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Impurity efFects in d-wave superconductors

Ye Sun and Kazumi Maki
Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0$8$

(Received 24 October 1994)

Impurity scattering will provide a crucial test for d-wave superconductor in high T, copper-oxides.
Among other things we calculate the static spin susceptibility and 6nd a simple relation between
the susceptibility and super8uid density p, (T) = A(0)/A(T) is broken in the presence of impurity
scattering. Also we generalize Lee s universal conductivity at T = 0 K. In the presence of a 6nite
concentration of impurity, the order parameter Ass in the conductivity has to be replaced by b, (I', 0)
and A(I', 0) is accessible through the tunneling experiment of the density of states.

I. INTRODUCTION A(k) = icos(2$),

It is now well documentedi 4 that a small amount (a
few percent) of Zn substituted for the Cu in the Cu-
02 plane of high-T copper oxides like YBa2cu306+
not only reduces substantially the superconducting tran-
sition temperature T„but also introduces substantial
electronic density of states (i.e., the residual density of
states) as seen through the Knight shift and nuclear spin
lattice relaxation rate at low temperature. As related
analyses in heavy fermion superconductors show, this
suggests that Zn provides impurity scattering in the uni-
tarity limit common to non-s-wave superconductors. In-
deed quite a few analyses have been published along this
line recently. For example Lee finds a simple uni-
versal expression of the real part of the electric conduc-
tivity in the T = u = 0 limit, while Borkowski and
Hirschfield and Fehrenfacher and Norman made a
comparative study of the effect of impurity scattering on
d-wave superconductors and on strongly anisotropi. c s-
wave superconductors. However, none of them has stud-
ied the static spin susceptibility which can be measured
through the Knight shift and their analysis is not com-
plete. The object of this paper is to study the e8'ect of
impurity scattering on thermodynamics as well as some of
the transport properties. We find, for example, that the
present model reproduces quite well the electron density
of states determined by Barbiellini et al. , by choosing
I'/I' 0.02 where I' is the critical scattering rate neces-
sary for the complete suppression of superconductivity. ~

Also in these general circumstances, the static spin sus-
ceptibility is no longer related to the superfluid density
due to the vertex renormalization associated with impu-
rity scattering. We recall that a similar di8'erence be-
tween these two quantities is well known for s-wave su-
perconductors in the presence of magnetic impurities.

where P is measured from the a axis. Then in the pres-
ence of impurity scattering the Green function is given
by

(2)

where pi and p3 are Pauli spin operators operating in the
Nambu space and u is determined &om

4~@'
/&2 + 0*/ f/~ ) (4)

where u is the renormalized Mastubara &equency and
related to u by

In particular the transition temperature T and the
order parameter at T = 0 in the presence of impurities
are given by

where I' = n;/vrNp, f = cos(2$), n; is the impurity con-
centration, and No is the electron density of states in the
normal state on the Fermi surface per spin. Here we as-
sumed that the scattering is in the unitarity limit (i.e.,
the resonance on the Fermi surface w = 0), and ( . )
means average over P.

The temperature-dependent order parameter E(I', T)
is determined &om the gap equation in the weak-coupling
limit:

II. SELF-CONSISTENT EQUATION

Let us assume that the superconducting order param-
eter is described by an angle P in the kq-k2 plane:
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n C'p+ |"p+a(r, o) 1.0

where @(z) is the digamxna function, E = E(&,) and

It = It ( i, ) are the complete elliptic integrals, Co is

determined &om

~ 0.68

0.4

(8)
0.2—

and T p and Lpp are the transition temperature and the
order parameter at T = 0 K in the absence of impurity
scattering. Here Eq. (6) is the well-known Abrikosov-
Gor'kov formula. Also the critical scattering I', is given
by I' = 0.4122 Lpp = 0.88T p. The same equation as Eq.
(8) has been obtained already in Refs. 9 and 10. For sxnall
r/K and large r/4, Eq. (8) is solved approximately as
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FIG. 2. The temperature-dependent order parameter
A(I', T) for r/App = 0 (solid line), O.l (dotted line), 0.2
(dash-dotted line), and 0.3 (dashed line) is shown as a func-
tion of T/T, p.

(
ln 4

err )
and Cp ——& [I+ 4(&) 2+. ], respectively. Equations
(6) and (7) are solved numerically and shown in Fig. 1. It
is remarkable that A(r, 0)/Ape and T,/T, o draw almost
the same curve. In the same figure we show N(0) /Np (the
residual density of states at E = 0 at T = 0 K), which is
accessible by the Knight shift or the T linear coefBcient
of the nuclear spin lattice relaxation rate. The residual
density of states N(0)/Np is given by

(9)

For derivation of Eq. (9), see Eq. (10) later. The
temperature-dependent order parameter b, (r, T) is ob-
tained for a few impurity concentrations and shown in
Fig. 2. A very similar result has been already obtained
by Hotta. Finally we show the density of states for dif-
ferent r/b, in Fig. 3. Here the density of states is given
by
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FIG. 1. &(r, o)/App (dotted line), T,/T, p (solid line), and

the residual density of states N(0)/Np (dash-dotted line) are
shown as a function of I'/r, where I' = 0.4122&pp.
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FIG. 3. The density of states for I'/b = 0 (solid line), 0.01
(dense-dotted line), 0.05 (dotted line), 0.1 (dash-dotted line),
and 0.2 (dashed line) is shown as a function of R/A.
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N(E) /No ——Re
/~2 —Q2~ f [2

2.0

In the limit of u = E = 0, Eq. (10) reduces to Eq. (9)
where we made use of Eq. (8). The present result is some-
what different &om the one obtained by Hotta. For ex-
ample Hotta appeared to obtain more densities of states
at E = 0 compared with ours, though we do not know
the origin of the discrepancy. But our result not only
reproduces quite well the density of states determined by
Barbiellini et al. , but also appears to satisfy the density
of states sum rule more consistently.
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III. THERMODYNAMICS
AND OTHER PROPERTIES

T HcT / T ) 2

ET.r

as a function of (T/T )2, while in Fig. 5 the specific heat
as a function of T/T, p is shown. It is remarkable that the
absolute value of D(T/T ) first increases and becomes
largest around F/Bop 0.15 and then decreases as F
increases. Also the specific heat at low temperatures is
given by

N(0) T = p, T,
0

Making use of b, (F, T) determined Rom the gap equa-
tion (4), the thermodynamics of the system is easily
obtained. i In Fig. 4 we show D(T/T, ), the derivation
&om the parabolic law:
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FIG. 5. The specific heat normalized by the normal state
one at T = T,p is shown as a function of T/T, p for F/App ——

0, O. l, 0.2, 0.3. Here the dotted line is the norxa. al state value.

where p, = 3 N0 is the Sommerfeld constant.
Perhaps of more interest is the static spin susceptibility

which is accessible by the Knight shift. In the absence of
the Fermi-liquid correction, the susceptibility is given by

y,p,
.„(0) = 2Np p, ;„„,

with
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FIG. 4. The deviation D(T/T, ) = H, (T)/H, (0)—[1—
(T/T, ) j is shown as a function of (T/T, ) for I'/b, pp

——0
(solid line), 0.1 (dotted line), 0.2 (dash-dotted line), and 0.3
(dashed line).
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FIG. 6. The super8uid density p, (T) (solid line) and the
spin super8uid density p,~;„,(T) (dotted line) are shown as
a function of T/T p for I'/b, pp

——0, 0.1, 0.2, 0.3 from top to
bottom. Note that p, ;„„(T)= 1 —p, ;„,(T) is measurable
by the Knight shift experiment.
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p.'„...(T) = 1 —p.'„...(T)

&'Ifl' &'Ifl'= 2~T (~'+ &'Ifl')' ' ( g~'+ &'Ifl' (~'+ &'Ifl')~+r

4T . i ( I) (K —E) x 1+ —z„—2/x„'+ 1K '(K —E)+I
&

~" -
)

(14)

as expected. In the presence of a Fermi-liquid correction
like in the t-J model, p, ;„has to be replaced by

—1
0 0

Pspin&n = &spin, n + J~0 &spin, n (16)

In Fig. 6 we show p, ;„,for a few impurity concentrations
as a function of T/T, o. In the presence of impurity scat-
tering, the Knight shift does not vanish at T = 0 K. Mak-
ing use of data by Ishida et al. ,

s we obtain I'/I', = 0.16
and I'/I', = 0.32 from the shift in T, of 1'%%uo and 2%
Zn-substituted YBa2CusOq. Then these I'/I' give the
residual density of states N(0)/No ——0.34 (0.277) and
0.47 (0.396), respectively, where in the parentheses we
include the corresponding ones deduced &om the Knight
shift data. The observed residual density of states ap-
pears to be somewhat smaller than the theory predicts.
These small discrepancies ( 20%) may be due to the fact
that the order parameter in YBa2Cu30y at T = 0 K is
somewhat larger than the weak-coupling theory predicts.
For example, comparing the slope of a T-linear term in
p, (T) of a monocrystal of pure YBa2CusOq determined
by Hardy et al. , we find that the order parameter in
the pure YBa2CusOr is about 33% larger than the weak-
coupling theory predicts. Therefore considering the fact
that the residual density of states scales with (I'/A)i~2,
the above discrepancies are quite consistent with the no-

where K = K(, ) and E = E(, ) are the com-
k* +1 I~ +1

piete elliptic integrals and x„=w„/Ao. At T = 0 K, Eq.
(14) reduces to

p, ;„„(0)= N(0)/No,

tion that it is due to the strong-coupling eÃect.
A closely related topic is the superHuid density which

is determined &om the temperature dependence of the
magnetic penetration depth A(T),

p (T) =
I &(0)/&(T) 1' = ) . (K —E)

n=o ~~+ 1

(17)

since we do not have any vertex correction within the
present model. This result is essentially obtained already
in Ref. 8. We note that in the presence of impurity scat-
tering, the relation

p (T) = p'.,;...(T)

no longer holds.
p, (T) is calculated numerically and also shown in Fig.

6. As noted already by Hirschfield and Goldenfeld,
p, (T) first decreases like T2 and then this decrease
changes into a T-linear law. Indeed a recent experiment
by Liang et al. confirmed this. We note also in the
presence of impurity scattering p, (T) ) po,.„,(T). Only
in the vicinity of T = T, would they become equal.

Finally we comment on the electric conductivity and
the nuclear spin lattice relaxation rate at the low-
temperature limit. At higher temperatures the relax-
ation time in the electric conductivity and the nu-
clear spin lattice relaxation rate are determined by
antiparamagnon 2s (or antiferroinagnetic) spin Quctu-
ation. The real part of the electric conductivity at u = 0
is given within the present model:

e2n dz 2 ( z ) ' gs& —y&) ' g*' y''—
sech

m 0 2T 2T 2L Im x~-
e'n dz, f' z l

sech
I I

(Imp+2 —f2)
~
1+2f Re +, (, i I-I'+f''I

2mb. o 2T (2T) ~2 2 ~2 2

and x = u/E. At T = 0 K, Eq. (19) reduces to

8 A Q2 2 8 A

(C'2+ f2)~/2 ~ ni ~(i', 0)
'

which is essentially the universal conductivity found by
Lee. Of course in the present, more general circum-
stance E(i', 0) depends also on I'. Also though in the
derivation we used the relation (5) for unitarity limit
scattering, it is easy to show that the final result does
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1.5 2

TqT = A sech Re

= A[N(0)/Np] (at T = 0 K) . (21)

The temperature dependence of (TqT) ~ is evaluated
and shown in Fig. 7. Unfortunately the present result
at high temperatures (say, T ) sT ) cannot describe
the observed Tq as we neglected the antiparamagnon
effect

0.5—
IV. CONCLUDING REMARKS
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FIG. 7. The spin lattice relaxation rate due to normal elec-
trons (excluding the antiparamagnon contribution) is shown
as function of T/T, o for I'/b, oo = 0 (solid line), 0.1 (dotted
line), 0.2 (dash-dotted line), and 0.3 (dashed line). (ATTq)
goes to unity in the normal state at T = 0 K.

We examine a variety of aspects of impurity scatter-
ing in d-wave superconductors. The rapid appearance of
the residual density of states, N(0)/No, due to an im-
purity is taken as another signature of d-wave supercon-
ductors. In particular, the appearance of the residual
density of states as deduced &om Knight shift measure-
ments and the nuclear spin lattice relaxation rate in Zn-
doped YBa2Cu307 is clearly correlated with the decrease
in the transition temperature T . Also the change in the
temperature dependence of the penetration depth is can-
sistent with a recent experiment on the superQuid density
by Liang et al.

not depend on the scattering phase shift at u = 0 but
only on b, (F, 0) consistent with Ref. 11. Note that we
introduced 4 which is twice the one used by Lee, since
the present b, (F, O) corresponds to the peak in the den-
sity of states and is readily accessible experimentally.

Similarly the low-temperature nuclear spin lattice re-
laxation rate is determined by the Fermi-liquid term
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