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We study vortex lattices in a superconductor —normal-metal superlattice in a parallel magnetic field.
Distorted lattices, resulting from the shear deformations along the layers, are found to be unstable. Un-
der field variation, nonequilibrium configurations undergo an infinite sequence of continuous transitions,
typical for soft lattices. The equilibrium vortex arrangement is always a lattice of isocell triangles,
without shear.

I. INTRODUCTION

Since the discovery of the high-temperature supercon-
ductors (HTS), interest in studying the vortex
configurations in layered superconductors has been great-
ly increased. Recently, shear instabilities of vortex lat-
tices in a low magnetic field parallel to the layers have
been predicted. It was shown that the formation of new
lattices, obtained by shear deformations, corresponds to
bifurcation points labeled by pairs of two consecutive Fi-
bonacci numbers. ' A Fibonacci-type order was ob-
served for the first time in botany. The arrangement of
leaves or seeds in plants in the form of regular lattices
formed by quantized spirals is known as phyllotaxis. The
numbers of spirals, left hand and right hand, are always
consecutive terms (Fz i, F&) in the Fibonacci series
F&= 1, 1,2, 3, 5, 8, . . . . This is related to the fact that the
divergence Pd, defined as the angle between the radial
directions of the sites X —1 and X, is always very close to
the golden section, 2m(1 —r), and that the ratio F~, /Fz
tends to the golden number r=(&5 —1)/2 in the limit of
large X. Similar phyllotaxsislike patterns have been ob-
tained in a physical experiment with ferroAuid drops, and
in a numerical simulation of the dynamics of particles in-
teracting via several types of repulsive potentials. All
these results show, as pointed out in Ref. 1, that phyllo-
taxis is a general phenomenon that occurs in all soft lat-
tices subjected to strong deformations.

In Refs. 1 and 2, phyllotaxis structures in comrnensu-
rate (C) vortex lattices were considered. In both cases,
the energy gain due to the pinning induced by the period-
ic distribution of layers was assumed to be greater than
the energy of the elastic deformation needed to achieve
the commensurability. ' Such configurations may occur
in a HTS, due to strong intrinsic pinning, particularly at
low fields, since the shear modulus of deformation along
the hard direction perpendicular to the layers vanishes as
H —+H„, so that the vortices cannot cross the layers. In

the above studies, ' the pinning strength is invoked only
to set up the model, and the shear deformations are as-
sumed to occur in the easy direction (along the layers).
The energies of distorted C lattices are calculated within
the London theory for spatially uniform anisotropic su-

perconductors.
The aim of the present work is to study the vortex ar-

rangement in a layered superconductor, taking explicitly
into account the discrete structure and the vortex in-
teraction with inhomogeneities. %'e consider an inhomo-
geneous superconductor consisting of alternating normal
and superconducting layers, in the presence of a parallel
field. Among artificially layered superconductors, such
superlattices have been extensively studied. ' These su-
perconductors are particularly interesting because the
strong vortex pinning by the normal-metal layers allows
for high critical currents. ' The considered
superconductor —normal-metal superlattice can serve as a
model of a HTS with periodic distribution of microde-
fects, modeled by normal layers with proximity-induced
superconductivity. From this, we assume that, within
the superconducting layers, the Ginzburg-Landau (GL)
Ks parameter is much larger than 1, and gs(0) (the coher-
ence length at T =0) is comparable to the crystal lattice
constant. The thickness of the normal layers, a&, is small
compared to the superconducting penetration depth A,z.
The coherence length in the normal layers is temperature
dependence, but we assume that its characteristic value
g&(T, ) is comparable to gs. The above assumptions al-
low one to obtain an approximate analytical solution for
the local magnetic field distribution of the vortex lattice,
similar to that of an isolated vortex. The first critical
field of the superlattice results from the field penetration
in the normal layers. It is smaller than that of the super-
conductor (H, i &H, i ). In low fields, H, i &H &H, i,
stable configurations are commensurate lattices with
chains of vortices in the normal layers. " For H )H„,
the range of stability of commensurate configurations de-
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pends on the pinning strength and on the superlattice
period a/A, s, which determines the geometric commen-
surability condition for the isotropic vortex lattice. ' As
in Refs. 1 and 2, only the first-order commensurabilities
C„are considered; all vortices are assumed to be within
normal regions, with the distance na between the chains
of vortices, where n is an integer. However, in the
present work the distance between chains is not a priori
fixed, as distinct from Refs. 1 and 2: the vortex system
can choose the equilibrium C„configuration. Both equi-
librium and nonequilibrium initial lattices of isocell trian-
gles can undergo a shear deformation. The pinning
strength can be varied, by changing the temperature and
the characteristic parameters of the superconducting and
normal metals.

In Sec. II, the expressions for free and Gibbs energies
of a system of vortices are derived from the GL equations
for superconducting and normal metals, assuming that
vortices, which occupy every nth layer, can move only
within the layers. In Sec. III, the stability of various C„
configurations is analyzed, for two examples of (relatively
strong) pinning. In contrast to the results of Refs. 1 and
2, our main result is that for finite pinning strength the
equilibrium vortex arrangement is always an isocell trian-
gle lattice, the shear instabilities corresponding to none-
quilibrium configurations only.

II. FLUX PENETRATION AND ENERGIES
OF VORTEX LATTICES

The shear instabilities of strongly pinned vortex lat-
tices are expected, as stated in the Introduction, in the
domain of low fields. At very low fields the
superconductor —normal-metal superlat tice exhibits a
Meissner state, due to the proximity effect from the su-
perconductor. When the magnetic field is larger than the
lower critical field H„, vortices form in the superlattice,
arranged as chains centered in the normal layers, "and
the vortex lattice is commensurate with the superlattice
period. For H, &

(H (H, &, candidates for the ground
state are the first-order commensurate (C„) lattices. In
the C„commensurate vortex lattice, chains of vortices in
the normal layers are separated by n —1 superlattice
periods. For H )H„, the ground state will be one of the
above C„configurations if H is in the vicinity of one of
the matching fields H~, at which the hexagonal lattice is
commensurate with the superlattice. ' The width of each
of these stability domains increases with the pinning po-
tential amplitude. In the case of strong pinning, these
domains overlap, and as a result, the ground state can
jurnp from one C„configuration to the next one. There-
fore, considering only the C„configurations, we evaluate
first the local magnetic field distribution and the expres-
sions for free and Gibbs energy of the vortex system from
the GL theory. The direction of the external field is
chosen as the z axis, and the x axis is perpendicular to the
layers. The periodicity of the vortex lattice along the x
direction is na. The distance between vortices in each
chain, along the y axis, is L„,and vortices in neighboring
rows can be shifted' by aL„, where 0& u & 1 (Fig. 1). In
the general case, the basis lattice vectors are

S lN S lN S & S N S N S lN S IN S
I~

N

FIG. 1. Commensurate vortex lattice C„with rows of vor-
tices centered in each nth N layer. The example n =3 is
presented.

r; . =ina e„+(j ia )L—„e
a= —, corresponding to the initial isocell-triangle lattice
without shear.

Since we are interested in the limit

we use the London approximation of the GL theory for
superconducting and normal metals, valid for large GL
parameters. ' The magnetic energy (per unit area) of the
system of vortices, which comes from the local magnetic
field and the supercurrents, is given by

E = f [h +A, (VXh)2]d r .1

8m' s

Here, A is the area occupied by the vortices, h(r) is the
local magnetic field, A, =X&/g, and g is the normalized
order parameter, periodic with period a. In low fields,
one can approximate g by the zero-field solution of the
GL equations, g (x). Note that the spatial dependence of
the magnetic penetration depth A,(x) is an important
characteristic of superconductor -normal-metal multilay-
ers in a parallel magnetic field. ' Due to the induced su-
perconductivity, the field screening in normal layers is
most effective near superconductor —normal-metal inter-
faces, where the order parameter g(x) is the greatest,
g(x) —1. In this region A, (x) can be close to A,s, the
penetration depth of a bulk superconductor. In the mid-
dle of normal-metal layers, where g(x) is the smallest,
A,(x) can be much larger.

When the normal layers are much thinner than the su-
perconducting layers, g (x) can be constructed by period-
ic repetition of the solution obtained in Ref. 9 for a single
superconductor —normal-metal —superconductor junction.
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The latter is di8'erent from 1 only in a small interval that
encloses the normal layer and regions of order gs in the
superconductor on each side of it,

r

p cosh(x /g~ )
tanh x &aN

cosh(a~/g~ )

Ixi+0 a~-
tanh

2(s

g(x)= '
(4)

E= f h + (VXh) dr,1 2 1

A g~

The constant P is determined from the boundary condi-
tions at the superconductor —normal-metal interfaces,

ks . , &24P= —sinh ' cath (5)
s kN

In the following, we express all the physical quantities
in standard reduced units, relative to the superconductor,
taking A,s as the unit of length, &2H, as the unit of the
magnetic field strength, and (H, ) /4m as the unit of ener-

gy density. In reduced units, the magnetic energy density
E is given by

where h(r} is the solution of the generalized London
equation

h —V Vh= +5(r—r; ) .1 =2~
g S ',j

(7)

~SEE=
4m

%„h (0)
2A

l,J

where h (0) is the magnetic field in the place of the vortex
at the (arbitrarily chosen) origin (0,0), generated by the
entire vortex lattice, and N, is the number of vortices on
A. In the limit (2), an approximate solution for h(r) in
the superconductor —normal-metal superlattice can be ob-
tained from Eq. (7) using methods similar to those for an
isolated vortex in a single junction (see Appendix A).

First, from the solution of the magnetic field equation
[Eq. (A13)], we calculate the magnetic energy density of
the main commensurate configuration C1,

For g(x)=1, this equation reduces to the usual London
equation for a homogeneous superconductor h(r) cor-
responds to the superposition of fields of individual vor-
tices situated at r;J. Using Eq. (7), Eq. (3) can be
transformed to

1Ei —
~ XaL, Ks i= „I (Qi —1)+2Qi[cosh(Qia) —cos(2m'la)]/sinh(Qia)

(9)

where Q& = 1+(2m /L
&

) l, and the parameter I, given
by Eqs. (A8} and (A9) in Appendix A, measures the elec-
tromagnetic pinning strength.

The core energy density E' can be calculated starting
with the core energy (per unit vortex length) of an isolat-
ed vortex in a superconductor —normal-metal-
superconductor junction. This result can be used pro-
vided that az —1/Ks «1, as assumed before. Using the
same reduced units as for the electromagnetic energy, we
get for n =1

] m/2 4E;= du g (x)X,(x)cosu
8a ~SL1 ~/'2

K~ 0 and g„=+2/Ks. Comparing E, and E;, Eqs. (9)
and (10), it can be checked that in the present case the
core energy contribution can be neglected as compared to
the electromagnetic energy. Thus we approximate the
Gibbs energy density (expressed in the same units as E)
by

6 =E—0
1 1 a

In the general case, where vortices occupy every nth
normal layer, the same procedure (Appendix B) gives the
following expressions for the magnetic energy and Gibbs
energy density, respectively:

3g (x)+ cos u
4

where x =(&2/Ks)tanu, X,(x)=1 for lxl)a~, and
X&(x)=0 for lxl &a&. Note that here it is assumed that where

+ 00 Pn, (

Ln+S I= —oo ~n, l
(12)

~ —i I"(Q„,—1)' [sinh(Q„ ia)]'+'cosh[(Q„ia)]"

q„,=n I (Q„', —1)+2Q„,
cosh(nQ„&a) —cos(2m la) ~ —

& [I (Q„ i
—1)sinh(Q„&a )]'+'[cosh(Q„ ia )]"

sinh(nQ„&a } Q„' &sinh(nQ„ ia)
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G„=E„—H
(13)

naL„
Here the core 'energy density

EcEc— 1

n

has been neglected for the same reason as above.
The Gibbs energy density is calculated with respect to

the Meissner state, and lower critical field of the super-
lattice (in principle different from that for the
superconductor —normal-metal —superconductor junc-
tion ) is obtained from G„(H„)=0 for n )) 1 and
L„))1. From Eqs. (12) and (13), we determine the stable
vortex arrangement in equilibrium with the external field,
corresponding to the absolute minimum of the Gibbs en-

ergy, and calculate the energies of various other vortex
configurations, metastable (corresponding to local mini-
ma) or unstable.

(14)

III. RESULTS AND DISCUSSION

First of all, it is important to find, for a given value of
the external field H and of reduced temperature
t =T/T„ the ground state for the vortex lattice without
shear, for a=0.5. To calculate G„ for various n, we first
minimize it with respect to intervortex distance L„within
the rows of the configuration C„. For n =1 and I"))1
an analytical result can be obtained,

1 Ks a
tanh —H, (15)

L) m 2

whereas in general L„(H, t) is obtained numerically.
Having determined L,„, we have also obtained the ele-
mentary cell area A „=naL„and the induction
B„=2m/(~s A„). Although we work at fixed H and not
at fixed induction, we expect that for Kz »1 the cell area
and the induction do not vary appreciably when n is
varied. Deviations from this kind of behaviour, found in
some examples, occur when the energy difference be-
tween the ground state, n =n, , and the corresponding
C„. lattice is large. This indicates an intrinsic instability
of C„., where the pinning is not strong enough to main-
tain the configuration commensurate with the superlat-
tice.

Putting the obtained values of L„(H) at fixed t in Eq.
(13), we obtain G„as a function of H for each n. We have
performed the calculation for the reduced period
a =0.1+1 t, the reduced t—emperature t =0.6, i~s = 100,
and several values of pinning strength I . For our choice
of parameters, and in low fields where the electromagnet-
ic pinning is strong, ' both core pinning energy and the
core pinning force, calculated starting from Eq. (10), are
about two orders of magnitude smaller than the corre-
sponding electromagnetic ones.

For each value of I, we have first determined n, cor-
responding to the lowest G„(H) for a=0.5 in a range of
fields H+(t)(H'-H~&(t) Next, for a .fixed value of the
external field within this range, we considered several C„
configurations, allowing shear along the normal layers,
and varying a from 0.5 to 1 at fixed A„. ' The corre-

--2 0

-4O—
C) --6.0—

n=7

—8.0—
-- 1 O. G

G.7 0.8 0.9 1.0 1. 1 1.2 1.3 1.4
10 H

FIG. 2. Gibbs energy density G„vs external magnetic field H
(in reduced units) for several C„configurations, n =23, 7, 4, and
3, and for I =3.15.

sponding free energies E„(a) are calculated for the same
value of I and for several n.

We present below two typical examples. For I =3.15,
obtained for az/g~(T, ) =6.5, G„(H) is plotted for a= —,

'

in the range 0.0080&H&0.0128 for several values of
n (n =23, 7, 4, and 3) in Fig. 2. It is seen that n, =23 up
to H =0.0120. For the same values of I and n as in Fig.
2 and for H =0.0096, E„(a) dependencies are given in
Fig. 3. Energies as functions of a for both n =23 and
n =7 exhibit a single minimum, but in the latter case
a%0.5. For n =4 there are two minima, whereas for
n =3 the energy has a set of local minima and maxima.
The comparison of Gibbs energies G„(a;„) at
H =0.0096 shows that in the equilibrium configuration n
is again equal to n,q=23 and a=0.5. The lattices ob-
tained by shear deformation have higher energy. The
maximum relative energy difference between the above
configurations is ~(G23 —G3)/G$3~ 0. 1.

For stronger pinning, I =24. 32, obtained for
az/g~( T, ) =9.2, in the same range of extermal fields the
ground state without shear is found to be n, =8. [We do
not present here the G„(H) dependencies, since they are
similar to those in Fig. 2.] The characteristic E„(a)
dependencies, with one unshifted and one shifted
minimum and two minima, are obtained at H =0.0096
for n =8, 4, and 2, respectively. A set of local minima,
lying between the maxima which are at the values of a
corresponding to the rational numbers (Farey numbers'),
is found for n =1 (Fig. 4). The most stable configuration
for any a is again that with n =8, a=0.5. The relative
energy difference ~(Gs —Gi )/Gs ~

-0.02 is comparable to
the energy difference between the square and triangular
lattices in the isotropic case.

In all analyzed cases, the equilibrium configurations
n =n, are found to be those with a=0.5. For larger I,
n, is smaller, since the stronger pinning is capable of
maintaining a commensurate lattice with closer rows.
When a is varied so that the system of vortices is passing
through a set of different lattices, the function E„(a) ex-
hibits one or more minima and maxima. When n is far
enough from n, , a complex structure of extrema is ob-
tained [Figs. 3(d) and 4].

To obtain the general condition for appearance of a set
of extrema, we rewrite Eq. (9) in the form
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sin (m.la)
I —1)(

'
hQi &a)/4Qi &+sinh (Q& &a/2)+sin (mal)]

coth(Q, ia/2

Qi, ia/2
(16)

where

1

I'(Q —1)coth(Qi &a/2)1+

7.427

7.426

UJ

7.425

7.424

8.500

UJ

8.000

7.500

1.090

LU

Q 0.930

The necessary condition for pronounced extrema is,
R f 1 that the two first two terms in the

arablesquare bracket in the denominator should be compara e
=am/L (( l. A similar conditionto the last one, i.e., x, =am

can be derive in e cad th se when every nth layer is occu-
pied by vortices:

nav
xn

n

(17)

N th t the strongest inhuence of the pinning strength
enters via L„(I ). From the above criterion, an in a

that a corn lexd th our numerical results, we see a aance wi
u co '

to latticesf E (u) corresponds to small n, i.e., to lastructure o „u co
which are not stable in low fields. To investiga e i
correspon ence o s id e holds in the general case, we per orm the
following calculations. As in Refs. 1 and, we x n, an
we vary the externa e1 fi ld assuming that the vortex lat-

at some rela-tice is in eth C configuration. Assume t at at some re a-
cr =—' is1 hi h field a given C„configuration with a;„=—, istive y ig e a

th is re-1'b i m configuration. If the field streng
duced, a set of new ground states appears. s a resu
C„becomes more and more unsta e.le. At the same time,
the minimum of the E„(a)curves shifts from a =

—,', and a
set of extrema eve op .f t develops. This is illustrated, for pinning
strength I =3.15, on the example of the C3 lattice, w ic
is expected to e s a eb t ble in fields much higher than

e ofln~s ~s =/2 =0 023. We investigated the range o
butfields frome H =0.080 (where C is not stable, bu3a;„=—,

' to H=0. 0072. Two typical results are present-
5 At H=0. 040, the minimum of E3(a) ised in Fig.

shifted to a= . an e s=0.6 d th et of extrema which is seen a
6 [Fi . 3(d)] is even more developed at

H =0.0076 and in lower fields. For H below . , e
vortex distance I. becomes unrealistically large, the
Gibbs energy relative difference between t e

H=0. 0040 and H =0.0076 being of theconfigurations at
~ ~

order of unity. As in e .A R f. 1 the plot of the positions of
ion ofall minima o ef the free energy as a function o

x =3am. /Lz (Fig. 6) has a hierarchial structure. ( o e
that in our case x„ is proportiona to g
x3 3am 3 ig.

the ma netic induc-
tion „, eB decreasing with decreasing e; i ie H' it is directly

1 to H only in the strong-pinning limit
hI ))1.) At relatively high field, i.e., at arge x3,

single minimum or a= . '
1f =0.5 corresponding to an isoce 1

With decreasing field, a bifurcation occurs orlattice. i ecr
a ear ancex =0 12. Further decrease of H induces the app3 ~

0.770

9.100

(c:),

7.780 t

Q
4

3

Q 8.300—
27.580

3

(d)
I~i I

I
ll I I

I
l~l

0.5 0.5 0.7 0.0 0.9 I.O

7.;380

) l I )
t

I I I I
t

&) I I
t

0. 0.6 0.7 o.a 0.9
FIG. 3. Free-energy desity E„as a func

'
a function of the shear pa-

rameter 0.5 &a & or0.5 &1 for I =3.15 and H=0.0096. (a) n =23, (b)
n =7, (c) n =4, and (d) n =3.

FICx. 4. Free-energy density E„as a funca function of a for
I =24.32, H=0.0096, and n =1~
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1.365

1,340
UJ
O

1.315

1,290
(a)

integer and a corresponds to the divergence angle Pd.
For vortex lattices on analogy with spiral arrangements
can be seen with the help of Eq. (1). The shear deforma-
tions are related to the displacements along the layers,
and

n

corresponds to

6.700 rx /" o
= ON =Na, (19)

I I I I
[

I I I I
j

I I ( T ] I I 1 I
(

I I I I

G." 0.6 0.7 O. B 0.9 1,0

FIG. 5. Qualitative change in the free-energy variation E„(a)
with decreasing field H, i11ustrated for n =3 and I =3.15 on the
examples (a) H =0.040 and (b) H =0.0076.

0.05-

0.5

C~

74, ,
-7—,-~4-,

0.6 0.7

4
7 5
9

.j.T
O.E.

'
+T Tt—

0.9

FiG. 6. Positions a;„ofthe minima of E3(a) curve as func-
tions of x„for I =3.15.

of quasibifurcations at every minimum of the function
E3(a). There is only one unbroken trajectory of a
starting at a =0.5 and, with decreasing x3(H), tending to
the value a=~=(&5—1)/2=0. 618, which is the golden
mean. This is the trajectory of the absolute minima of
E3(a,H).

The bifurcation diagram is very similar to (x,a ) dia-
grams obtained for vortex lattices from anisotropic I.on-
don theory, ' and in numerical simulations of the growth
of spiral structures. ' In the first case, ' x is proportional
to H, and a has the same meaning as here. In the second
case, x corresponds to the parameter 6 of the quantized
logarithmic spiral' rz =roe, 8&=Nod, where N is an

which is the equation of the Archimedian spiral. ' The
continuous transition from one spiral arrangement (with
a= —,') to another (with a being the ratio of two consecu-
tive members in the Fibonacci series) is obtained, as in
simulations, by the continuous decrease of the control
parameter x„, i.e., of the induction B„. This change
occurs by adding or removing an integer number of Aux
quanta (vortices). As in spiral growth, the new arrange-
ment, found from the requirement of lowest energy, is
such that the system selects the divergence angles con-
verging towards the simplest irrational numbers. The
physical origin of this selection is in the repulsive interac-
tions between the elements in search of minimum energy
deposition. An important point is that the quasibifurca-
tions occur at small x„. In the anisotropic model, '
where n is fixed, and the anisotropy parameter is
@=hami/mi~, the control parameter x is, in our nota-
tion, x„=enamor/L„To ach. ieve small x„ for strong an-
isotropy, implicit in the strong-pinning assumption, '
this requires very low fields. In our inhomogeneous mod-
el, smaller x„(for n fixed) means also lower field, i.e. ,
transitions to more and more energetically unstable struc-
tures.

The main difference between our and previous works'
is that in the latter case the shear instability is always in-
duced in low fields, where one finds that in addition to
the ground state there are also several metastable states,
whose number grows for decreasing field. In our ap-
proach, were the finite pinning strength I enters explicit-
ly into the calculation, and the vortex system is allowed
to select the equilibrium configuration, we find that
n,q(H) depends on the I', but a, =0.5 in all analyzed
cases: the ground-state vortex arrangement is a lattice of
isocell triangles, without shear. Complex structures of
E„(a) curves correspond to sets of states with higher en-
ergies. However, with increasing I the energy difference
between various C„configurations diminishes and it is
possible that the nonequilibrium C„configurations, form-
ing a glassy state, are created during a rapid decrease of
the magnetic field, new vortices not having time to occu-
py optimal positions. With our inhomogeneous model,
we are able to calculate the energy of such configurations
and to estimate the probability of the glassy states.

In conclusion this work provides a theoretical criterion
for the appearance of sheared commensurate vortex
configurations in low fields. In physical measurements,
we expect nonsheared isocell-triangle lattices to be ob-
served as the equilibrium states. This should be possible
(by neutron diffraction' or, indirectly, by the muon-spin
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APPENDIX A

In this Appendix, we calculate the field distribution for
the main commensurate configuration (C& ), with vortex
chains in every N layer. In this case, n = 1, the elementa-
ry cell area is A& =aL, and A =NaL, . To solve Eq. (7),
we take the fieM as periodic along the y direction,

(2mily/L
&

)
h(x, y)= ge ' h, (x) .

Vl

Then Eq. (7) becomes

(A 1)

rotation technique' ) in artificially prepared layered su-

perconductors, with a low concentration of random pin-
ning centers. If under nonequilibrium conditions the
sheared lattices or the corresponding vortex glass are ob-
served, this would be a clear signature of extremely
strong pinning, since only in this limit do the sheared lat-
tices become energetically concurrent.

where we have used the Poisson formula to transform the
right-hand side. It can be seen that, when x ~x +a, one
has

hi(x+a)=e "hi(x), (A3)

which means that it is necessary to solve Eq. (A2) only in
the interval [—a/2, a/2]. In this region Eq. (A2) be-
comes

dhi(x)
Q, ih, (x)—

dx g dx

4mh 1+ —1 hi(x) = 5(x), (A4)

(A5)

where Q, i
= I+ (4n I /L i ). Equation (A4) describes the

inhuence of the N layers on field distribution in regions
(denoted by M) where g (x)%1. Outside of M, which is of
a reduced thickness of order I/as, this equation can be
approximated by the homogeneous equation

hi(x) — — + hi(x)
dx g dx g

=2~ y g(x ~a)e2ninla
Kg

(A2)

where hi is the approximate solution of Eq. (A4), which is
asymptotically equal to hl outside M. The solution of Eq.
(A5) is then

a
Aicosh(Q& ix)+Bisinh(Q, ix) for ——&x &0,

hi(x)= '

Cicosh(Q& ix)+Disinh(Q& ix) for 0&x & —.
(A6)

The coefBcients Al, 8l, Cl, and Dl can be determined
from the boundray conditions at the N layer, and the
periodicity requirements, using Eq. (A3). Following Ref.
9, we integrate Eq. (A2) in the interval ( —M/2, M/2) to
obtain the boundary condition for the derivative of hi(x).
Since at the end of this interval hl is asymptotically equal
to the solution hi(x), and hi(0)=hi(0), with accuracy
hi(0)/~s when aN-1/xs, we get

~"s 1I =20 2 coth — —1v'2

a~+gNsinh
N

T

&&s
coth — aN

2
(A9)

The next boundary condition follows from symmetry by
replacing x with —x,

+0
dh (x)i 41T 1

h ( )
27l2 2

dx —p
(A7)

hi( —0)=h, (+0),
and from Eq. (A3) we get

2mla-
h ——=e ' hl 2 1

(A 10)

(A 1 1)

where

I =f dx [g(x) —1], (A8)
=e ' h

2n.ila
l 2

L

(A12)

or explicitly
The solution of Eq. (A5) satisfying Eqs. (A7), (A10),

(Al 1), and (A12) is
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cosh(g, tx)

s I (Q~, t 1)+2Q, t[cosh(g& ta) —cos(2nla)]/sinh(g, ta)

[cosh(g& ta) —cos(2nal)]sinh(g& tx)+
~ 7I (Q& t

—1)+2Q, i[cosh(Q, ta) —cos(2mla)]/sinh(g, Ia)

277ht(x)=
K

for —a/2&x &0, and for 0&x &a/2

2' COSh( Q 1 tx )
ht(x) =

tcs I (g f t
—1)+2Q& t [cosh(g& ta) —cos(2nla)]/sinh(g, ta)

[cosh(Q, ta) —cos(2mal))sinh(g& tx)

I (Q, t
—1)+2Q, t [cosh(Q, ta) —cos(2m la)]/sinh(g, ta)

(A13a)

(A13b)

APPENDIX B

To calculate the field distribution for the nth commens-
urate configuration (C„), we start with n =2. In this
case, it is necessary to solve Eq. (A5) only in the interval
2a, e.g., ( —a /2, 3a/2). In this region, the boundary con-
ditions are

+0
and

ht(a —0)=ht(a +0),

a = e blah 3a
l 2 1

(Bld)

(Ble)

dht(x)
dX

4 2(2
+ 1 ht(0)=—

—0 L2
(Bla) a

h 1 e 2mila y„'
ftl

2
(B1f)

h(( —0)=ht(+0),
a+0

dh, (x)
dX

(Blb)

(81c)

For n )2 the similar procedure can be done in the in-
terval na. It was performed explicitly for n =3 and 4,
and by induction the result for any n ~ 1 [Eq. (12)] was
derived.
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