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We study the nonlinear supercurrent response of unconventional superconductors to an applied
magnetic field. We calculate numerically the superconducting penetration depth A and the magne-
tization component transverse to the applied magnetic field, at finite temperature and in arbitrary
field, in the Meissner state. In the d-wave pairing state we find that both quantities exhibit non-
linear effects, due to the presence of nodes in the order parameter. We relate the results to various
experimental situations and show how one can verify whether an observed A(T, H) is a signature
of a particular pairing state. For an admixture of s-wave and d-wave superconducting states, we
find that the transverse magnetization is suppressed, but that the s-wave component effect on the
penetration depth may be overlooked in sufficiently large magnetic fields. We also consider dirty
d-wave superconductors and discuss how these quantities, calculated as a function of temperature

and field, are altered in this case.

I. INTRODUCTION

The discovery of high-temperature superconductors
(HTSC’s) (Ref. 1) has prompted a vast theoretical and
experimental research effort aimed at the explanation of
their peculiar properties. Although many experimental
and theoretical results have been accumulated over the
years, the mechanism of superconductivity in these ma-
terials remains a mystery. Moreover, even the symmetry
of the order parameter (OP) in HTSC’s, a knowledge
of which would considerably narrow the field of possi-
ble theoretical models of high-T, superconductivity, has
not been unambiguously determined, and there is exper-
imental evidence in favor of and against every proposed
pairing state. The details of the pairing state may also
have a bearing on technological applications, such as the
realization of devices based on Josephson junctions.

Among the leading candidates for the pairing state,
one must consider the spin-singlet d,z_,> pairing state
(“d wave”) with four nodal lines on the Fermi surface
(FS) along which the OP vanishes. A state with d-wave
symmetry might be taken as an indication that the su-
perconductivity in HTSC’s is mediated by an unconven-
tional mechanism involving, e.g., antiferromagnetic spin
fluctuations,? rather than phonons.® Several recent ex-
perimental results have been interpreted as a confirma-
tion of the existence of this pairing state.* However, other
experiments® and theoretical work® favor a conventional
“s-wave” pairing state having the full point-group sym-
metry of the crystal lattice and no OP nodes. Thus the
process of winnowing the competing theories is difficult
due to the ambiguous experimental evidence.

These developments have renewed interest in the the-
ory of the supercurrent response of superconductors
with reduced symmetry pairing states, previously stud-
ied in the context of superfluid 3He and heavy fermion
superconductors.” Superconductors carrying a current
have been studied extensively in the context of gapless su-
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perconductivity in thin films in a magnetic field.®® This
fully microscopic approach has been very useful in an-
alyzing a variety of experiments in the past. However,
nonlinear effects induced by moderate applied magnetic
fields are negligible in bulk s-wave superconductors. This
is not the case for unconventional superconductors, which
exhibit a nonlinear Meissner effect: Yip and Sauls have
recently argued!® that the field dependence of the su-
percurrent response of a d-wave superconductor can be
used to locate the positions of the nodal lines of the OP,
since the anisotropy of the OP implies anisotropy of the
response. Even though they only presented results for
superconductors in small magnetic fields and at T' = 0,
experiments!! based on these nonlinear effects at finite
temperatures have already been performed. These ex-
periments have prompted the present calculation.

In this paper we take up the computation of the nonlin-
ear effects in the supercurrent response of anisotropic su-
perconductors to an applied magnetic field at the experi-
mentally relevant ranges of finite temperatures and larger
magnetic fields (in the Meissner regime). We work within
the framework originally presented in Ref. 10. Our main
objective is to relate the nonlinear effects predicted by the
theory to experimentally observable quantities. We focus
on the superconducting penetration depth (or screening
length) A(T, H) as a function of temperature and field,
and on the transverse magnetic moment m , that is, the
component perpendicular to the applied magnetic field,
which is present in superconductors with unconventional
pairing state symmetries. We show how these quantities
depend also on the angle ¥ between the applied field and
the direction of the OP nodes, and calculate m; as a
function of this angle.

We discuss the ranges of field and temperature in which
nonlinear effects should be experimentally observable in
d-wave superconductors, and explain how one may ver-
ify whether recent penetration depth measurements are
indeed a signature of d-wave superconductivity. We also
investigate how the addition of a small s-wave component
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to the pairing state (“s+id” state) affects the anisotropy
of the supercurrent response and address other issues and
problems related to the question of properly allowing for
the possible existence of nonlinear effects interpreting ex-
perimental results. Finally, we briefly discuss the effect
of impurities.

Our results can be summarized as follows: the non-
linear Meissner effect [i.e., nonlinear effects in A(T', H)
and nonvanishing m,] should be observable in HTSC
materials at low temperatures (I' ~ 1-10 K for mod-
erate magnetic fields) if the pairing is pure d wave. A
rather small admixture of s-wave pairing drastically re-
duces m , while the d-wave character may still be ap-
parent in A(T, H) at larger fields. On the other hand,
m, is less sensitive to impurities than the behavior of
the penetration depth as a function of both field and
temperature.

This paper is organized in the following way: in Sec.
II we review the theoretical model used to calculate the
transverse magnetization and the penetration depth of
unconventional superconductors. Section III contains the
discussion of our results and the conclusions regarding
their experimental implications.

II. MODEL

In this section we discuss the methods we use to cal-
culate the current response of unconventional supercon-
ductors from which we extract the physical quantities

j= —eNf/dQn(Q)Vf(Q) [U(Q) +/0°° dgé (tanh%T— — tanh E’;_;@)] )
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of interest. These methods are based on the formalism
briefly described in Ref. 10, which we review here in some
detail in order to explain our calculations. The formalism
is based on the evaluation of the current field as initially
addressed by Bardeen,'? and later developed in terms
of the quasiclassical transport equation.!® We emphasize
how the anisotropy of the response leads to a transverse
magnetic moment, observable in experiments. We also
show how one extracts the effective penetration depth as
a function of the applied field.

We consider a superconductor infinite in the a-b plane
and of thickness d in the ¢ direction. We assume a co-
ordinate system with its z axis parallel to the c crystal-
lographic direction of the superconductor, and a topo-
logically cylindrical Fermi surface, so that the problem
is effectively two dimensional. As in Ref. 10 we define a
superfluid “velocity” field:14

A, (2.1)

vV =

Ve
2 F

ole

where ¢ is the phase of the superconducting order param-
eter, and A is the vector potential. It is easily confirmed?®
that the mass scale enters the theory only in the defini-
tion of the zero-temperature quantities, such as the zero-
temperature penetration depth Ao defined below, and
is otherwise unnecessary. Then in the Meissner phase,
the supercurrent generated by the magnetic field is given
byl0:12

or alternatively, in terms of Matsubara frequencies w, = (2n + 1)7T":

j= _eNf/dﬂn(Q v5($2) ”Tz VIwn +ic(Q)Z + [AQ)

Here vy is the quasiparticle velocity at the point Q on
the Fermi surface, o(2) = v;(Q2) - v is the quasipar-
ticle energy shift due to the superflow, Ny is the to-
tal density of states at the Fermi surface, n(2) is the
angle resolved density of states normalized to unity,

&2 +|A(R)|2, and T is the temperature. Equa-
tion (2.2) is numerically more convenient for clean sys-
tems at low nonzero temperatures. On the other hand,
one must use Eq. (2.3) when considering the effects of im-
purities. The first term in Eq. (2.2) is the supercurrent
response of the unperturbed condensate at T' = 0, while
the second term is due to the quasiparticles, formed by
the pair breaking induced by the applied magnetic field
and temperature.

One can, of course, consider conventional “s-wave”
[(A(R2) = As = const] or unconventional order pa-
rameters. For the unconventional case, we assume that
A(R) has line nodes on the Fermi surface, defined by
|kz| = |ky|, the so-called dy2_,2 d-wave pairing state.
Thus

o(§) (2.2)
o(Q) —iwp (2.3)

[
A(k) = Ao (k2 — k2) = Aq cos(26). (2.4)

Here k is a two-dimensional unit vector in momentum
space and Ag is the maximum value of A(k). The tem-
perature range we will consider is sufficiently below T,
that the T' dependence of Ay is unimportant.? We will
also treat a “mixed” (s+id) state where we assume that
the nodes of the d-wave part are shifted radially from the
Fermi surface by a constant amount, equal to the s-wave
component Ag of the pairing state.

From Egs. (2.2) and (2.3) it is obvious that the super-
current is a nonlinear and nontrivial function of the ve-
locity field at any T # 0. As pointed out in Refs. 15 and
16, the current (2.2) is a nonanalytic function of tempera-
ture at T' = 0. For conventional s-wave superconductors
in the Meissner state, however, one has o(2) < A(Q)
and, since the Fermi surface is symmetric, the two parts
of the second term of Eq. (2.2) identically cancel each
other at T' = 0.

In the case of unconventional superconductors the sit-
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uation is different: the order parameter of a d-wave su-
perconductor changes sign under a 7/2 rotation about
the c¢ axis, which implies a two-fold symmetry since
A(k) = A(—k) for both the d and (s+id)-pairing states.
This, however, produces a four-fold symmetry of the cur-
rent since |A(8)|2 ~ cos2(26) in Eq. (2.2), i.e., j is insen-
sitive to the sign of A. It is very important to realize
that the current response, whether probed through di-
rect measurements of the magnetic moment or by mea-
suring the penetration depth, is insensitive to the phase
of A and therefore cannot distinguish between the d-wave
pairing state and a sufficiently anisotropic s-wave state
with the same symmetry of |A|2.

The main difference between a superconductor with a
full gap on the F'S and a superconductor with nodes is, of
course, in the excitation spectrum. Just as in the case of
gapless superconductors, there are, in the unconventional
case, single quasiparticle states available on the FS even
at T = 0. These states are positioned near the nodes on
the FS, which implies then that the potential energy of
the system, as seen by the velocity field, has a four-fold
symmetry. On the other hand, the velocity field is easily
related to measurable quantities such as the magnetic
moment m. Therefore a measurement of the anisotropy
of m may reveal the anisotropy of the current response
which can then be used to determine the anisotropy of
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the gap. We shall further clarify this point shortly.

In order to calculate the magnetic moment and the
supercurrent density of an unconventional superconduc-
tor, one must solve Egs. (2.2) and (2.3) together with
Maxwell’s equations. The choice of gauge V-v = 0 is
the most convenient one since V x H = 4wj/c reduces to

4me
2 .
—Viv = ——C—é—_](v). (2.5)
In the slab geometry considered here and for magnetic
fields H parallel to the slab interfaces, Ampeére’s law re-
quires that the local magnetic field,

b= gv X v, (2.6)
and the velocity field have only z and y components,
which depend onlyon z, i.e., the distance from the bound-
aries.

We now make the assumption that the FS has a cir-
cular cross section, which simplifies the calculation. We
will later show that this assumption is adequate. Defin-
ing then the dimensionless quantities,

A(6) T

= U—f = — = —
v on, 5(0) Ay t Ag’ (2.7)
Egs. (2.2) and (2.5) reduce to
VE+EO)P+V -k 2.8)

0 dz2

2 . 2 2 _V.k
,\Zd—v—v+/g—ik/d5 [tanh VE+POPE=V-k . h

with

2 c?

Al = —————
0 27reszv§

(2.9)

Alternatively, one can derive an expression equivalent to
(2.8), in terms of sums over Matsubara frequencies, from
Egs. (2.3) and (2.5). The above equations must be solved
with a natural boundary condition,

(4)-n

where d is the thickness of the slab or equivalently,

(2.10)

d

b (z = ii) =H, v(z=0)=0. (2.11)

Equation (2.8) cannot be solved exactly except for
very small magnetic fields and at zero temperature where
there are accurate approximate expansions.!® For any
nonzero temperature or at higher magnetic fields, the
solution must be sought numerically. This issue is of ex-
treme importance: as pointed out in Ref. 10 and in the
next section, for the phenomena studied here a d-wave
superconductor, in a typical experimental situation, is in
the low-temperature regime only at temperatures of or-
der of a few degrees Kelvin. This means that most of the
“low-temperature” measurements,'” involving the super-

2t

2t ’

[
current response of HTSC’s, are actually performed in a
temperature range higher than that needed for observa-
tion of the zero-temperature behavior of these materials.
Therefore, one cannot consider the zero-temperature so-
lution of Eq. (2.8) as sufficient when analyzing experi-
ments. We shall return to this question in Sec. III.

Numerically, the solution of (2.8) may be somewhat
simplified by rewriting it in the form:

d*v
dz?
where F (V) is a scalar function. From Eq. (2.8) one finds

F(V):Xl—g{—%v2+£/d0/d£

ko V/ET ls(o“)lz] }

= —VyF(V), (2.12)

X In 1+sinh2v.
2t 2t

(2.13)

Equation (2.12) is formally identical to that of a classical
particle in a potential field and thus one has the first
integral:

1 (ﬂ)z + F(V) = const , (2.14)

2 \ dz

where V' = |V|. Notice, however, that in the presence
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of nodes F' js not a function of |V| only, which implies
that V, the direction of the velocity field, is not a con-
served quantity throughout the sample. This means that
dV /dz is not parallel to V, except at eight high sym-
metry points, i.e., gap nodes and antinodes. As a con-
sequence, from Egs. (2.5) and (2.10) it follows that the
local magnetic field b is not parallel to the applied mag-
netic field H in the interior of the slab, and neither is the
magnetic moment m. Experimentally, this is the cru-
cial point as an observation of m,, the component of
the magnetic moment perpendicular to H, reveals the
anisotropy of A (k).

The velocity field V(z), obtained by solving Eq. (2.8),
can be straightforwardly used to calculate measurable
quantities, such as the magnetic moment m (or equiva-
lently the magnetization M) and the effective penetra-
tion depth A(T, H). In particular, the penetration depth
is defined as!®

db
dz

1 1

STH - 8 : (2.15)

z=+d/2

although alternative definitions are also applicable.!®
Since b and H are not parallel (except for the velocity
field parallel to a node or antinode direction), the above
definition is ¥ dependent.!® In this paper we show \ only
for the magnetic field applied along the nodes (¢ = 0)
or the antinodes (¥ = m/4) of a superconductor, as dis-
cussed in Sec. III, and give the full dependence of m; on
3.

The magnetic moment is'®

1 d/z ! 3 '
m(T,H)_——/ e’ X G [V().

2.16
2/, (2.16)

As discussed above, in general, m is not parallel to the
applied field H and we can extract its transverse compo-
nent m; = m— H (H -m/|H|?). Provided that d >> Ao,
the definition (2.15) leads to results independent of d.
The transverse magnetic moment is also independent of
d. This can easily be seen by recalling that the field B,
the average of b throughout the sample, is proportional
to A/d in a slab.2? The nonzero m implies!® that a d-
wave superconductor placed in a parallel magnetic field
will exhibit a torque, which will then tend to rotate the
sample about the ¢ axis. The direction of the torque
will also exhibit a four-fold symmetry, i.e., the sign of
the torque changes every time the velocity field passes
through an antinode.

Numerically, the solution of Eq. (2.12) is straightfor-
ward provided one has an efficient way of evaluating the
function F in Eq. (2.13). This is readily accomplished by
calculating F' on a grid of points at a given temperature
or magnetic field and then interpolating for an arbitrary
value of the argument. The accuracy of the numerical
solution can be verified by confirming that Eq. (2.14) is
satisfied throughout the entire sample.

III. RESULTS

In this section we present our results obtained using
the method described in Sec. II. We first discuss the
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relevant temperature and field ranges for the nonlinear
Meissner effect which we further emphasize by presenting
our results for the penetration depth and the transverse
magnetic moment of a pure d-wave superconductor. We
give these quantities also as a function of the angle ¥ be-
tween the applied magnetic field and the order parameter
node, and discuss various experimental aspects involving
the nonlinear Meissner effect. We then consider (s+id)
pairing and show how the addition of a small isotropic
gap to the d-wave state affects the results. Finally, we
study the effects of impurities on these quantities.

There are several physical parameters in our model,
but only their dimensionless ratios are necessary [see Eq.
(2.7)]. For the velocity field, one specifies the boundary
condition (2.10), which can be rewritten as

Do (ﬂ) = _}i (3.1)
dz z=+d/2 Ho
Here Hj is a characteristic magnetic field:
_ %o
HO - 7|'2A0£0 ’ (32)

where ¢ is the flux quantum and &, = v;/7Ag is the
superconducting coherence length. The function F(V)
in Eq. (2.13) also depends on T/A,. Hence the results
of our calculation are functions only of H/H, and T/Do.
When discussing thin films we also include the parameter
d/Xo. However, most of the results presented are for the
usual case where d > )\g.

In interpreting our results, as given in terms of di-
mensionless ratios, it is useful to keep in mind at least
rough estimates of the characteristic values of Ay and
Hy in typical experimental situations. The size of Ag
in HTSC’s is somewhat controversial. Several models
of high-T, superconductivity imply a rather large value
of Ag/T.,? while others assume more BCS-like values of
this parameter.® If one assumed that HTSC’s are in the
d-wave state then the value of Ay might be obtained from
the linear Meissner regime of A(T'),* since for a pure d-
wave superconductor at low temperature and vanishing
field?!

AMT) > X (1+CT/Ap) (3.3)
(where C = In 2 for a circular FS), but the determination
would be impeded by the uncertainty in Ao, as discussed
below. In general, a value of Ay ~ 200-400 K is likely
to be adequate for HTSC’s of the Y-Ba-Cu-O (YBCO)
family.!!

The situation for Hp is more complicated since this
quantity may be strongly dependent on the particular
experimental geometry and hence cannot be generally
calculated. One must consider the actual current paths
and, if one wishes to compare our theoretical results with
those found in experimental situations, one is seriously
hampered by the small size and large penetration depth
anisotropy of the samples actually used, in contrast with
the infinite slab geometry considered here. In a finite
sample return currents flow along the c axis as well as in
the a-b plane. For the purposes of estimating Hy from



51 NONLINEAR SUPERCURRENT RESPONSE IN ANISOTROPIC. .. 6053

Eq. (3.2) one may assume that & ~ 15 A in YBCO.
From the definition (2.9) it is clear that A¢ reflects the
electronic density of the entire system and therefore its
effective value as introduced in Hy must include a con-
tribution from the current flow in the z direction, char-
acterized by a penetration depth A, which in the YBCO
family is A¢ > Agp. A detailed calculation of these size
effects is extremely difficult and clearly beyond the scope
of this work: a cylindrical F'S implies an infinite effective
mass in the z direction and hence a very large )., which
means that only a system infinite in the a-b plane can be
treated by the methods used here and in Ref. 10. In Ref.
11, the use of a weighted average of Aqp and A. in Eq.
(3.2) was resorted to which led,!* for the sample geome-
try studied there (which was typical of that of available
crystals), to an estimate of Hy in the region Hy ~ 3000-
4000 G. As mentioned above, this should be considered
only as a rough estimate, although we believe it to be
reasonable, and results that depend on estimates should
not be viewed without caution. Since, except for very
thin films (d < Ag), the effective value of Ao enters our
calculations only through Hy, we will present our results
in terms of the ratio H/Hp, and we emphasize that better
estimates of Hy for anisotropic superconductors can be
obtained from experimental information on the crossover
field introduced two paragraphs below. Comparison of
our work with measurement should preferably include a
value of Hy determined from experimental information.

Next we discuss the range of field and temperature
where the nonlinear effects are observable. We recall that
the quasiparticle contribution to the current [second term
in Eq. (2.2)] is due to an interplay of the temperature
T and the energy of the states created by the velocity
field near the nodes in the gap. This contribution, at a
given temperature, will be highly influenced by the ap-
plied magnetic field, and the response to the field varies
with temperature. At low T' one can observe the nonlin-
ear effects of the magnetic field in A(T") and the four-fold
anisotropy of the magnetization in a d-wave supercon-
ductor, only if the applied field is large enough compared
to some critical field H(T'). Alternatively, the tempera-
ture must be lower than some critical temperature T'(H)
at constant H. At a sufficiently large temperature, or for
a sufficiently small magnetic field, one is always in the
linear regime and the anisotropy of the magnetization
cannot be detected. This physical picture can be clari-
fied by assuming a small velocity field and expanding the
second term in Eq. (2.2) in terms of /T (low magnetic
field, high-temperature expansion). Then one has

i~ —eNf/dQn(Q) vs(Q)o(2)

1 * E
1—— [ désech® ). 3.4
X ( 5T J, ¢ sec 2T) (3.4)
Equation (3.4) can be rewritten as
i=opsv, (35)

where pg is the superfluid density. One can easily show,

that ps is a scalar, since the second (temperature depen-

dent) term in Eq. (3.4) is a function of cos? 20 only and
any off-diagonal components would involve an angular in-
tegral of functions which vanish identically. This means
that for a superconductor with a circular Fermi surface in
the d-wave pairing state the superfluid linear response to
a magnetic field is isotropic in the —y plane. As a result,
for 0 ~ H(Ao/Hp) < T, one is in the low field regime
where the nonlinear effects due to the applied magnetic
field, including the transverse magnetization, are negligi-
ble.

We are then led to define a crossover field H(T) ~
Ho(T/Ao) above which the nonlinear effects become
important, and alternatively a crossover temperature
T(H) ~ Ao(H/Hy) above which the nonlinear effects are
small. For a characteristic field Hy ~ 3000 G (as es-
timated in the literature!') and? Ag ~ 300 K one finds
I:I ~ 10 G at temperatures of order few degrees Kelvin or
T ~ 5-10 K for an applied magnetic field H ~ 100 G.1°
Conversely, the experimental values of H(T) (i.e., the
field value at which nonlinear effects are first observed,
see below) can provide an estimate of Hy. From the
above argument it is clear that, in order to observe the
nonlinear effects, one must be either at low temperature
or in a high magnetic field. The latter is experimentally
inconvenient since the field of the first flux entry is rather
small for high-T, superconductors.!! Therefore it seems
more feasible to perform the experiments at sufficiently
low temperatures. In what follows we shall concentrate
on these experimentally significant ranges of H and T'.
From an experimental point of view one need not rely on
estimates of H and T': following the procedures discussed
later it is possible to consistently determine whether mea-
surements are taken in the linear regime. A determina-
tion of H(T) will then yield a determination of Hy for
the sample studied.

We begin with our results for the penetration depth.
As discussed in Sec. II, the effective penetration depth of
anisotropic superconductors in a magnetic field depends
on the current orientation with respect to the nodes of
the order parameter. Figure 1 shows the penetration
depth ) in a pure d-wave superconductor as a function of
T /Ay for several values of the applied field H, assuming
an applied field in the direction of a node (¢ = 0). The
quantity plotted is

1 T T

o
e 0
(o) W

A(0,0/A%(T,H)
(=]
o0
W

e
00

075 =507 0.02 0.03 004 005 0.06 0.07

T/2A
0

FIG. 1. Normalized penetration depth vs T/Ao, for (top
to bottom) H/Ho, = 0, 0.03, 0.06, 0.09, 0.12. The diamonds
indicate T'(H) as explained in the text. The field is applied
in the direction of a line of nodes (¢ = 0).
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AT =0,H=0)]>_ ns(T,H)
[ T, H) ] ~ ns(0,0)° (3-6)
where
mc?
nS(Ta H) = (37)

4we2\2(T,H)'

All plots are normalized with respect to Ag = Ao(T =
0, H = 0). It is important to realize that ng includes the
nonlinear effects and should not be confused with the
superfluid density ps defined in Eq. (3.5), which does
not include such effects. The value of H increases from
the top to the bottom curve (see caption). The top-
most curve, corresponding to zero magnetic field, shows
the well-known linear in T behavior (3.3). It is obvious
that even for relatively low fields (~ 100 G with Hj as
estimated above) there is a deviation of A(T, H) from lin-
earity in T at the temperatures where most low T' exper-
iments are performed. From the figure one can see that
T(H), identified as the temperature at which the devi-
ation from linearity in 7' begins, and indicated by the
diamond symbols,?? is indeed of order A¢(H/H,) which
would mean of order ~1-5 K at H/Hy ~ 0.05. On the
other hand, for a sufficiently high temperature, A(T', H)
is in its linear regime at all fields considered, and the
slope of ng(T, H) is field independent as one can easily
confirm from Eq. (3.5).

Experimentally, a linear dependence of ns(T,H)/
ng(0,0) on T has been reported. This dependence would
be, as claimed, evidence for d-wave pairing in the mate-
rial studied (YBCO) provided that the experiment was
done in the linear regime T > T(H). Since the lowest
temperatures studied were below 2 K, the effective fields
used would have had to be below ~10 G. It cannot be
overemphasized that this type of restriction affects the
analysis of virtually every experiment involving the elec-
tromagnetic response of HTSC’s.

Turning now to the field dependence, we can easily see
from Fig. 1 that, at constant T', A(H,T') has also two dif-
ferent regimes as a function of H. As shown analytically
by Yip and Sauls,'® X(0,H) — A\(0,0) ~ H/H,, while
at higher temperatures (T > T,H) — (T > T,0) ~
(H/Hy)? or alternatively

ns(0,0) — ng(0, H) ~ H£0 (3.8)

and

H

ns(T >T,H) —n,(T >T,H) ~ (E)z . (3.9

This is extremely important in analyzing experimental
data obtained, for example, by measuring the surface
impedance of high-T, materials, as the effective magnetic
field in these experiments may be quite high.23

The nonlinear effects are largest if the current flows
along the nodes (Fig. 1). Figure 2 shows the same quan-
tity as in Fig. 1 for the case where the applied field and
the current flow are along the antinodes. Clearly, the
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2%(0,0)/A°(T,H)

0.75

0 001 002 003 004 0.05 006 007
/28,

FIG. 2. Asin Fig. 1, but with the applied field along a line
of antinodes (9 = w/4).

predicted nonlinear effects are somewhat reduced and we
find that

[’ns((), 0) —ns (07 H)]ﬂ:o ~ \/E[ns (0, 0)

—ns(0, H)|s=r/a  (3.10)
in harmony with previous predictions.!® As expected
from our discussion of Eq. (3.4), the zero field behav-
ior of A(T, H) is exactly the same in both cases. This a-b
plane anisotropy of the field-induced nonlinear behavior
of A\(T, H) appears to be rather large and should be ob-
servable in experiments on clean single crystals of, e.g.,
YBCO.

It is important to verify whether experimental results
for A\(T, H) are in the linear regime. This can be checked
by measuring A as a function of the applied magnetic
field. For example, an approximately quadratic behavior
A(T) — A(0) ~ T? might be consistent with a pure d-wave
pairing state, provided one is in the region where T' < T,
which can be confirmed by verifying that A(H) ~ H in
that temperature region and for the fields of the same
order. Similarly, a A(T) linear in T should be checked as
a function of H (e.g., by varying the applied power) to
verify that Eq. (3.9) holds.

It is interesting to investigate the effect of the FS
anisotropy on the results for A(T', H), and in particular on
T(H ). In other words, it is important to clarify whether
a more realistic form of the FS would significantly al-
ter the crossover temperature. Enough information2* is
available on the FS of, e.g., YBCO in the k., k, plane to
make a discussion of this point possible. For the purposes
of our analysis we assume a single tight-binding band of
the form

e(k) = 2t — t(cos kza + cos kyb) , (3.11)
where a and b are the lattice constants, and t is the band-
width parameter. The FS is then given by ep = (2 —6) ¢
and we assume § = 0.1 so that the F'S has a shape similar
to one of the branches depicted in Ref. 24. We then re-
peat the evaluation of A%2(0,0)/A2(T, H) assuming a ve-
locity field along the a axis. The calculation is nearly
identical to that in the previous section, except that vp
(and hence Ap and Hp) is redefined in terms of the new
parameters. The results for H/Hy = 0.12 are shown in
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FIG. 3. Effect of FS anisotropy: the dashed line is the
H/Ho = 0.12 result of Fig. 2. The solid line is the corre-
sponding result for a more realistic anisotropic FS (see text).
The dotted line is the zero field result, as explained in the
text.

Fig. 3 (solid line), and compared with the correspond-
ing circular FS results (dashed line) of Fig. 2. Since the
slope of the zero field result for the tight binding band
is slightly different (by ~ 7%) from the coefficient In 2 in
Eq. (3.3), computed for a circular FS, we have slightly
adjusted the horizontal scale, in plotting the solid lines,
so that the zero field results (dotted line) coincide. Phys-
ically, this amounts to ensuring that we are comparing
systems with the same T.. Clearly, the two sets of curves
are very similar and T'(H) is only marginally different,
which is confirmed by an analysis such as that performed
in Fig. 1. Thus our assumption of a circular FS is ade-
quate.

The nonlinear Meissner effect is more prominent if the
thickness of the sample is much larger than A¢. Figure
4 shows the same quantity as in Fig. 1 for d/A¢ = 1
(solid lines) and for d/Ag > 1 (dashed lines) at H = 0
(straight lines) and H/Hy = 0.12 (lower curves) as would
be seen in a surface impedance measurement. Here each
ns(T, H) is normalized with respect to ng(0,0) for the
same thickness. Clearly, there is a weaker nonlinear con-
tribution in the case of thin film samples. Thinner sam-
ples may be more desirable for the (longitudinal) magne-
tization measurements, since their field of first flux entry
is higher than in thick samples and the magnetization is
a strong function of A(T, H). However, this type of ex-

1\‘ T T T T T T
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FIG. 4. Normalized penetration depth for d > Ao (dashed
lines) and for d = Ao (solid lines), for the field direction as in
Fig. 1. The straight lines are for H = 0 and the curves are
for H/Ho = 0.12.
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periment is difficult, as any vortex nucleation or sample
tilt would lead to spurious nonlinear effects.

A more direct way of probing the order parameter
symmetry is through transverse magnetization measure-
ments. Figure 5 shows the quantity M, , defined as the
magnitude of the transverse magnetic moment per unit
area, at low temperature ¢t = T/A, = 0.005, as a function
of the angle Y. We only show one-eighth of a full circle
which is sufficient because of the four-fold symmetry of
|A(6)|2. The amplitude of M is obviously zero along
the lines of high symmetry, i.e., gap nodes (here shown
at 0°) and antinodes (45°). At zero temperature and
small magnetic field the transverse magnetic moment as
a function of angle obeys'?

M, (F) ~ sindcos¥ (cos? —sind), 0< I < m/4,
(3.12)

which shows that M (¢) has a maximum, M9, approx-
imately at 21° with respect to a node. Our numerical
results indicate that the local maximum position is very
weakly dependent on temperature and field. At T = 0
the amplitude M? is proportional to H?2 to first order
in H/Hy, while at higher temperatures T > T we have
M9 ~ H3. In Fig. 5 we find that M9 ~ H?2, showing
that ¢ = T'/A¢ = 0.005 is in the low-temperature regime.

At higher temperatures the quasiparticle flow becomes
more isotropic, reducing the amplitude of M, and shift-
ing its maximum towards 22.5°, measured from a node.
Figure 6 shows the amplitude of M, as a function of
temperature at a constant applied field H/H, = 0.086.
Again, one can identify T as the point where the sign
of the curvature changes as the temperature is lowered.
Besides its crossover from H? to the H® behavior, the
amplitude of the transverse magnetization obviously de-
creases rapidly with increased temperature.

In an actual experiment!! one rotates a sample about
its ¢ axis and searches for a component of the trans-
verse magnetization with periodicity n/2. The ampli-
tude of M, due to a d-wave pairing state is small even at
T = 0 and is hard to observe for nontrivial sample geome-
tries where it may be obstructed by the demagnetization

M, (10* emu cm®)

0 10

20 30 40
Angle (degree)

FIG. 5. The quantity M,, defined as the magnitude of
the transverse magnetic moment per unit area, vs the an-
gle ¥ between H and a node position. The temperature
is T/Ao = 0.005 and the field values (top to bottom) are
H/Ho = 0.12, 0.09, 0.06, 0.03.
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FIG. 6. The amplitude M as a function of T/Ao for
H/H, = 0.086.

field, and by the orthorhombic crystal structure of high-
T. superconductors (Ref. 25): Although these produce
M, signals with periodicity =, rather than 7 /2, they
may have higher harmonics, giving a spurious 7/2 sig-
nal. Moreover, the higher harmonics arising from even a
small amount of trapped flux may have to be contended
with. Disk shaped samples appear to be most favorable
for this type of measurement since both the amount of
trapped flux and the demagnetization effects should be
minimized. It is also important to recall that the spu-
rious signals will have a T' and H dependence different
from the distinctive d-wave behavior discussed here.

A recent transverse magnetization study of Buan
et al.,'' performed on an untwinned single crystal of
LuBa;Cu3O7_s, revealed no evidence of nodes in the
pairing state: the results were inconsistent with a pure
d-wave pairing state. This conclusion, however, assumed
the previously mentioned estimate of Hy. A mixed
(s+id)-pairing ‘state has been proposed in the context
of spin-fluctuations induced superconductivity with so-
called “three-site states” included.2® It was found that
even a small amount of oxygen depletion leads to an addi-
tion of a small gap over the entire Fermi surface (s-wave
component).?® We have considered the (s+id) state by
repeating the calculation of M and A for a pairing state

A(k) = As +iAq(k2 — k2) | (3.13)

with

|As|? +|Ag|? = | Aol (3.14)
It is straightforward to obtain results as a function of the
additional parameter Ag/Ag. We find that the presence
of Ag is very effective in suppressing M, as there is no
creation of quasiparticles for applied fields smaller that
Hopin ~ Ho|As/Ap| at T = 0. For the experimental sit-
uation of Ref. 11 we find, assuming that H,;, is the first
flux entry field,!! and accepting the value of Hy as esti-
mated in that work, that an s-wave component of 10-20%
of the maximum order parameter is sufficient to suppress
the transverse magnetization due to the presence of the
d-wave component.

Similarly, a small s-wave component in the pairing
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state has a strong but less drastic effect on the non-
linear behavior of the penetration depth as a function
of temperature. Figure 7 shows the same quantity with
the same normalization as in Fig. 1, with the field ap-
plied along a line of nodes of the d-wave component. For
H < H,,;, there is a crossover between the s-wave expo-
nential behavior of n,(T,0) and the d-wave linear behav-
ior at higher temperatures. The crossover temperature
T* is given, as expected, by (As/T*)Y/2 exp(—Ag/T*) ~
1/2x. In a larger magnetic field the crossover tempera-
ture is reduced as the s-wave energy scale is lowered by
the superflow as shown by the lowermost curve in Fig.
7. In fact, when H ~ Hp;, we find that 7% — 0 and
ns(T, H) looks essentially d-wave-like. Thus one might
misinterpret the low-temperature linear A(T") in a mag-
netic field as being d wave, while lower fields would show
an s-wave component.

Finally, we briefly present some results on the influ-
ence of impurities on the nonlinear Meissner effect in
d-wave superconductors. We include the quasiparticle
scattering due to impurities using standard perturbation
techniques.2” This effectively amounts only to replacing
the Matsubara frequencies w,, in Eq. (2.3) by the quan-
tity @y, obtained by solving the equation

wn = @ (1 : ! ) (3.15)
n n .
2 JEI+1A0)F )’

where 7 is the impurity scattering rate, calculated in the
Born approximation. This procedure is formally equiva-
lent to that of Abrikosov et al. in their treatment of mag-
netic (spin-flip) impurities,® although the physical pic-
ture here is quite different as the pair breaking is driven
by the current. Then A and M, are obtained in the same
way as in the clean case.

The role of impurities in HTSC’s is not well under-
stood, since it has been found experimentally that even
large scatterer concentrations cause only moderate reduc-
tions of the transition temperature. This in turn suggests
that the Born approximation may not be adequate for
small £, d-wave superconductors for which all impurities
are pair breaking. Thus the results we present here are
merely indicative of the general trends.

0.95f ]

0.85[ 1

220,02 (T, H)

0.8} ]

0'750 0.05 0.1 0.15
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FIG. 7. The quantity plotted in Fig. 1 at field values
H/H, = 0, 0.06, 0.09, 0.12, with an s-wave component
As = 0.1 Ao (see text). The curve for H/Ho, = 0.03 is in-
distinguishable from that at H = 0.
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FIG. 8. M, vs 9 for H/Ho = 0.086 in the presence of
impurities. From top to bottom 7./TC = 1, 0.93, and 0.77.

In the Born approximation the impurity scattering is
characterized by the parameter 7Ao,. However, since
this parameter is not readily available in experiments on
HTSC'’s, it is more practical to express the effect of impu-
rities in terms of the transition temperature 7. A recent
self-consistent study?® showed that 7T is a linear function
of the scattering rate 7 in a d-wave superconductor when
the impurity concentrations are small. This dependence
is quite similar to the behavior of s-wave superconductors
in the presence of magnetic (pair-breaking) impurities,®
when treated in the Born approximation. In the case of d-
wave superconductors in the low impurity concentration
limit, it holds for both Born and resonant scattering.?®
We use the results of Ref. 28 to estimate 7A( for several
values of T,./T?, where T? is the transition temperature
of a clean sample. In doing so we must make a choice
for the ratio Ag/T?, which is nontrivial, as explained at
the beginning of this section. In the following we shall
assume that Ag/T? = 3, which is very reasonable con-
sidering the full range of this parameter in, e.g., YBCO
family (Ao &~ 200-400 K and T? ~ 93 K).

Figure 8 shows the transverse magnetic moment per
unit area as a function of angle for a d-wave supercon-
ductor in a constant magnetic field of H = 0.086H,, for
T./T® = 1, 0.93, and 0.77 (top to bottom). The mag-
netic moment is normalized in the same way as in Fig.
5. The impurities smear out the anisotropy of the re-
sponse and the amplitude of M is reduced. However, it
is clear that only large values of the impurity self-energy
I' (T' ~ Ay) significantly reduce the transverse magnetic
moment, and that the presence of impurities should not
impede the observation of the nonlinear Meissner effect.

It has been recently found that only large amounts
of scattering, in the Born approximation, can affect the
temperature behavior of A(T, H = 0), but even small
impurity concentrations in the unitary limit produce sig-
nificant residual resistivity.?! The penetration depth of
dirty d-wave superconductors in finite applied magnetic
field has not yet been considered. In Figure 9 we show the
same quantity as in Fig. 1 for several values of the applied
magnetic field and T,./T? = 0.93 (moderately dirty sam-
ple). The results are normalized with respect to A¢(0, 0),
as calculated in the clean case. As expected, the quantity
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FIG. 9. The solid lines are as in Fig. 1, but for

T./T? = 0.93. The normalization A¢(0,0) is as calculated
in the clean case. The clean limit results at H = 0 and at
H/H, = 0.12 are replotted here for comparison (dashed lines).

plotted deviates from linearity below a crossover temper-
ature proportional to the impurity concentration, and
then assumes a well-known quadratic low T' behavior.?!
However, unlike in the clean case shown in Fig. 1, the re-
sult is only a weak function of the magnetic field, consis-
tent with the claim that the impurities make the current
response more isotropic. Similar to what was indicated
below (3.10) in connection with the linear regime, it is
also important to experimentally verify whether one is in
the clean or dirty limit. The lack of field dependence in
A(T, H) identifies the dirty limit.

In conclusion, we have performed a study of the applied
magnetic field effect on the current response of unconven-
tional superconductors (nonlinear Meissner effect). We
find that the nonlinear effects can be very important and
that they may considerably influence the interpretation
of experimental results: in order to draw conclusions re-
garding the pairing state symmetry of HTSC’s one must
be extremely careful, as many experimental findings may
be easily misinterpreted. We have indicated some of the
checks that can be performed in order to verify the con-
clusions of an experimental analysis.

Our theory is not without limitations: an obvious
qualm is that they are obtained for an infinite two-
dimensional sample, with a cylindrical FS. In an actual
finite sample currents flow in the z direction and the fi-
nite value of A\. must be taken into account. These and
other questions we plan to address in future work.
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