An Introduction to Superconductivity (McGraw-Hill,

New York, 1975), Chap. 7.
' G. Deutscher, Physica C 153-155, 15 (1988).

W. E. Lawrence and S. Doniach, in Proc LTI2. Conference, To-

kyo, 1970, edited by E. Kanda (Keigatu, Tokyo, 1970), p. 361.
L. N. Bulaevskii, V. L. Ginzburg, and A. A. Sobyanin, Sov. Phys.
JETP 68, 1499 (1988).

' E.g. , S. Ullah and A. T. Dorsey, Phys. Rev. B 44, 262 (1991).
A. P. Mackenzie, S. R. Julian, G. G. Lonzarich, A. Carrington, S.

D. Hughes, R. S. Liu, and D. C. Sinclair, J. Supercond. 7, 271
(1994).

J. W. Loram, K. A. Mirza, and P. A. Freeman, Physica C 171, 243
(1990).

D. N. Zheng, A. M. Campbell, J. D. Johnson, J. R. Cooper, F. J.
Blunt, A. Porch, and P. A. Freeman, Phys. Rev. B 49, 1417
(1994).

J. W. Loram, J. R. Cooper, J. M. Wheatley, K. A. Mirza, and R. S.
Liu, Philos. Mag. 65, 1405 (1992).

A. Carrington, Ph.D thesis, University of Cambridge, 1993; and

(private communication).
M. Tinkham, Phys. Rev. Lett. 61, 1658 (1988).
A. S. Alexandrov, Phys. Rev. B 44, 10571 (1993).
J. Caulfield, W. Lubczynski, S. L. Pratt, J. Singleton, D. Y. Ko, M

Kurmoo, and P. Day, J. Phys. Condens. Matter 6, 2911 (1994),
and references therein.


