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Hole-hole superconducting pairing in the f-J model induced by spin-wave exchange
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We study numerically the hole pairing induced by spin-wave exchange. The contact hole-hole
interaction is taken into account as well. It is assumed that antiferromagnetic order is preserved at
all scales relevant to pairing. The strongest pairing is obtained for the d-wave symmetry of the gap.
Dependence of the value of the gap on hole concentration and temperature is presented. For the
critical temperature we obtain T 100 K at the hole concentration b 0.2—0.3.

I. INTRODUCTION

Magnetic Quctuations are believed to be a very likely
mechanism of pairing in cuprate superconductors. There
have been many studies of predominantly phenomeno-
logical nature supporting this idea. In the present work
we study spin-wave-mediated. hole pairing using results
obtained from first principles for the undoped t-J model.

%'e base our study on the results of previous
papers. ' It was shown in Ref. 10 that because of spin-
wave exchange there is an effective long-range attraction
between two holes with opposite spins,

and contact hole-hole interaction. The d-wave pairing is
shown to be the strongest.

Recently, d-wave pairing was studied in Ref. 12. Al-
though many results are similar, we believe the spin-wave
exchange interaction which we use is more realistic than
the atomic limit interaction employed in Ref. 12.

Our paper has the following structure. In Sec. II we
present an effective Hamiltonian of the t-J model. In
Sec. III we calculate the BCS-type pairing of holes at
zero temperature. Section IV presents the results of the
calculation of the critical temperature. Finally, our con-
clusions are given in Sec. V.

%&0.

In this potential there is an infinite series of two-hole
bound states. However, they have very large sizes and
very small binding energies and thus are not directly
responsible for high-T superconductivity. Very strong
pairing in the many-hole problem due to the same po-
tential (1) was demonstrated in Ref. 11, where an in-
finite set of solutions for the superconducting gap was
found. The strongest pairing was either in the d-wave
or g-wave sector. The pairing induced by spin-wave ex-
change is a long-range phenomenon. However, the attrac-
tive potential (1) is too singular and the wave function
is known to collapse to the origin. On the one hand, this
"collapse" effect substantially enhances pairing. On the
other hand, it leads to a dependence of superconduct-
ing gap on short-range dynamics which cannot be stud-
ied analytically. For this reason analytical calculations
can only estimate the numerical value of the gap and
cannot distinguish between d and g-wave pair-ing (which
have the same long-range behavior but a different short-
range one). In the present work, we calculate the gap nu-
merically, taking into account both spin-wave exchange

II. EFFECTIVE HAMILTONIAN
FOR DRESSED HOLES

The underlying microscopic physics is described by the
t-J model defined by the Hamiltonian

H = Hg+HJ

t ) (dt d— +H.c.)+ J ) S„.S
(nm) cr (nm)

where dt is the creation operator of a hole with spin
cr (cr =t', $) at site n on a two-dimensional square lat-
tice. The dt operators act in Hilbert space with no
double-electron occupancy. The spin operator is 8
2dt cr pd p. (nm) are the nearest-neighbor sites on the
lattice. Below we set J = 1 and give all energy values in
units of J.

At half-filling (one hole per site) the t Jmodel is equiv--
alent to the Heisenberg antiferromagnet model which
has long-range Neel order in the ground state. Un-
der doping the long-range antiferromagnetic order is de-
stroyed. However, local antiferromagnetic order is pre-
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served. We assume that the magnetic correlation length
s„ is not smaller than the typical wavelength of holes,

s„) 1/p~ ~ 1/~b (b && 1 is the concentration of
holes). Thus we have antiferromagnetic order at all scales
relevant to the problem. This assumption does not con-
tradict experimental data.

We treat the J term of the Hamiltonian (2) using the
linear spin-wave approximation (see Ref. 14 for a review).
De6ne the Fourier transformations

at =
Q

2 --- 2—) S„e'q'", bt = —) S+e'q'", (3)
nest' ej.

where the notation n gg (n 61,) means that site n is on
the spin-up (-down) sublattice. Introducing the Bogol-
ubov canonical transformation

t=U, t —VS „ Pt = Uqbt —Vqa q, (4)

we write the Heisenberg Hamiltonian Hg as

IIJ = @o + ) ~q(~qci'q+ PqPq) i

q

where Ep is the antiferromagnetic background energy.
The summation over q is restricted to the Brillouin zone
of one sublattice [pq = z(cosq + cosq„) & 0]. The spin-
wave dispersion and the transformation coefBcients are
given by

1 2 1
eg = P-ipi + P-2p2

2 2 P. «Pi,

where pi (p2) is the projection of k —ko on the direction
orthogonal (parallel) to the face of the magnetic Brillouin
zone (Fig. 1). From Eq. (7) for t » Ao/4 we have

Pi — t = 0.65t.X+@
gl+ y

+h, sw = ) Pk, q(hk+qg~kf+q + ~k+qt~k&pq + H'c ) &

t t

k,q

According to Refs 1.8 and 23, P2 —O.lt at t & As/4.
The wave function of a single hole may be written in
the form @k = hk ~0). At large t the composite hole

operator hk has complex structure. For example att

t/J = 3 very roughly, the weight of a bare hole in @k is
about 25'%%uo, the weight of configurations "bare hole + 1
magnon" is 50%%uo, and of configurations "bare hole + 2
or more magnons" 25'%%uo. These estimations are based
on the approach with a minimal string ansatz and fur-
ther renormalization due to additional magnons. 24 How-
ever, other approaches like 6nite cluster diagonalization "
or numerical solution of Dyson's equation~6' ' Qi give
very close results. We have to stress that the dressed hole
is a normal fermion.

The interaction of a composite hole with spin waves is
of the form (see, e.g. , Refs. 18, 19, 24, 25)

hPq=2 1 —p ) at Iql «1 2
gk q: 2f ( fkUq + 'Yk+qVq) (10)

1
Vq = —sgn(&q)

(dq

1

2

The spin waves created by at and Pt have definite values

of spin projection. Due to Eqs. (3) and (4), aqt~0) has

S, = —1 and Pt~O) has S, = +1. Here ~0) is the wave
function of the quantum Neel state.

Single-particle properties in the t-J model are by now
well established (see Ref. 15). A single hole is a mag-
netic polaron of a small radius, i.e., a "bare" hole that is
"dressed" by virtual spin excitations. A single hole has
a ground state with a momentum of k = (+m/2, +7r/2).
The energy is almost degenerate along the line cosk +
cosk„= 0 which is the edge of the magnetic Brillouin
zone (see, e.g. , Refs. 16—23). The hole dispersion may be
well approximated by the analytical expression

For arbitrary t the coupling constant f was calculated
in Refs. 24, 25. The plot of f as a function of t is pre-
sented in Fig. 2. For large t the coupling constant is
t-independent f = 2.

I et us stress that even for t & J the interaction (10)
between quasiholes and spin waves has the form as for
t « J (i.e. , as for bare hole operators) with an added

As2/4+ 4t2(1+ y)

E02/4+ 4t (1+y) —4t2(x+ y)pk2

+—p2 (cos k~ —cos
Icil )

1 2

Lp 1.33, x 0.56, g 0.14

where the parameters Lp, x, y are some combinations of
the ground state spin correlators. Near the band bot-
tom ko ——(+m'/2, +n'/2) the dispersion (7) can be pre-
sented in the usual quadratic form FIG. 1. The Brillouin zone of a hole in the t-J model.
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FIG. 2. The plot of the hole —spin-wave
coupling constant f
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renormalization factor (of the order of J/t for t » J).
This is a remarkable property of the t-J model which
is due to the absence of a single-loop correction to the
vertex. This property was erst found perhaps in Ref. 16.
In Refs. 18, 19, 25 it was demonstrated explicitly that
vertex corrections with diEerent kinematic structure are
of the order of few percent at t/J = 3. There is also
a weak q dependence of the coupling constant f The.
plot in Fig. 2 corresponds to the long-wavelength limit
q = 0 because, as we will see later, the small q's are most
important for pairing. At q vr, the factor f is (10—17)'%%uo

bigger than at q = 0 [see the discussion between Eqs. (13)
and (14) of Ref. 10]. The influence of this correction on
the pairing is negligible.

Note that the hole scattering between diBerent pock-
ets makes a large contribution to the pairing. However,

in the two-sublattice formalism which we use, there are
no spin waves with q = g = (+x, kx) and such scatter-
ing takes place via umklapp processes with q p~ &( 1.
One could use another description: Expand the Brillouin
zone for spin waves and include g —I into considera-
tion explicitly. Then, due to antiferromagnetic order the
points q = 0 and g = I are equivalent, and the coupling
constants in the efFective Hamiltonian (10) are exactly
equal, fz o

——f& s. Certainly the kinematic structure
of the vertex (10) reflects this symmetry: gk ~ = gk ~+g.

Interaction between two holes can be caused by ex-
change of one spin wave. Alongside that there is a con-
tact hole-hole interaction. One can say that it is due
to exchange of several hard spin-wave excitations. The
Hamiltonian of the contact hole-hole interaction was de-
rived in Refs. 26, 10 using a variational approach:

8
IIh, h —

. )
k1)kg )k3,k4

A ]kg —ks + +('7kg+ks + Ykg+k4) ~kst~k g~kg$~kgt~kg+kg, kg+k4 ~

A = 16tvp (1 —7p ) ———2p, —18.5p + 84p, + 10ntv p,4

where

1 3/2+2S, '"
2 Sg

t
[Sg(3/2+ 2')]'i' '

S, = [9/16+ 4t']'~'.

The coefBcients A and C in Eq. (11) were derived in
erst order in n, where o. is the coefBcient in kont of the
transverse part to the Heisenberg interaction: S S
S'S' + 2 (S+S + S„S+). Since the physical value
is n = 1, contributions of higher orders are impor-
tant. In order to estimate them, we will set o. = 0.6.

This choice is made so that results for the binding en-
ergy of short-range two-hole bound states obtained by
Gnite lattice diagonalizations would agree with re-
sults obtained s by using the efFective interaction (11).
Actually at o. = 0.6 the contact interaction Hh h is very
small and practically does not in6uence the pairing.

To summarize, we conclude that the dynamics of holes
on the antiferromagnetic background is described by the
effective Hamiltonian

H,g = ) skhkt hk~+ ) ~~(o.tn~+ PtP~)
ko

+Eh,. + ~h. ,~,
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which is expressed in terms of the composite hole hk
and spin-wave n&, P& operators. It includes free holes
and spin waves and their interactions Hh, and Hh, p,

[given by Eqs. (10) and (11)].

this question below. The second term in Eq. (16) is the
contact interaction (11).

We use the usual BCS wave function for the ground
state of the many-hole system,

XII. SUPERCONDUCTING STATE

For the small concentrations b « 1 under considera-
tion, holes are localized in momentum space in the vicin-
ity of the minima of the band, ke ——(+m/2, +m/2), and
the Fermi surface consists of ellipses (see Fig. 1). The
Fermi energy and Fermi momentum of noninteracting
holes are

(14)

The Fermi momentum p~ is measured from the center of
the corresponding ellipse. I.et us stress that the numeri-
cal value of e~ is very small. For realistic superconductors
t/ 1= 3 (see, e.g. , Refs. 32—34). Therefore at 0 = O. l and
J = 0.15 eV one gets e~ 15 meV 175 K. In pair-
ing, the exchange of spin waves with typical momentum
q p~ && 1 is the most important. The energy of such
spin waves is much higher than the typical energy of a
pair,

Thus we suppose that all quasiparticles are in the con-
densate. For strong interactions the validity of this as-
sumption is under question because there is no parameter
to justify it. We believe that numerically the wave func-
tion (17) is good. Anyway one may consider the wave
function (17) as a trial one in the variational method.
In this case the large gain in energy which we get is a
justification of the wave function.

The gap b,k corresponding to the wave function (17)
satis6es the conventional BCS equation

The situation is quite similar to that for the two-hole
bound state problem and much different from the sit-
uation with the usual phonon-induced pairing where De-
bye's &equency is much lower than the Fermi energy.

The interaction between two holes with opposite spins
and opposite momenta is

l k,k' = 2 + (A Yk —k' + + Yk+k')
gk) ggk', —g 8

~g k k'

(16)

The first term here is due to the spin-wave exchange
diagrams shown in Fig. 3. The minus sign before this
term takes into account the fact that spin-wave exchange
makes the spin fIip for both holes. For the same reason,
the momentum transfer is the sum (not the difFerence)
of the hole momenta, q = k+ k'. The energy denomina-
tor in Eq. (16) takes into account the energy of the spin
wave uz, and the energies Ek and Ek of the two holes
in an intermediate unpaired state. In fact, the account
of Ek and Ek~ is the account of retardation. We discuss

(b)

k, t k4a

FIG. 3. Interaction between two holes via a single
spin-wave exchange.

FIG. 4. The gap symmetry. (a) Bz type (d wave), (b) A2

type (g wave).



6080 BELINICHER, CHERNYSHEV, DOTSENKO, AND SUSHKOV

&) = —2).&ik ~, (18)

where (g = eg —p, , p being the chemical potential fixed
by the hole density

b =2) v„'.
k

b b
(@iH - Ei@) = (4 iH —f i4) = 0. (20)

Here E' is the energy of the ground state. The efFective
interaction (16) itself depends on the parameters uk and
vk via the dependence of Ek on the gap Lk. Nevertheless,
in the variational equations (20) we have to set

b b
Vkk~ —— Vkk~ ——0,

Su, Sv,
(21)

and therefore we get the usual BCS equation (18). Expla-
nation of the condition (21) is as follows. The spin-wave
exchange part of the interaction (16) is due to the sec-
ond order of perturbation theory. Therefore, the actual

It is well known that the excitation energy of fermions in
BCS theory is E1, = g(z2 + A&2. Just this energy enters
Eq. (16) for the effective hole-hole interaction. Equa-
tion (18) is obtained by variation of the average value of
the Hamiltonian with respect to the parameters uk and
vk)

denominator in the spin-wave contribution is E' —E',„„~~,
and it does not depend explicitly on uk and vk. The
self-consistency condition E' —E' „„&p

———uz —Ek —Ek
appears after solving Eqs. (20) and (21). From the prac-
tical point of view this question is not important because
due to the condition (15) the dependence of V~ g on the
gap is very weak.

An iterative numerical solution of Eq. (18) is straight-
forward. We present results for t = 3 corresponding to
realistic superconducting systems. Since the inverse
mass P2 [see Eqs. (7),(8)] is known with rather poor ac-
curacy, we use several values of the mass ratio a = Pq/P2.
We take Pq &om Eq. (9) and then set P2 ——Pq/a. The
constant of the hole-magnon interaction (10) is f = 1.80
att=3.

The symmetry group of the square lattice is C4 . The
solutions of Eq. (18) belong to certain representations of
this group. In agreement with Ref. 11 the strongest pair-
ing is in the Bq representation [d wave, Fig. 4(a)] and
in the A2 representation [g wave, Fig. 4(b)]. Consider
Grst the d-wave pairing. The map of the gap for the hole
concentration b = 0.1 and the mass ratio a = Pq/P2 ——7
is presented in Fig. 5. In Fig. 6 for the same parame-
ters we give the map of vk which is the mean occupation
number of a single-hole quantum state. We observe that
despite a big value of gap the hole density distribution
changes quite sharply at crossing the Fermi surface. For
other mass ratios and hole concentrations Fig. 5 is also
approximately valid because it gives the gap in units of

and we found that with changing b and a, the whole
gap function is multiplied by some factor but the k de-
pendence is not much changed,

7T

FIG. 5. The contour plot of the d-wave gap
for t/J = 3, the mass ratio a = Pq/P2 = 7,
and hole concentration b = 0.1. The
levels are presented in units of the maxi-
mum gap value A „(at these parameters,

0.0661). Dashed curves represent
the Fermi surface for the case when one con-
siders the holes like an ideal gas.
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FIG. 6. The contour plot of a single-hole
quantum state mean occupation number v&.
Parameters are the same as in Fig. 5.

(22)

Due to interaction between holes, the ideal gas relation
(14) between the chemical potential y, and the hole con-
centration is not valid. The correct relation follows from
Eq. (19). Plots of p as a function of b' are given in Fig. 7.

A very important characteristic is the maximal value
L~ of the gap on the Fermi surface. Its value is directly
related to the critical temperature of the superconducting
transition,

the interaction (16) while the d-wave gap is substantially
suppressed by adding repulsion to the short-range inter-
action. Thus, under certain conditions the g-wave solu-
tion may be relevant to the problem. Table I gives more
information about solutions at several parameters includ-
ing the difference of the free energy F = (4'~H —pNh, ]@)
(Ng is the number of holes) between the superconducting
and normal states,

1
Fs FN = 2 ) (gv~ + —) Vi, g~ugvgug~vg~. (24)

k Ql

T, —0 5&g(T = 0).

According to Fig. 5, Lq = 0.7L „.The dependence of
A~ on the concentration is given in Fig. 8. Comparing
the plots of the gap Lq and the chemical potential p
(Fig. 7), we conclude that b, q 0.7p. This is really
a very strong coupling limit and virtually all holes are
involved in pairing. This is to be contrasted with the
usual situation when only a small portion of electrons

take part in pairing and the gap is proportional to
the Debye frequency.

The g-wave pairing is weaker and we will not present
complete results for this case. Due to the above men-
tioned similarity of the long-range (small q) behavior of
the d and g waves which arises &om having the same
number of zeros at the Fermi surface, the value of the gap
for the g wave for the above parameters is of the same
order as for the d wave. It is also interesting that the g
wave does not depend on details of the contact part of

It is convenient to calculate &ee energy per hole and use
the difference fs —f~ = ~&(Fs —F~).

Symmetry
d-wave
d-wave
g-wave
g-wave

m=06
a. = 0.8
n =0.6
m=08

fs —fzv
—4.42 x 10
—2.01 x 10
-1.79 x 10
—1.79 x 10

b

0.0606
0.0552
0.0547
0.0547

&max
0.0523
0.0317
0.0259
0.0259

0.0377
0.0222
0.0210
0.0210

TABLE I. InQuence of short-range interaction. Changes in
the short-range interaction are introduced by increasing the
parameter a, [see discussion after Eq. (11)] which makes the
contact interaction more repulsive. All data are for T = 0,
a = 7, p = 0.058 (this is the chemical potential at which in
the absence of interaction the hole concentration would be
bo = 0.05)
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0.25 I
I +I

0.20—

0.15

0.10

0.05

FIG. 7. The chemical potential p, as a
function of hole concentration b. Dashed
curves correspond to an ideal gas of holes.
Deviation of dashed curves from linear de-
pendence (14) is due to the deviation of the
dispersion relation (7) from the quadratic
expansion (8). The dependence with pair-
ing taken into account is presented by solid
lines. All the curves correspond to t/ J = 3.
The mass ratio is (from top to bottom)
a = P, /P, = 5, 7, 9.

0.000.0 0.1 0.2 0.3

0.10

0.08

0.06

0.04

FIG. 8. The maximal value of the gap on
the Fermi surface, Aq, vs hole concentration
for t/J = 3; the mass ratio is (from top to
bottom) a = Pq/P2 = 5, 7, 9.
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0.02— FIG. 9. The maximal value of the gap on
the Fermi surface, Aq, as a function of tem-
perature. The hole concentration is b = 0.05,
t/ J = 3, the mass ratio a = Pq/P2 ——7.
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0.04

0.02

FIG. 10. The critical temperature vs hole
concentration. t/ 1 = 3, the mass ratio
& = AIP2 = 7.

0.000.0 0.2 0.3

IV. CRITICAL TEMPERATURE

Due to the condition (15) the spin-wave frequency in
the hole-hole interaction (16) is large in comparison with
the hole excitation energy: u~ && Ep. It means that
retardation is small and the interaction is almost instan-
taneous. It is well known that in this case the equation
for the gap at T g 0 is

(25)

In Fig. 9 we present the calculated dependence of L» on
temperature at hole concentration b = 0.1. Figure 10
gives the dependence of the critical temperature T on
hole concentration. The approximate relation (23) de-
rived analytically in Ref. 11 is qualitatively fulfilled. In
real units (J = 0.15 eV), Fig. 10 gives (taking a = 7)
T, = 51 K at b = 0 1 and T, = 86 K at b = 0 3. Let us
stress that in our calculation we do not use any fit. The
only input is the values of t and J.

V. CONCLUSIONS

Using the single spin-wave exchange mechanism sug-
gested in Refs. 10, 11 we carried out a numerical ab initio

calculation of superconducting pairing in the t-J model.
Both the magnitude of critical temperature and its de-
pendence on hole concentration are in good agreement
with experimental data. The calculated critical temper-
ature is still smaller than the highest critical temperature
obtained in experiment. However, this may be explained
by not knowing the exact parameters. By a relatively
small variation of parameters we can get T, = 100—150
K.

The most important remaining problem is the destruc-
tion of long-range antiferromagnetic order. Following
experimental results» we have assumed that antiferro-
magnetic order is preserved at distances r & 1/py. The
behavior at larger distances is an open question in the
present paper.
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