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Direct calculation of the spin stiffness in the J1-J2 Heisenberg antiferromagnet
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We calculate the spin stiffness p, for the frustrated spin-2 Heisenberg antiferromagnet on a square lattice by
exact diagonalizations on finite clusters of up to 36 sites followed by extrapolations to the thermodynamic
limit. For the nonfrustrated case, we find that p, =(0.183+.0.003)ji, in excellent agreement with the best
results obtained by other means. Turning on frustration, the extrapolated stiffness vanishes for
0.4»J2/J&»0. 6. In this intermediate region the finite-size scaling works poorly —an additional sign that there
is neither Neel nor collinear magnetic order. Using a hydrodynamic relation, and previous results for the

transverse susceptibility, we also estimate the spin-wave velocity in the Neel-ordered region.

The question of the existence of long-range magnetic or-
der (LRMO) in systems with frustrated interactions and
strong (quantum or thermal) fluctuations is often difficult to
decide. The traditional way of answering this question is by
calculating magnetic order parameters. An alternative way is
to consider the spin stiffness p, , which is nonzero in a
LRMO state. The stiffness has the advantage of being unbi-
ased with respect to the order parameter, and constitutes,
together with the spin-wave velocity, the fundamental param-
eter that determines the low-energy dynamics of magnetic
systems. ' It is therefore of importance to find accurate values
for p, .

The spin stiffness measures the energy cost to introduce a
twist 0 of the direction of spin between every pair of neigh-
boring rows,

d' E,(e)
dO N 8=0

where Eo(8) is the ground-state energy as a function of the
imposed twist, and X is the number of sites. In the thermo-
dynamic limit, a positive value of p, means that LRMO per-
sists in the system, while a zero value reveals that there is no
LRMO, as is the case in a spin liquid. When looking at a
finite system, things are more complicated. Here the stiffness
is only zero at distinct points, and is positive or negative on
the intervals in between. A negative value says that the sys-
tem is unstable to a change in the boundary conditions, sug-
gesting that the true ground state of the model in the thermo-
dynamic limit is incommensurate with the structure of the
finite cluster being used. A positive value reveals a stable
ground state, and can sometimes be used with finite-size
scaling to extract the behavior of the stiffness in the thermo-
dynamic limit. This is in particular the case in the Neel and
collinear regions.

The spin stiffness for the unfrustrated spin--,' Heisenberg
model on a two-dimensional (2D) square lattice has been
calculated directly by series expansion, ' p, =0.182(5)Ji,
by second-order spin-wave theory (SSWT), '

p, =0.18110J&, and by third-order spin-wave theory,

p, = 0.17481(4)J1 .
However, a previous attempt to extract the value of p,

from exact diagonalizations (ED) yielded p, = 0.125Ji,

H, =g J,,[-,'(S,+S, +S, S,+)+S',S,],
(i j)

(2)

where the sum goes over all pairs of sites (i,j), and intro-
duce a local rotation at site i by 0; around the z axis,

S,+ —+S,+e+' i, S, ~S, e ' r, and S'; —+S',-, so that S'„, is un-

changed. A Mac-Laurin expansion around 8'j 8' Oj 0
gives to order 0,,

H=H, + g [e,,j,',"——,'e,', T,,], (3)
(t,j)

where jI')=(i/2)J;, (S,+S, —S, S+) is the z component of
the spin-current operator, and T;, = P;,(S,+S, +S,. SJ ) is
the "spin-kinetic-energy" operator. To obtain the spin stiff-

which is far away from the other results. This is not too
bothering considering that the ED value of p, (and c) was
obtained from the correction terms in the finite-size scaling
analysis and as such loses accuracy due to cancelations, and
is further influenced by higher-order corrections which are
not known. To obtain more accurate values of the spin stiff-
ness, we here set out to calculate the spin stiffness directly by
using ED's to evaluate p, as a correlation function. In con-
trast to two recent works which have employed ED and finite
twists on the square and triangular lattices, our method
preserves more symmetries, and we can treat clusters of up
to 36 sites.

By performing a careful finite-size extrapolation we arrive
at a value of the stiffness in the nonfrustrated case,
p, = 0.183(3)Ji, in excellent agreement with the SSWT and
series-expansion results. In the case of frustrating interac-
tions, things are more complicated. In a previous ED study,
the order parameter was found to vanish in the region
0.34»J2/Ji»0. 68, and one of our aims was to find out
whether a direct calculation of the stiffness would corrobo-
rate this result. Our results suggest that the stiffness vanishes
for 0.4»J2/J, »0.6, but there is also a tendency of the stiff-
ness to blow up in the region J2/J i» —,. A similar tendency is
found in a first-order SWT (FSWT). In the latter case, this
burst is a signature of the breakdown of SWT as J2/Ji ap-
proaches the classical transition point J2/Ji=

We start with the general Heisenberg Hamiltonian
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p, =——j—T (s))+ 0 j Po& H Poj 0i=21 )
1 ()

—=TY+ JY, (4)

ness, a uniform twist 0 is introduced between each pair of
adjacent rows, i.e., 6);j = 8[(r;—r;) Y], and to second order

in 0 one has (H( 8))= (Ho)+ ',N 8-p, . This gives a direct
expression for p, , which for the J,-J2 model [J;J=J, (J2)
for nearest (next-nearest) neighbors] reads 16

18
20
32
36

TY

0.35089
0.34699
0.34540
0.34009
0.33943

JY

—0.07248
—0.08054
—0.08433
—0.09938
—0.10084

Ps

0.27841
0.26646
0.26107
0.24071
0.23859

TABLE I. Values of p, , TY, and JY for finite clusters and no
frustration.

1
Tz(s)= —g I J&5,+5,.+-+J2(S,. S,.+-+-+5,+S,. -+-)

+ H.c.], (5)

L

j =—g [JtS; 5,+-+Jq(5; S, ; -+S; S, - -) —H.c.],
(6)

where the JY terms comes from second-order perturbation
theory, and where Po= 1 —i0)(0i is the projection operator
projecting on the space orthogonal to the ground state. Note
that the Jz term has two terms per site and that the expecta-
tion values are evaluated in the nontwisted space. The stiff-
ness is now expressed as a sum of a "kinetic-energy" term
TY, which is easy to calculate, and a spin-current —spin-
current correlation function JY, which needs some computa-
tional efforts to be evaluated.

To calculate JY, we use a continued-fraction expansion,
where we repeatedly apply the Hamiltonian on the spin-
current state ufo)=Poj('li0), which is antisymmetric under

spin inversion and under reflection on the x axis. The loss of
diagonal reflection symmetry implies a doubling of the size
of the Hilbert space, which for the 36-site cluster is now
-3X10 . The expansion normally converges very quickly
and p, is obtained with five signiAcant digits after five to ten
iterations. As a test of our method, we first considered the
ferromagnetic model, where both J& and Jz are negative. The
ferromagnetic state with S'„,=0 is the symmetric superposi-
tion of all S'„,=0 states. The transverse correlations are eas-

ily obtained as (2(S,.+S. +S, 5,+. ))= gV'/(N —1) and, for pe-
riodic boundary conditions, the JY term is identically zero.
The order parameter lies in the z= 0 plane, and one is really
measuring the (transverse) spin stiffness (compare the anti-
ferromagnetic case below), p, = 4(J&+2J2)N/(N 1). This—
result is exactly reproduced in our exact diagonalizations.

The antiferromagnetic case differs from the ferromagnetic
case both by the necessity to consider the spin-current term
and by the ground state being rotationally invariant. The lat-
ter fact means that the twists are not orthogonal to the order
parameter, but instead we calculate the rotational average of
the stiffness. Since the stiffness for a twist around the Neel
(or the collinear) order parameter is zero, we have to multi-

ply our result by a factor 2 to arrive at the ordinary transverse
stiffness. Let us first consider the unfrustrated case.

To extract the values of thermodynamic quantities from
finite-size calculations it is of crucial importance to have
good knowledge about the scaling behavior of the quantities
of interest. A great deal of information can be obtained from

studying how the spin-wave theory behaves under scaling, or
from the finite-size analysis of the nonlinear o. model. The
FSWT expression for the stiffness can be written as

Eo JS 2 I 1 1

2N 2N i e
k

(7)

where Eo is the LSWT ground-state energy and e& is related
to the LSWT dispersion relation by ~I,=4SJeI, . By looking
at the k sums involved, one Ands that the correction to the
ground-state energy per site Eo/N scales as N j and that
the correction to the second term scales as N ' . Using the
rotational invariance of the ground state, we can further re-
write the ED expression (4) as

3 Eo
P (8)

The physical content of the first term is thus exactly the same
in both cases, and it is known that the correction to Eo/N
goes as N ~ also in the ED case. It is therefore wise to use
the same scaling as in SWT also for the JY term,
JYz —JY (xN ' . With these scaling laws we can extrapo-
late the TY and JY terms separately, and then finally obtain
the stiffness in the thermodynamic limit as

TABLE II. Extrapolated values for TY, JY, and p, for 12=0, with
the uncertainty in the last digit given in parentheses.

Cluster sets

16,18,20,32,36
16,20,32,36
16,32,36
18,20,32,36
20,32,36

0.3345(7)
0.3344(6)
0.3344(2)
0.3352(1)
0.3351(2)

JY

—0.157(5)
—0.159(6)
—0.160(5)
—0.152(3)
—0.152(5)

Ps,

0.177(6)
0.176(7)
0.174(5)
0.183(3)
0.184(5)

p, =TY +JY
As was noted in Ref. 5, the extrapolated value is sensitive to
which set of cluster sizes one uses. In Table I, the results for
the different clusters are presented and in Table II, the results
of the various extrapolations are presented together with er-
ror bounds coming from a y At of the values to a straight
line. As seen in Table II, the set of clusters with
(18,20,32,36) sites gives the best result in the nonfrustrated
case. When turning on J2 we are in a much less understood
regime. Semiclassically, there is a sharp transition at
J2/J&= L from a Neel state to a collinear state. However,
going to S= 2, there may well be a widening of the transition
region and a region with a spin-liquid ground state may open
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FIG. 1. The stiffness p, for the various clusters being used. The
18-site cluster shows a negative stiffness for large J2, and the 20-
site cluster has a change in the ground-state symmetry around

J2/J) = 0.58.

up. Indeed, the earlier finite-size studies suggested that the
Neel and collinear states are separated by an intermediate
region for 0.34(Jz/Jt(0. 68. On the other hand, besides a
number of works which have also found a reduced Neel sta-
bility, the large-5 studies using Schwinger-boson mean-field
theory or a self-consistent spin-wave theory show an in-
creased Neel stability with respect to the classical case. Since
these methods are only trustworthy for large values of S, the
discrepancy for 5= —, is not necessarily significant. It is also
not surprising that a self-consistent mean-field calculation of
p, yielded a stiffness which does not vanish until

Jz /Jt-0. 6.
A good test of our numerical program is to consider the

limit Jz/Jt=~, or J,=O, Jz=1. Here, the two sublattices
decouple and the energy (stiffness) should be twice the en-

ergy (stiffness) of the subclusters. This is indeed exactly
what we obtain. As Jz/J, increases, we thus expect to see a
decrease in the stiffness followed by an increase as the two
sublattices become individually ordered. The minimum
should be somewhere not too far from the classical break
point Jz /Jt ——z. For the 18-site cluster the stiffness should go
negative for large Jz/Jt because that cluster is not compat-
ible with the structure of two antiferromagnetic sublattices.
These observations agree with the results for the finite clus-
ters presented in Fig. 1.

Unfortunately, the individual properties of the clusters re-
sult in rather strong peculiarities. The 20-site cluster has C4
symmetry, while the others have C4, symmetry. The 20- and
36-site clusters show a change in the symmetry of the ground
state as their sublattices become individually ordered. This
transition causes an abrupt jump in p, around Jz/jt ——0.58
for N = 20, while the 36-site transition around Jz /Jt = 0.67 is
very smooth.

Given the strong individual differences in Fig. 1, it is not
evident how to extrapolate to N=oo for the various degrees
of frustration. In Fig. 2, we show the actual data which we
try to fit with our scaling laws, for Jz/J& = 0, 0.2, and 0.4. In
the region 0.3(Jz/Jt(0. 6, the results for JY do not line up
and the extrapolation to N=oo is unreliable. In Fig. 3, we
show the results of extrapolations using a few different sets
of clusters. In the intermediate region our results are scat-
tered. The FSWT result is obtained by generalizing Eq. (7).

By excluding the 20-site cluster, the results suggest a van-

FIG. 2. The finite-size data for TY and JY for J2/J&=0
(crosses), 0.2 (diamonds), and 0.4 (circles) together with fits for
J2/J&=0. 0 and 0.2. For small frustration, J2/J&~0. 3, the scaling
law is well satisfied for TY and rather well satisfied for JY, but in
the intermediate region this is not the case.
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FIG. 3. The extrapolated value of the stiffness for some choices
of clusters together with earlier ED results (ED+NLcrM) and

FSWT.

ishing LRMO in the region 0.4(Jz/J, ~0.6 in rather good
agreement with the previous ED results (where the stiffness
vanished at the same point as the order parameter). The ex-
trapolation from the (20,32,36)-site clusters follows the
FSWT result closely. However, as Jz/Jt~-, ', the sublattice
magnetization goes to —oo in LSWT and to +oo in FSW'I;
and the expansion in 1/5 is obviously not convergent in this
region. Therefore, we regard the agreement with FSWT for-
tuitous, and not suggestive of sustained Neel order. Further-
more, if one really were in the Neel regime all the way to
Jt /jz~ L the coupling constant in the nonlinear o. model,
g~c/p, , would be roughly constant over the entire region
and there is no reason why the finite-size scaling should
cease to be valid. This is, however, the case as seen in Fig. 2,
and we conclude that the intermediate region has neither
Neel nor collinear order, and that a first-order transition from
Neel to collinear order as suggested in Refs. 10 and 11 is
inconsistent with this result.

Since we consider our result from the {16,32,36)-cluster
extrapolation to be good, we can combine it with the previ-
ous ED results for the transverse susceptibility y& to obtain
the spin-wave velocity c from the hydrodynamic relation'
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FIG. 4. The spin-wave velocity obtained by using the hydrody-
narnic relation. As a comparison, the LSWT results are shown.

c= gp, /g~. The result is shown in Fig. 4. The result is in

fair agreement with LSWT, c=J& $2(1—2J2/J, ), but close
to the phase boundary the result may not be trusted since the
susceptibility and the stiffness do not vanish at the same
point. In the nonfrustrated case, our best value,

p, =0.183J&, yields c= 1.67J& in excellent agreement with
the SSWT result ' c= 1.664J&.

Bonca et al. have reported results for p, for the 16- and

20-site clusters. Their results differ from ours due to a num-

ber of lapses on their side. First of all, they did not include
the J2 terms in Eqs. (5) and (6). Secondly, they missed the
factor -'„which compensates for the rotational symmetry of
the ground state, and finally they did not use the proper
power laws in their extrapolation to the thermodynamic
limit.

It would be of great interest to extract some precise sig-
nature of the ground state in the intermediate region. This is,
however, not possible from the spin stiffnesss. Even a spin
liquid may have a finite stiffness for a finite system and in
the region where the finite-size scaling does not work, we
can only exclude Neel and collinear long-range order. Our
results strongly suggest the existence of an unconventional
ground state in a wide intermediate region, but its nature has
to be revealed by a more detailed examination of the corre-
lation functions.
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