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Vortex lattice structure in layered superconductors
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We show within the framework of the Lawrence-Doniach theory the possibility of the existence of
a combined vortex lattice (one vortex lattice perpendicular and the other parallel to the conducting
layers) for a field applied at an arbitrary angle with respect to the crystal axes of a layered super-
conductor. The phase diagrams are calculated to show the domains where different vortex lattice

structures are stable.

I. INTRODUCTION

To treat certain equilibrium properties of the vortex
Jattice (VL), such as elastic properties, pinning forces,
and thermal fluctuations, it is essential to understand
the equilibrium VL structure. Given the high anisotropy
of the high-T, materials, finding the configuration of vor-
tices, for a given magnetic induction B at an angle with
respect to the principal axes of the crystal, which mini-
mizes the free energy, has proven to be a nontrivial task.
There has been a number of experimental and theoreti-
cal results that question the usual type of vortex-lattice
structure as worked out theoretically by Campbell et
al.! within the anisotropic London theory. Forgan et
al.2 have obtained both sixfold and fourfold symmetry
patterns from neutron scattering on twinned Y-Ba-Cu-O
single crystals, depending on the orientation of the mag-
netic field with respect to the symmetry axes. Bolle et
al.® found a mixture of an isotropic vortex lattice em-
bedded in a vortex “chain” structure for single crystals
of Bi-Sr-Ca-Cu-O when the applied field is at an an-
gle with respect to the ¢ axis. Similar patterns have
recently been observed using decoration on Al-doped
Y-Ba-Cu-O single crystals. On the theoretical side,
Sardella. and Moore,® using London theory, have found
under certain conditions that instabilities in the VL
are possible for highly anisotropic materials. Also,
Benkraouda and Clem® have found that, for magnetically
coupled two-dimensional (2D) vortices,” a vortex line (a
straight stack of 2D vortices), in the limit of small in-
ductions, becomes unstable when tilted beyond a certain
angle with respect to the crystal ¢ axis. A number of re-
cent works have proposed a new vortex-lattice structure
different from the standard one with all vortices paral-
lel to the magnetic induction vector B.8712 Huse® argues
that the lattice that is parallel to the superconducting
planes pins the vortex lines that are parallel to the ¢ axis,
thereby providing a possible explanation for the “chain”
structure observed by Bolle et al.? Both Daemen et al.!!
and Sudbo et al.1? using London theory, have shown that
the coexistence of two types of vortex lattices where one
of the lattices is oriented along one of the crystal princi-
pal axes can be stable for a range of the anisotropy ratios
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¥ = A¢/Aab, where A and Aqp are the magnetic field pen-
etration lengths with the screening currents flowing along
the ¢ crystal direction and in the ab planes, respectively.
Preosti and Muzikar,'° also using London theory, have
found that a “combined lattice” of two types of vortices,
one parallel to the ¢ axis and the other parallel to the ab
planes, gives a stable structure for large anisotropy ratio
and low inductions.

The common approach to investigate different vortex-
lattice structures has been the anisotropic Ginzburg-
Landau theory and, in particular, its limiting case, Lon-
don theory, which is valid for large k = A/€ far from
the upper critical field. Even though London theory
works well for homogeneous extreme type-II supercon-
ductors, it falls short for highly anisotropic materials
such as high-temperature superconductors. For exam-
ple, as demonstrated by Bulaevskii,!> one needs to go
beyond London theory to explain the unusual angular
dependence of torque in Y-Ba-Cu-O. Also, the require-
ment of high anisotropy is necessary for the coexistence
of two types of vortex lattices,'? thereby invalidating the
use of the London theory; see Ref. 14. The theoretical
approach that adequately treats highly anisotropic super-
conductors taking into account their layered nature was
proposed by Lawrence and Doniach.!® The aim of this
paper is to explore the vortex-lattice structures in lay-
ered superconductors within the framework of Lawrence-
Doniach (LD) theory. We will show that for a magnetic
field applied at an angle with respect to the ¢ axis, a com-
bined lattice consisting of a perpendicular lattice (per-
pendicular to the ab planes) and a parallel lattice (along
the ab planes) can have lower free energy than the tilted
structure consisting only of vortices parallel to the vector

B.

II. FREE ENERGY OF DIFFERENT
VORTEX-LATTICE STRUCTURES

As shown by Bulaevskii et al.,? the main difference be-
tween the vortex structures in LD and anisotropic Lon-
don models lies in the structure of an individual vortex—
a continuous line representing the normal core of a vor-
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tex is replaced in the LD model with a stack of pancakes
(two-dimensional vortices),” located in conducting lay-
ers, and interacting through both the magnetic field and
the Josephson currents which flow between the layers.
We will consider only the limit B < ¢o/s%y (B is mag-
netic induction, and s is the spacing between the layers
in ¢ direction). In this case, as shown by Bulaevskii et
al.,® the interaction between vortex stacks can still be
considered within the framework of the anisotropic Lon-
don model® as the distances between nonlinear Josephson
regions (the regions where the profiles of fields and cur-
)

2y K2[1 4+ A2(k% + Q%)) + Q2[1 + A%, (k? + Q%))
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rents are substantially modified because of the Josephson
nature of the interplane currents) are large compared to
their dimensions. The Josephson nature of the interplane
coupling is then manifested in the line energy only.

A. Tilted vortex lattice

The self-energy of vortices (line energy times the den-
sity of vortices) for the tilted vortex lattice within LD
theory is given by®

P = net [k
327 kzsfzb

k2L +A%,Q% + AZR2][1+ A%, (k2 + Q%))

(1)

where k = (kz, ky), @* = 2(1 — coskya)/s?, a = stan#, 0 is the angle between the c axis of the crystal and vector B,

and &,p is the in-plane coherence length.

The interaction energy in the tilted vortex lattice can be expressed as!®

Filt _ 14 22,G?

$oB

d?k 1+ A2 k2

int

BZ
8 ; (1+22,G2 + X2G2)(1 + A3,G?)

where A2, = )2, sin?0 + A2cos?d. The vectors of
the inverse vortex lattice, G = (G,.,Gy), are G, =
Go/mm+/3/2 and G, = Gon(n — m/2), corresponding
to a triangular lattice (m and n are integers). Here,

Go = \ 87I'2B/d)0\/§ and 7 = p(Azz/Ac)l/z’ with p be-

ing the lattice parameter with respect to which the min-
imization of the expression (2) ought to be performed.
For relatively high fields, B > H,.;, p — 1.! Notice that
both the sum and the integral in Eq. (2) are divergent
but their difference is convergent.
The total free energy of the tilted VL is
Ftilt — F.tilt + Ftel{:' .

int s

®3)

B. Combined vortex lattice

Let us now suppose that the same magnetic induction
B is created in the following way: Its perpendicular (to
J

Fpara.l _

o (2)

zz''x

(2m)% (1 + AZ, k2 + AZk2)(1 + AZ,k2) °

the a-b plane) component (B cos 6) is due to a perpendic-
ular VL, whereas its parallel (to the a-b plane) component
(Bsin@) is due to a parallel VL.

For the free energy of the perpendicular lattice one
can use the London expression,'” since supercurrents flow
only inside superconducting layers and Josephson cur-
rents are absent:

B2cos? 4 1
FPerP —
8w Gzp 1+ /\gbGIZ, ’

(4)

where G, = (Gpz, Gpy), Gpz = mGopV/3/2, and Gpy =
Gop(n —m/2). Gop = \/SWZB cos 0/¢oV/3.

The free energy for the parallel part is again expressed
as a sum of the self-energy and the interaction energy:

(%)

The interaction energy is obtained upon setting 6 = /2
and then replacing B with Bsin6 in Eq. (2):

paral __ ppparal paral
F = F, int + F, self °

int

BZ sin2 0 Z 1
8 2 1+3,GE, + G,

where G, = mGoz\/§/2771 and Gy = Goum(n — m/2).

Goi = /Sszsing/qso\/ﬁ and 7y = 1/,/7. The self-

energy in the LD model is given by®

Fpa.ral — ¢OB sin 0 Hoo
self 32735

+m 1
. dky . dq1+A‘21sz+Agk;7
(7

where Q% = 2(1—cosq)/s%. Two mutually perpendicular

; 2
¢oBsin b / (d k 1 (6)

8 2m)2 (1+ AZ,k2 + A2k2)

[

vortex systems do not interact with each other.'® Then,
the total energy of the combined lattice is given as

Fcomb — Jperp + Fparal . (8)

III. RESULTS

We compare the free energy densities for the two
vortex-lattice configurations:
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FIG. 1. The difference AF in free energy densities of tilted
and combined vortex-lattice structures as a function of the an-
gle 0 in degrees between the vector of the magnetic induction
B and the c axis of the crystal for £as/8 = 2, Aas/€ab = 70,
lB/Aab = 2, and for several values of the anisotropy ratio .

AF = Ftilt _ Fcomb . (9)

Throughout our calculations we assume &,,/s = 2 and
Aab/&ap = 70, which is appropriate for high-temperature
superconductors. Typical dependences of the energy dif-
ference AF on the angle 6 for several values of the
anisotropy ratio v and two values of the magnetic in-
duction parameter lg = 4/¢o/B are shown in Figs. 1
and 2. The conspicuous feature of the curves is that for
large enough anisotropies and for a range of angles the
energy difference AF' becomes positive, therefore show-
ing that the combined lattice is stable. There are two
“crossing angles” between which the energy difference is
positive. Large effective mass anisotropy favors combined
structure, as seen in the increase of the region between
the two crossing angles. When anisotropy decreases, the
region where the combined lattice is stable shrinks and
eventually disappears, making the tilted lattice stable for
all angles. This agrees with the notion that unconven-
tional vortex-lattice structures can occur only in layered
materials for which the Josephson nature of the coupling
between the layers (in addition to the magnetic one) is
crucial.

The phase diagram anisotropy vs angle is shown in Fig.
3, summarizing the features of the previous two figures.
One can see that for the combined structure to be sta-
ble it is important to have relatively small inductions;
see also Fig. 4. This is because the layered nature of
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FIG. 3. The phase diagram v vs 6 for &4/ = 2,

Aab/€ab = 70, and two different values of Ig/Asp: 2 and 5.
The region above each of the curves is where the combined
lattice is stable.
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FIG. 4. The phase diagram v vs lg/Aq for £an/s = 2,

Aab/€ab = 70, and 6 = 45°. The region above the curve is
where the combined lattice is stable.

these materials is manifested only in the line energy of
vortices (as discussed at the beginning of the previous
section), so that only if the line energy is not too small
compared to the interaction between vortices (which hap-
pens when vortices are relatively far apart) can one see
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the effect. Omne then also expects that when the ratio
lB/Aap becomes very large (interactions negligible), the
line separating the two phases should saturate. That is
what happens; see Fig. 4.

IV. CONCLUSION

Using Lawrence-Doniach theory, which is appropriate
for Josephson-coupled layered systems, we have shown
that under certain conditions a vortex structure consist-
ing of two mutually perpendicular vortex lattices—one
parallel and the other perpendicular to the ab planes—
has lower free energy than the usual vortex-lattice with
all vortices parallel to the magnetic induction vector
B. The mass anisotropy parameter v needs to be large
(2 60) for this new vortex-lattice structure to be stable.
If we look at the high-temperature superconductors, we
see that such a large <y is present in Bi and T1 families of
compounds. In Y-Ba-Cu-O (v < 10), on the other hand,
only the standard vortex lattice is likely to occur.
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