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The mobility of electrons in a quasi-one-dimensional channel on the surface of liquid helium is
studied theoretically at temperatures lower than 1.5 K. The inBuence on the mobility due to the
electron-ripplon interaction and to the electron scattering from helium atoms in the vapor phase is
investigated. The nonmonotonic temperature dependence of the mobility below 0.5 K is attributed
to the contribution coming from the matrix elements of the scattering operators between different
subbands due to the confinement of the electron motion along the channel. It is shown that the
results taking electron-electron correlations into account in the complete control approximation difFer
significantly from the results in the usual one-electron approximation. This allows us to check the
role of electron correlations in quasi-one-dimensional electron systems by comparing the theoretical
temperature dependence of the mobility with the experimental data.

I. INTRODUCTION

During the last decades the studies of low-dimensional
charge systems became one of the most interesting and
rapidly developing topics in the physics of systems with
reduced spatial dimensionality. Two-dimensional (2D)
charge systems, where electrons are free to move in the
plane, but are con6ned in the third spatial direction, are
realized in semiconductor structures and on the surface
of dielectrics, especially on the surface of liquid helium.
The well-known 2D electron systems cover wide range of
electron densities, leading to examples either of quasi-
two-dimensional degenerate charge systems in semicon-
ductor heterostructures or of classical systems of surface
electrons (SE's) over liquid helium. 2

Recently the great technological progress in crystal
growth, lithography, and etching processes has led to
the fabrication of semiconductor structures where charge
carriers are free to move only in one spatial direction
due to lateral con6nement and forming a quasi-one-
dimensional (Q1D) charge system. A lot of interesting
effects have been investigated both theoretically and ex-
perimentally in these Q1D degenerate electron systems
including transport and optical properties, resonant
tunneling, many-body effects and plasmon excitations,
the role of impurities, 7 the peculiarities of the electron-
phonon interaction, and so on.

The intensive study of Q1D charge systems in semi-
conductors motivated the search for creating a similar
Q1D electron system based on the SE's on liquid helium.
Such a system would have all the advantages, which are
typical for SE systems, like cleanness, homogeneity, and
the possibility of a wide variation of the experimental pa-
rameters such as the electron concentration, thickness of

the helium 61m, and the clamping electric Geld. In this
sense, the physical realization of this system should open
the possibility to study different phenomena in the Q1D
classical electron system.

A proposal for the experimental realization of a Q1D
electron system on the surface of liquid helium was made
by Ginzburg and Monarkha. They suggested to use a
special dielectric substrate with a triangular proGle on
the surface in the same way as a diffraction grating.
When the substrate is covered with superfIuid helium,
the electrons will be concentrated along the top of the lin-
ear grooves of the grating due to the large image forces
&om the substrate acting on the electrons. Attempts
to realize the proposed system demonstrated, however,
that, at liquid depths over the ridges around 10 cm,
where the role of the substrate on the electrons is domi-
nant, it is very diKcult to avoid the infIuence of defects
of the substrate surface which sizes are of the same order
of magnitude of the liquid depth. It was also suggested
by Chaplik ~ that a Q1D electron system can be created
by positively charging thin metallic wires located under
the helium surface. Unfortunately, up to now there is no
experimental evidence of the physical realization of these
proposals probably due to diKculties for creating reliable
conditions of good enough homogeneity of the system.

In 1986, Kovdrya and Monarkha proposed another
way to create the QlD electron system using the finite-
ness of the curvature radius of the liquid in parallel chan-
nels on the surface of a dielectric substrate with linear
grooves. These channels are 61led by superHuid helium
under the action of the capillary forces. A sketch of the
geometric arrangement of the system is shown in Fig. 1.
If the substrate is located at the height H above the level
of bulk liquid helium, the curvature radius of the helium
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FIG. 1. The scheme of the realization of quasi-one-
dimensional electron system over liquid helium Ref. 10. The
natural depth of helium film is enhanced.

surface is given by

FIG. 2. The cross section of the channel filled by liquid
helium between two dielectric planes. Electrons are localized
along the x axis; the holding field E~ is along the z axis.

where n and p are the surface tension and the helium den-
sity, respectively, and g is the acceleration due to gravity.
As in the previous case, when the helium surface over the
dielectric substrate with the linear grooves is charged by
a heated filament, the polarizing forces from the sub-
strate try to concentrate the electrons over the ridges.
However, when the hoMing electric Geld E~, along the
z axis, is switched on, the electrons are shifted to the
bottom of the channel, concentrating mainly along the x
axis. Now, the electrons are located at large distances
&om the substrate because the normal size of the curva-
ture radius R 10 —10 cm is much larger than the
size of substrate inhomogeneities ( 10 —10 cm) and
the liquid depth below the electron channel is of the same
order as B. So the inQuence of the substrate roughness
on the electron gas is negligible, and the Q1D electron
system should be very pure and homogeneous, as the
SE s on bulk helium, and could exhibit high mobilities.
The experimental realization of this situation was made
by Kovdrya and Nikolaenko who show explicitly the
strong anisotropy of the electron conductivity along and
across the series of channels flied with superfiuid helium.
Recently, Kirichek et al. described a simple method for
creating a solitary channel of high-mobility electrons on a
helium surface strongly distorted by capillary forces due
to a substrate formed by two dielectric polymer sheets
meeting at a sharp angle, as shown in Fig. 2. In this
approach, the profile of the helium surface and the con-
ditions to create the QlD electron system are the same as
in the previous works. 2 But contrary to the proposal
described in Ref. 12 and experimentally realized in Ref.
13, there is no interaction between the electrons in adja-
cent channels, and just only one channel is formed. The
previous experimental study in Ref. 14 demonstrated
that the electron conductivity along the channel has a
nonmonotonic dependence on the holding Geld.

As is known the study of SE s kinetics gives the possi-
bility to investigate not only the interaction between the
carrier and scatter but also the inQuence of interparti-
cle correlations in the transport process. It is expected

that correlation effects in the QlD electron system with
one less degree of freedom are more important than in
the 2D case. Furthermore, the Q1D character of the
electron motion leads to another structure of the matrix
elements of the scattering potential in comparison with
the case of SE's. As a result, one can obtain other tem-
perature and field dependences of the kinetic coeKcients.
For these reasons, a detailed and consistent theoretical
and experimental study of the transport properties of the
Q1D electron system in the conducting channel over the
liquid surface seems to be of current interest. The aim
of the present work is to study the electron mobility in
such a Q1D system based on linear response theory and
the Boltzmann equation. The electron mobility will be
calculated within the usual one-electron approximation
and the complete control approximation depending on
the contribution of electron-electron scattering.

The paper is organized as following. In Sec. II, we
will give a brief description of the electron states in the
conducting channel. In Sec. III, the transport equation
of the Q1D electron gas is presented including the scat-
tering mechanisms of the ripplons, and the helium atoms
in the vapor phase, as well as the electron-electron in-
teraction. The electron mobility is evaluated within the
one-electron approximation when electron-electron scat-
tering can be neglected, and within the complete con-
trol approximation where electron-electron scattering is
pronounced and is efFectively taken into account in an
indirect way. A comparison of the mobility in the two
approximations considered is also presented. Our con-
clusions are summarized in Sec. IV.

II. ELECTRON STATES IN THE QlD CHANNEL

The conducting channel flied with liquid helium is rep-
resented schematically in Fig. 2. The profile of the liquid
surface is close to a semispherical form and can be de-
scribed by the equation
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t y2 ) y2z=R 1 — 1 — for y((R.
R2) 2R (2)

The holding field E~ is applied in the z direction. If an
electron at the bottom of the channel moves a distance
y &om the center, it is subjected to a potential

+(y) =

and

e„= (n+ 1/2)harp, n = 0, 1, 2, e ~ ~ (4)

v-(y) = ('- y '(a ('y'(
vr'~ y' ' V'2"n! E yo) &»)

respectively, where yo
—— gh/mero is the localization

length in the y direction, and H„(x) is the Hermite poly-
nomial. Typical values of yp along with the correspond-
ing values of up are presented in Table I. As one can
see from this table, the values of yo satisfy well the con-
dition yp « R for holding fields E~ —102—10s V/cm.
Moreover, for the root mean square of the electron dis-
placement with n ) 0, the inequality

(
g(y2) =

~

n+ —
~ ye && R

is satisfied even for n & 102. So the parabolic approxi-
mation of the confinement potential in Eq. (3) is rather
good for the description of the electron motion along the
y axis in a wide range of holding Geld E~ and quantum
number n.

Because the electron can move &eely in the x direction,
its total energy and wave function can be written as

and

h k2
E„ (ki) = +e„+b,i2m (7)

1

L
exp (t k 2;) p„(y)gi (z),

TABLE I. The parameters characterizing the electron lo-
calization in the Q1D channel filled by liquid helium with
R=5x10 cm.

E~ (V/cm)

450
900

2000
3000

yp (10 cm)

5.4
4.5
3.7
3.35

h~o (K)
0.3
0.4
0.64
0.8

which laterally confines the electron in the y direction
with characteristic frequency uo ——geE~/mR, where m
and e are the electron xnass and charge, respectively. Due
to such a parabolic confinement potential, the motion of
the electron in this direction is quantized. The corre-
sponding eigenenergy and the wave function are given
by

respectively, where b, i and yi(z) indicate the electron
eigenenergy and wave function in the z direction with
index l = 1,2,3,. . . , k is the electron wave vector, and
L is the size of the system in the x direction. The mean
distance of the electron &om the surface in the ground
state (I = 1) is (z) i = 114 A. at E~ = 0 and is smaller for
E~ g 0. So the condition (z)i && R is satisfied and the
wave function yi(z) and the eigenenergy Ai can be taken
as in the case of a Hat helium surface approximately. For
E~ ) 300 V/cm, one can neglect the electron transitions
&om the ground level l = 1 at temperatures T & 2 K. In
such a case, we consider

gi (z) = 2p'~2 z e ~'

for z & 0, where parameter p is dependent on E~ and is
determined variationally.

One should note that Eqs. (7) and (8) are valid for
smaller holding fields than those given in Table I as long
as yp (( R. However, the minimum energy eE~R to con-
Gne the electron near the bottom of the channel must
exceed the typical value Et, 10 K of the binding en-
ergy of the electron on a super8uid helium Glm cover-
ing the dielectric plates which form the channel. For
this reason, we consider only the holding field E~ ) 300
V/cm such that the condition eE~R )) Es is fulfilled for
R 10 —10 cm.

III. ELECTRON MOBILITY

The description of the /ID electron states given by
Eqs. (7) and (8) was proposed in Ref. 12, and the trans-
port properties of the electrons were also studied theo-
retically in the quantuxn limit approximation; i.e., only
the occupation of the lowest subband was considered.
Such an approximation is realized in the system with
low electron density at temperatures T (( hup. How-
ever, the typical texnperature, where the experiments are
perforxned, is around 1 K and the energy difference heep

between the adjacent subbands is comparable to the ther-
mal energy (see Table I). Obviously, the effect of the
higher subbands has to be considered in the calculation
of the electron mobility in the present system, where not
only intrasubband scattering but also intersubband scat-
tering processes are important for the electron transport.

The main scattering mechanisms for electron trans-
port on the surface of liquid helium are the scattering
by surface excitations of superfiuid helium (ripplons) and
helium-atom scattering in the vapor phase. The former
dominates the electron mobility when T & 1 K, and the
latter is the most important scattering mechanism for
higher temperature T & 1 K. For finite electron den-
sity, the scattering between electrons can also play an
important role and must be included in the Boltzmann
equation. Keeping these in mind, the Boltzmann equa-
tion governing the transport properties of electrons in the
Q1D channel on the helium surface can be written as

Ot
'

r. ''ak ='.(f"&"('-&+'.('-&
where E~~ is the driving electric Geld along the x direction,
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f is the distribution function of electrons in the nth subband, and S represents the collision operator which is a
functional of f F.or electron-ripplon scattering the collision integral is given by

+..(f.) = „~ ) l(~'le'"~l~& I'1&iIV, (z) ll&1'
I~ iq~iqy

h2
[(N~ + 1)f~ (k~ + q~) —N~f„(k~)] 8 e„—e„+ (q' + 2k~ q~) —her„

2m

+[Nqf„l(k + q ) —(Nq+. 1)f„(k )] h e„—e„+ (q + 2k q ) + h~„q
2m )

where Nq
——[exp(hw z/T) —1] is the number of the

ripplons with energy hu„q, q is the two-dimensional wave
vector of the ripplon, and S is the area of the liquid sur-
face. V~(z) in the above equation is the Fourier transform
of the electron-ripplon interaction potential,

vq(z) =
~ ~

——K, (qz) +eE~)
( hq ) ~ Apq

(2p „q) z qz

(12)

1 q, (K', —~,)121@„(r'„—~y)1'

(14)

with

~.( '. — .) = V'U x'( ) '"* "*' d
0

'&f-) =
r.v

I I In, q, m, tc„,m

x fs(K)[f„(k + q ) —f„(k )]

xb e„—e„+ (q +2k q )2m

where Ap ——(e /4)(e'H, —1)/(sH, + 1), sH, = 1.057 is
the dielectric constant of heliuin, ~„~ = (n/p)i) zqs~2 the
ripplon dispersion relation, o. the surface tension, p the
helium density, and Ki(qz) the modified Bessel function.
We have assuined that, in Eq. (12), the thickness of the
helium film underneath the electrons is infinite.

By analyzing the transition matrix elements, we find
1(n'1 exp(iq„y) ln)1 exp( —q yp/2). It implies that
the main contribution to the scattering process comes
&om the ripplons with qy ( 'Jlp, which corresponds to
q„& 10s cm i (see Table I). The same estimate for typ-
ical values of q can be made &om the analysis of the en-
ergy conservation constraints given by the arguments of
the h functions in Eq. (11). So one can conclude that the
characteristic wave number of ripplons in Eq. (11) satis-
fies the condition q & 10 cm at temperatures around
1 K. For q in this region, the ripplon energy hu~q ~ 10
K is negligible in comparison with the typical electron
energy which is of the order of the thermal energy. With
this consideration, Eq. (11) reduces to

rl~(~„' —
m~) = V'Ug f y„(y)p„(y)e' " "" dy,

where U2 = m. h A/m2 is the strength of the electron-
atom interaction, A = 4.67x 10 cm the effective cross
section for this scattering, f~(r) oc exp( —h rc2/2M~T)
the atom distribution function, and m the wave vector of
the helium atom. After some algebraic manipulations,
Eq. (14) reduces to

3m h, nA ).(~'. (y)~.'(y)) [f- (k*+ q-)
In, q~

h—f„(k )]h~ e„—e„+ (q +2k q )

where

~-(f-) =
~~ ). 1&~'le"""l~&l'1(llV.(z) I»l'

I~ )q~ ~qy

x(2N, +1)[f„(k +q ) —f„(k )]
t' n'

xb
~

e„i —e„+ (q~ + 2k~q~) . (13)2m )
The collision integral describing the scattering elec-

trons by helium atoms in the gas phase can be obtained
in a straightforward way &om a similar collision integral
derived by Saitohi in the 2D case of SE's on helium. In
the limit of m/M~ && 1, where M~ is the mass of the
helium atom, it can be written as

(v*. (u)v.'(u)) = f (v- (v)v-(w)1*~v

and ng is the volume concentration of the helium atoms
in the gas phase. As one can see from Eqs. (13) and
(15), both electron-ripplon scattering and electron-atoin
scattering are treated as elastic scattering in view of the
absence of the scatter energy in the argument of the b
function. The reason for this in the case of electron-
ripplon scattering was already pointed out. In the case
of electron-atom scattering the condition m/M~ && 1 en-
sures that the scattering is elastic.

The Boltzmann equation, Eq. (10), can be solved in
two limit situations depending on the contribution of the
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electron-electron collision integral S„(f ). First, we will
consider the case when the interelectron interaction is
very weak and the corresponding collision integral can be
omitted in Eq. (10). Second, if the frequency of electron-
electron collision is high enough, S„(f ) plays a domi-
nant role in the form of the distribution function. How-
ever, even in this limit, the electron-electron collisions
can be taken into account in an indirect way without
using any explicit form of S„(f )

A. One-electron approximation

v.'", '(k ) =
hS ). I(~'le*'""l~) I'l(11&a(&)I»l'

I

k(k +q)
lk (k +q )I

h'
xb e„o —c„+ (q~ + 2k~q~)

2m

x(2'+ 1) 1—

where vi„l(k ) [v~gl(k )] is the collision frequency for an
electron in the nth subband with wave vector k due
to electron-ripplon [electron-atom] scattering. These fre-
quencies are given by

In this subsection we calculate the electron mobil-
ity within the one-electron approximation, when the
electron-electron interaction is discarded in the solution
of the Boltzmann equation and only the collision integrals
due to electron-ripplon and electron-atoxn scatterings are
retained in Eq. (10). As we are considering a quasi elas-
tic process it is straightforward to write the distribution
function in the following form within linear response the-
ory:

3~' h'n A
v.',"'(k-) = 4,'~ ):(V.' (y)~.'(y))

g

k(k +q)
Ik (k +q )I

h'
xb e„—e„+ (q +2k q )2m

(20)

f (k ) =fo (Ik I)+ f1-(Ik I).
k

(16)

If we de6ne the mean electron velocity along the x axis

Substituting Eq. (16) into Eq. (10), we can easily obtain
the following expression for f1

(v ) = —) k f„(k )
n, k~

(21)

eZ(( &fo

h[v~„"~(k ) ~ v~sl(k )] (9lk
I

with

2mh 1 rh k2
f'" T'L,.Z„'"p —

I 2 y +
Z

oo

1 ( harp ) ( h~o l
2 p g 2 )

= —exp
/

—
I I

1+coth

(17)

the electron mobility is given by p = (v )/E~~. From
Eqs. (17), (18), and (21) it is easy to get the following
expression for the electron mobility:

S

f
—a~0 z/T

v.." (*)+ v.," (*)
(22)

As one can see from Eq. (22), the collision frequencies
are the quantities which determine the electron transport
properties. For electron. -ripplon scattering, the collision
frequency can be written as

eE T
(23)v'~ clh ldp x

with

-() 1 "
y —., [I (4)] I16~m p +y

" gz+ y 3b,~ gz+ y 9b, ~&

1 ~™:"[min(n', n)]. x „)„,(,]2 4„-
[max(~1 r1)] I & + 4p, ( ) min(n', oo) ( y)

n' n

4y+ (~x v'o + 4p ')o lv'htooEo (4y+ (vG —go + 4p ) l 445~oAo
(y+ p„)'+ xy M& q (y+ p„„.)2+ ~y y 9~' (24)
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where x = h k /(amhup) is the electron kinetic energy
normalized by hup, P „=(n —n')/4, b, p

——mAp2/ah,
E~ = eE~/p, n' = int[n+x], L (t) is the associated
I aguerre polynomial, and L (t) = LP (t). In the above
derivation we have used an approximate expression for
the matrix elements of electron-ripplon scattering,

1.5

1.0

(1~V,(z)I1) =
~

+ «~
I

~

hq (Appq
ape„q ( 3 (25)

0.5

This approximation for T & 0.5 K gives the value and
the temperature dependence of SE mobility due to the
polarization part of electron-ripplon scattering, described
by the first term in Eq. (25), as compared with the results
coming &om using the exact interaction potential, given
by Eq. (12).is This approximation was used, for example,
in Ref. 15.

For electron-atom scattering, the collision &equency
given by Eq. (20) can be reduced to

(26)

with
I3~ir;" 1 x

2~+&/2ril 2~'ii I & + 4P'n=p

0.0
0.0

15.0

10.0

5.0

0.0
0.0

I

I

I

I

I

I

I

I

1.0 2.0 3.0

E/ks T

I

l

2.0 3.0 4.0 5.0

x exp( —2y ) [H (y)H I(y)] dy .
p

(27)

and

g2E2 Tv(„) = 2+ exp(4x) 1 —erf(ai/x)
4cxh (dpx

(p) 3~sr hns Ap
8m~~

(28)

(29)

respectively, which reproduce the previous results in Ref.
12.

To make the problem more transparent, we have per-
formed a numerical calculation for the collision &equen-
cies. In the calculation, the temperature dependences of
parameters o. and n~ are determined by fitting experi-
mental data. 2P a is in the range 0.34—0.375 erg/cm for
T ( 1.5 and decreases with increasing temperature, and
nz is given by

ng ——np exp( —EE/T),
where np ——5.95 x 10zi/cms and b,E = 8.466 K.

In Fig. 3, the collision &equencies v „ofripplon scat-
tering of the first three subbands are depicted as a func-
tion of energy E = h kz/am + nh~p for T = 0.6 K
and two difFerent holding fields: E~ =1000 V/cm and
3000 V/cm. We find that (i) the collision frequency de-
creases monotonously with increasing electron energy in
the range (n + 1)hpip ) E ) nhup, (ii) for the same en-
ergy E, the collision &equency increases with increasing

Within the limit of T (& h~p, only the lowest subband
n = 0 participates in the transport process. The leading
terms of the collision &equencies for ripplon and atom
scattering are given by

FIG. 3. The frequency of electron-ripplon collision as a
function of energy E = h k /2m + nb&up for holding fields
E~=1000 V/cm and E~=3000 V/cin at T =0.6 K. The solid,
dashed, and dotted curves indicate n=O, 1, and 2, respec-
tively.

the subband index n; and (iii) when the electron kinetic
energy in the x direction equals the energy difference be-
tween two subbands nhup, the collision &equency has a
discontinuity jump. Each jump in the collision &equency
corresponds to the threshold of a new scattering channel
due to an intersubband interaction. For an electron in
the lowest subband n = 0, only the intrasubband scat-
tering is possible when its kinetic energy is less than heep.

For x ~ 0, v,„ocx i(1 —4++/m) and goes to infinity
at the bottom of the subband where x = 0. When the
electron kinetic energy is larger than h,up, intersubband
scattering becomes possible and plays essential role in
the scattering processes.

Comparing Figs. 3(a) and 3(b), we observe that the
collision &equencies at diQerent holding fields have simi-
lar behavior. But, quantitatively, the scattering rate and
the threshold of the intersubband scattering increase with
increasing E~. The collision &equency at E~ ——3000
V/cm is about one order of magnitude larger than that
at E~ = 1000 V/cm.

In Fig. 4, the collision &equency v ~ of atom scatter-
ing for the first three subbands is plotted as a function of
energy E = h k /2m + nhurp at T = 1.2 K for the saine
set of holding fields: E~ =1000 V/cm and 3000 V/cm.
The behavior of the collision &equency for electron-atom
scattering is similar as what was given in Fig. 3 for
the electron-ripplon interaction. However, in the case of
electron-atom scattering, the collision &equencies for the
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2.0

1.5

by using Eq. (29), the mobility can be written as

(,)
I6 e (T ~'/'

I"eg 3~ hnsAp (h~p)
(34)

1.0

0.5

0.0
0.0

2.5

2.0

1.5

1.0

I

0,5
I

1.0

(b)

1.5

In Fig. 5(a), the electron mobility is plotted as a func-
tion of temperature for difI'erent holding fields. The mo-
bility normalized by y~ is given in Fig. 5(b), and the
calculated mobility including only electron-ripplon (thin-
dashed curves) or electron-atom (thin-dotted curves)
scattering is shown to illustrate the importance of the
respective mechanisms in difFerent temperature regions.
It is interesting to observe that, despite the complicated
structure of the energy dependence of v „and v~~, the
mobility is still a smooth curve as a function of temper-
ature. When T ~ 0, p/p~ ~ 6 which is consistent with
Eq. (33). One can see that for temperatures below 0.8 K,
electron-ripplon scattering dominates the mobility which
has a stronger temperature dependence under small hold-

0.5
10.0

0.0
0.0 0.5

I

1.0

E/ksT

1.5
8.0

FIG. 4. The same as Fig. 3 but for the electron-atom col-
lision frequency at T = 1.2 K.

6.0

O

4.0

ah
meEi2

(32)

electrons in difFerent subbands are signiGcantly closer to
each other than in the case of electron-ripplon scattering
and the collision frequency dependence on the holding
Geld is very weak.

Note that a similar behavior of the collision frequency
is found in other systems in which the processes of intra-
subband and intersubband scattering are involved, like
jn 2D strongly b-doped layers

From Eqs. (22), (23), and (26), the electron mobility
can be written as

p~(harp/T)s/2 ( h(up

I + coth(hump/2T) -
~

T

( burp
OO +exp

~

— x
I
dxT )

p (T/h~p)B„" (x) + (p~hng Ap/e) Bg" (z)
(3I)

where B (x) and Bg (x) are given by Eqs. (24) and(n) (~)

(27), respectively, and

2.0

0.0
0.0

10.0

5.0

0.0
0.0 0.5

I

0.5 1.0

T (I)

1.0

T (K)
1.5

1.5

2.0

At T ~ 0, the electron mobility is given by

() —6 (33)

due to the collision frequency in Eq. (28). In the regime
of electron-gas scattering and. in the limit of 5&p p) T,

FIG. 5. (a) The electron mobility within the one-electron
approximation as a function of temperature. The mobility is
normalized by p~ = crh/meE~ in (b), and the dashed (dot-
ted) curves present the mobility including ripplon (gas) scat-
tering only. The curves numbered 1—4 correspond to E& ——

500, 1000, 2000, and 3000 V/cm, respectively.
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ing Gelds, and for T & 1.0 K the electron mobility is de-
termined by electron-atom scattering where the mobil-
ity decreases exponentially with increasing temperature.
For the temperature in between, both scattering mech-
anisms are important;. Notice that, because p~ oc E&,
the normalized mobility in Fig. 5(b) increases with in-
creasing E~, while for the mobility depicted in Fig. 5(a),
we found an opposite behavior.

We also observe that a maximum of p appears at
T & Oe2 K for the holding fields considered. At such low
temperatures, the electron mobility is entirely dominated
by ripplon scattering and the origin of the maximum
should be explained by Eqs. (22), (23), and (31) with-
out considering gas scattering. It is clear from Eqs. (22)
and (31) that electrons which have a normalized kinetic
energy x & T/huo are important for the mobility due to
the factor exp( —hero+/T) in the integrand. In the limit
of low temperature T && huo, when the contribution of
very small x is essential in these equations, only electrons
in the lowest subband n = 0 contribute to the transport
and the leading term of the collision &equency is given by
Eq. (28), which gives p = 6@~ at T ~ 0. By expanding
Eq. (31) in a power series, considering only x « 1, and

neglecting Bg in the denominator, we can easily obtain
the following expression for the mobility, which describes
its behavior as the temperature starts to increase &om
zero:

32&T&"
~=&!) 1+—

I37l' (hlafo p
(35)

Fquation (35) shows explicitly the increase of the mobil-

ity &om its limiting value p „=6@~ which is observed
in Figs. 5(a) and 5(b) at low temperatures. When the
temperature is comparable or higher than huo, the con-
dition x « 1 in Eq. (31) becomes unsatisfactory and
Eq. (35), obtained in the limit T « h&uo, is not valid.
At higher temperatures, the value of the mobility can
be only obtained numerically through Eqs. (31), (24),
and (27). The results of these calculations, depicted in
Figs. 5(a) and 5(b), demonstrate the decrease of the
mobility with increasing temperature when both the in-
tersubband transitions and the increase of the population
of electrons in subbands with n ) 0 become dominant.
So, due to these different behaviors, a maximum in the
mobility takes place. Since the higher is the holding field,
the larger is the subband separation huo, we observe that
the interval of temperature, where the contribution to the
mobility coming from electrons in the subband n = 0,
[Eq. (35)j, becoxnes larger. As a consequence, the po-
sition of the maximum of the mobility shifts to higher
t;emperatures with increasing the holding field. On the
other hand, the strength of the electron-ripplon interac-
tion increases and the effective width yo decreases with
the increase of E~. Ihuthermore, the collision frequency
increases as is shown in Fig. 3 and the electron mobility
decreases.

B. Complete control approximation

In this section the Boltzxnann equation, Eq. (10), will
be solved in the limit when the &equency of the electron-

f~ = fno + f~x )

where f o satisfies Eq. (10) in such a way that v„)& v,„{n)

and v g . In this case, we have in zero-order approxima-
tion

(37)

The solution of Eq. (37) gives

27rh 1 (h k2 e„i huk
exp — + —" +mTL2 Z (2mT T ) T

(38)

The drift electron velocity along the driving Geld u can be
calculated from the Boltzmann equation if we multiply
both sides of Eq. (10) by k and sum over n, and k . The
procedure is similar to what was used in Ref. 15. As a
result, the mobility p, = u/E~~ can be written as

m(v, „+v,g)
(39)

where

ver'(eg) ) ke ~et'(eg) (fno )mu
n, kN

(40)

is the average collision frequency due to electron-ripplon
(electron-atom) scattering.

Substituting Eq. (13) into Eq. (40), we obtain the fol-
lowing expressions for the collision &equency of ripplon
scattering:

&er = e'E~2 & hcdo
l~1+coth

nh i, 2T j
x ) exp

i

—
i

D("), (T),2T (41)

where

electron collisions, v, is much larger than the typical
&equencies v „and v z . This situation for SE's over a
Bat helium surface is realized in a definite range of elec-
tron densities, as shown in Ref. 15. As is well known,
the electron density can be easily varied by changing the
holding field E~ in the case of SE's. The conditions nec-
essary to realize a similar situation, the so-called com-
plete control regime, in the QlD system are not so clear
at the present time in view of the anisotropic character
of t;he electron motion and a more complicated depen-
dence of the electron density on the holding field. This
issue has not been solved in the general case up to now.
However, we expect that the complete control approxi-
mation should describe the main features of the electron
transport in the Q1D channels.

In the complete control approximation the distribution
function f„ is represented by
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D ( ) [ ' (" ')]' d„(4„)!.—.!-i).,-4s LI---'I (4„)
'

exp[—(x+ p „,/x)h~p/T] 8(h(upbp) ~2 exp[ —(x+ p„„,/x)harp/T]
x+y 3~- gx+ y

+ ', 'lP. Ixo(ll&..I&too jT)l,94~ (42)

and for n = n',

(43)

( 4T ) (4Ty) '
exp (1 — fy L

0 ( h(up) (h(up)

S ~aT')'
x Ey + 1 —erf y3 b, g

16 LpT dy+— exp( —y)
J y

-() 4

ShnsAp (harp)
(50)

The mobility p, within the complete control approxima-
tion is shown as a function of texnperature for different
holding fields in Fig. 6(a). It is seen that the temperature
dependence of the mobility is qualitatively similar to that
in Fig. 5(a) within the one-electron approximation. How-
ever, the results in Fig. 6(a) demonstrate the peculiarities

where E(y) = —Ei(—y) is the exponential-integral func-
tion and the other notations are the same as in Eq. (24).

From Eqs. (40) and (15), we obtain the collision fre-
quency of electron-atom scattering,

3.0

&eg =

where

1 - —1
hnsAp (h(up) ' (h(up)1+coth

m ( T ) (2T).):- ~'-""("+""~D" (T)x exp

2.0

V

1.0

K (2iP ]h(u /T)~in'n') 2"+"'T

x [H„(x)H„(x)] exp( —2x )dx,
0

and for n = n',

D(s) = [H„(x)] exp( —2x )dx. (46)
3~2

~sr(n!2")2

Substituting Eqs. (41) and (44) into Eq. (39), the result
of the electron mobility is

0.0
0.0
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T (K)
1.5

)Li = p~ [1 + coth(ho)p/2T)]

p~hnsAp (h~p), 'e(T)
where

( h(up(n+n) „(g)G„(s) = exp

(47)

(4S)

V

~ 1.0

0.0
0.0

I

1.0 2.0 3.0

Ez(10 V/cm)

p(p) (49)

The limiting values of mobilities in the regions of
electron-ripplon and electron-gas scattering at heep )) T
are given by

FIG. 6. The electron mobility within the complete control
approximation as a function of (a) the temperature with dif-
ferent holding fields E~ = 500, 1000, 2000, and 3000 V/cm,
corresponding to the curves numbered 1—4 and (b) the hold-
ing field with T = 0.6, 1.0, and 1.4 K, corresponding to the
curves numbered 1—3.
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which make them difFerent &om Fig. 5(a). First, in the
temperature region T & 0.8 K, where ripplon scattering
is the dominating scattering mechanism, the mobility is
a factor of 2—3 smaller than that within the one-electron
approximation. At T ~ 0, this factor goes to 3 which

agrees with the analytical results p „and p,„given by
Eqs. (33) and (49). In the regime where gas scattering
dominates the mobility, T & 1.0 K, the result in the one-
electron approximation is slightly larger than that in the
complete control approximation. Their ratio p,~ /p, g,
from Eqs. (34) and (50), is close to 4/m for hup )) T.
Second, p has a maximum at low temperature due to a
similar reason as discussed in the above subsection. In-
deed, at T ~ 0 and when electron-ripplon scattering is
dominant, the mobility is entirely determined &om the
contribution of the subband n = 0. With this condi-
tion, the temperature dependence of the mobility, given

by Eq. (47), is determined by the function G„Dp(p) (T).
By calculating the asymptotic limit of Dpp (T), given by
Eq. (43), for T / hldp (( 1, we obtain the following ex-
pression for the mobility:

For the sake of comparison, we present in Fig. 7(a)
the mobilities within the two di6erent approximations
by considering only electron-ripplon scattering and in
Fig. 7(b) the results in the case of electron-gas scatter-
ing. As one can see from Fig. 7(a) the mobility in the
one-electron approximation IJ,(T) shows a stronger de-
pendence in the region of electron-ripplon scattering as
compared with the mobility in the complete control ap-
proximation p, (T). For E~ = 1000 V/cm, the ripplon-
limited mobility behaves as p(T) T P in the inter-
val 0.4 ( T ( 0.7 K. For E~ = 500 V/cxn, as shown
in Fig. 5(a), p(T) T . For the saine values of the
holding fields the mobility P,(T) has a weaker tempera-
ture dependence, as shown in Figs. 6(a) and 7(a). One
should remember that for SE's in the 2D case, the depen-
dence p(T) T i is observed only in the limit E~ ~ 0
and for temperatures in the interval 0.5—0.7 K, ' and
this dependence is significantly weaker for holding fields
in the range 10 —10 V/cm.

The increase of the mobility, shown in Fig. 6(a), from

its limiting value p, „=2@~, agrees with the result in
Eq. (51) and is qualitatively similar to the behavior of the
mobility in the one-electron approximation [see Eq. (35)].
As in the case of the one-electron approximation, the in-
huence of the intersubband transitions and the growth
of the population of the subbands with n & 0, which
become essential at T hwo, lead to the decrease of p,

with the appearance of a maximum at an intermediate
temperature. However, the numerical factor in the sec-
ond term of Eq. (51) is 8/3 times smaller than that in
Eq. (35). Because of this fact, the mobility p, increases
more slowly in compared with p and the position of the
peak shifts to higher temperature compared with that
of the one-electron approximation result. For E~
500, 1000, 2000, and 3000 V/cm, the peaks appear at
T = 0.12, 0.21, 0.41, and 0.57 K, respectively.

Figure 6(b) shows the mobility within the complete
control approximation as a function of holding field for
three temperatures related to electron-ripplon (0.6 K)
and electron-gas (1.4 K) scattering, as well as for an inter-
mediate temperature (1.0 K) . We find that, at T = 0.6 K,
p E& for E~ & 1000 'V/cm and has a very weak de-
pendence at T = 1.4 K. For the 2D electron system over
a Qat helium surface, the field dependence in the regime
of ripplon scattering is p E& for high enough holding
fields. In the gas scattering regime the field dependence
of the mobility is very weak, being entirely determined by
the field dependence of the parameter p, which describes
the scale of the electron localization along the z direction.
Therefore, the field dependences of the mobility in both
SE's over bulk helium and in the Q1D charge channel
filled by helium are similar despite the more complicated
structure of the expressions in the case of the Q1D elec-
tron system.
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PIG. 7. The contributions of (a) the electron-ripplon
and (b) electron-gas scattering to mobilities within the one-
electron approximation (dashed curves) and the complete con-
trol approximation (solid curves) for holding fields E~ ——1000,
2000, and 3000 V/cm numbered 1—3.
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The maxixnum of the xnobility within the one-electron
approximation appears at T & 0.2 K for the holding fields
under consideration. However, the approximation for the
electron-ripplon interaction given in Eq. (25) becoxnes in-
valid at low temperatures. In addition, one cannot ex-
clude the possibility of the transition of the electron sys-
tem in the quasiordered state at very low temperature.
Under such a transition, the possibility of the descrip-
tion of the electron system in the &amework of standard
kinetic approach disappears. So the present theory in-
tends to describe the electron mobility correctly for T &
0.4—0.5 K where IJ,(T) is a monotonous function of the
temperature. In contrast, the peak in the mobility cal-
culated in the complete control approximation occurs at
T ) 0.4 K for E~ ) 2000 V/cm and at T = 0.57 K
for E~ = 3000 Vjcm, where the present theory gives a
reliable description of electron-ripplon scattering.

For SE's over a Hat liquid helium surface, the tempera-
ture dependences of the mobility within the one-electron.
and the complete control approximation are similar quali-
tatively, but the mobility within the one-electron approx-
imation is 2 times higher at high enough electric fields in
the regime of electron-ripplon scattering. ' The reason
for such a discrepancy, explained in Refs. 15 and 23, is
due to the strong dependence of the electron-ripplon col-
lision &equency on electron momentum at large holding
fields. The dependence of the collision &equency on the
electron momentum is of fundamental importance to the
calculation of the mobility either in the one-electron case
(the average of the inverse frequency) or in the complete
control case (the average of the frequency). Due to this,
the mobility in these two regimes differs quantitatively
in the two-dimensional case at large E~. At the same
time, the momentum dependence of the electron-ripplon
collision &equency disappears at E~ ~ 0 and the mobil-
ities in such a case are the same in both the one-electron
regixne and. in the complete control regime with a strong
role of interelectron correlations.

In the present QlD systexn, the strong dependence of
the electron-ripplon collision &equency, on the momen-
tum k through x in Eq. (24), takes place for both the
contributions &om the holding field and the polarization
part of the electron-ripplon interaction [the first term in
Eq. (25)]. Due to this dependence, the discrepancy in the
mobilities obtained in the two different approximations is
more fundamental than that in the 2D case, demonstrat-
ing the more essential role of interelectron correlations
in reducing the dixnensionality of the system. Moreover,
the dependence of the electron-gas collision &equency in
Eqs. (26) and (27) on the electron momentum leads to a
difference between p and p, in the regime of electron-gas
scattering for T ) 1 K [see Fig. 7(b)], contrary to the 2D
case, where the electron-gas collision &equency is inde-
pendent of the momentum and the two approximations
yield the same temperature dependence of the mobility.

IV. CONCLUSIONS

We calculated the electron mobility in the Q1D charge
channel filled with liquid helium. The results are ob-
tained within two approximations. One of them is

the one-electron approximation in which the electron-
electron interaction can be neglected and the other
one is the complete control approximation within which
the electron-electron correlations inQuence strongly the
structure of the electron distribution function. The tem-
perature dependence of the mobility calculated in both
approximations shows a nonmonotonic behavior with the
appearance of a maximum at; a certain temperature, in
contrast to the monotonous temperature dependence of
the mobility in the 2D case taking into account the same
scattering mechanisms. ' ' ' Then, we can conclude
that the nonmonotonic behavior of the mobility is at-
tributed to the specific nature of the electron motion in
the QlD charge motion. The position of the maximum is
different in both approximations. If the complete control
regime is realized in the Q1D charge channel over liquid
helium, the maxixnum in the temperature dependence of
the mobility will appear at a temperature near 0.5 K. The
experixnental observation of the nonmonotonic tempera-
ture dependence of the electron mobility around this tem-
perature can give evidence of the applicability of the com-
plete control approximation in the description of the elec-
tron kinetics in the QlD charge channel in addition to the
SE's over a Bat helium surface where the complete con-
trol regixne was shown to be realized. ' The mobility
calculated in the coxnplete control approximation is near
3 times lower than that in the one-electron approxima-
tion within the temperature range where electron-ripplon
scattering is dominant and this difference is smaller in
the regime where electron-gas scattering doxninates. For
the sake of comparison, in the case of SE's over bulk
helium, the mobility in the regime of ripplon scattering
calculated in the one-electron approximation is 2 times
higher than that in the complete control approxixnation
and in the regime of gas scattering both approximations
give the same results. The field dependence of the mo-
bility exhibits the power law p E& in the regime
of electron-ripplon scattering and a weak dependence on
E~ in the regime of electron-gas scat;tering.

Up to now, the only experimental study, as far as we
know, of the electron conductivity in the Q1D electron
system on liquid helium was carried out in Ref. 14. In
this work the dependence of electron conductivity on
the holding potential was measured. The result shows
a sharp nonmonotonic dependence on the holding poten-
tial, not only for the electron conductivity, but also for
the charge concentration in the channel. In addition, the
experimental results depend crucially on the conditions of
electron charging of the Q1D channel. As a consequence,
we cannot compare directly our calculations with the re-
sults of Ref. 14, even though the decrease of the observed
conductivity with increasing the holding potential, when
the helium surface is charged at zero holding potential,
follows directly &om the results of the present work. For
a detailed comparison of our theory, we need experiments
in which the electron density should be fixed or at least
changes according to some known law. The results of
such experimental studies, especially, the temperature
dependence of the electron mobility, together with the
present calculations, can check not only the role of the
electron confinement in the Q1D channel, but also the
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representations available for the scattering mechanisms
and the possible inQuence of interelectron correlations on
the electron transport in this channel.

ACKNOWLEDGMENTS
This work wa's partially sponsored by the Fundagao de

Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)

and the Conselho Nacional de Desenvolvimento Cientifico
e Tecnologico (CNPq). One of us (S.S.S.) is grateful to
FAPESP for financial support and to the B. I. Verkin
Institute for Low Temperature Physics and Engineering,
Kharkov, for a leave of absence. G.Q.H. is supported by
CNPq, Brazil.

T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54,
437 (1982); M. J. Kelly and R. J. Nicholas, Rep. Prog. Phys.
48, 1699 (1985); G. Bastard, J. A. Brum, and R. Ferreira,
in Sohd State Physics, edited by H. Ehrenreich, F. Seitz,
and D. Turnbull (Academic Press, New York, 1991), Vol.
44, p. 229.
M. W. Cole, Rev. Mod. Phys. 46, 451 (1974); Yu. P.
Monarkha and V. B. Shikin, Fiz. Nizk. Temp. 8, 563 (1982)
[Sov. J. Low Temp. Phys. 8, 279 (1982)];F. I. B. Williams,
Surf. Sci. 11$,371 (1982); N. Studart and O. Hipolito, Rev.
Bras. Fis. 16, 194 (1986); P. Leiderer, J. Low Temp. Phys.
87, 247 (1992).
C. W. J. Beenakker and H. van Houten, in Solid State
Physics, edited by H. Ehrenreich and D. Turnbull (Aca-
demic, New York, 1991), Vol. 44, p. 1; G. Timp, R.
Behringer, S. Samp ere, J. E. Cunningham, and R. E.
Howard, in Nanostructure Physics and Fabrication, edited
by M. A. Reed and W. P. Kirk (Academic, San Diego, 1989),
p. 331.
A. S. Plaut, H. Lage, P. Grambow, D. Heitmann, K. von
Klitzing, and K. Ploog, Phys. Rev. Lett. B7, 1642 (1991);
T. Egeler, G. Abstreiter, G. Weimann, T. Demel, D. Heit-
mann, and W. Schlapp, ibid. 65, 1804 (1990); Y. Naga-
mune, Y. Arakawa, S. Tsukamoto, M. Nishioka, S. Sasaki,
and N. Miura, ibid. B9, 2963 (1992).
M. Tewordt, V. J. Law, M. J. Kelly, R. Newbury, M. Pep-
per, D. C. Peacock, J. E. F. Prost, D. A. Ritchie, and G.
A. C. Jones, J. Phys. C 2, 8969 (1990); S. Tarucha, Y. Hi-
rayama, T. Saku, and T. Kimura, Phys. Rev. B 41, 5459
(1990); P. E. F. Farinas, G. E. Marques, and N. Studart,
in Proceedings of the pf st International Conference on the
Physics of Semiconductors, edited by P. Jiang and H.-Z.
Zheng (World Scientific, Singapore, 1992), Vol. 1, p. 657.
B. Y.-K. Hu and S. Das Sarma, Phys. Rev. Lett. 68, 175G
(1992); L. Wendler and V. G. Grigoryan, Phys. Rev. B
49, 14531 (1994); I. Grodnensky, D. Heitmann, K. von.
Klitzing, K. Ploog, A. Rudenko, and A. Kamaev, ibid. 49,
10 778 (1994).
G. Weber, P. A. Schulz, and L. E. Oliveira, Phys. Rev. B
38, 2179 (1988); A. Ferreira da Silva, ibid. 41, 1684 (1990).

G. Q. Hai, F. M. Peeters, J. T. Devreese, and L. Wendler,
Phys. Rev. B 48, 12 016 (1993); V. B. Campos and S. Das
Sarma, ibid 49, .1867 (1992); G. Fishman, ibid. $6, 7448
(1987); B. K. Ridley, Rep. Prog. Phys. 54, 169 (1991).
Vl. L. Ginzburg and Yu. P. Monarkha, Fiz. Nizk. Temp. 4,
1236 (1978) [Sov. J. Low Temp. Phys. 4, 580 (1978)].
Yu. Z. Kovdrya, F. F. Mende, and V. A. Nikolaenko, Fiz.
Nizk. Texnp. 10, 1129 (1984) [Sov. J. Low Temp. Phys. 10,
589 (1984)].
A. V. Chaplik, Pis'ma Zh. Eks. Teor. Fiz. 31, 275 (1980)
[JETP Lett. $1, 252 (1980)].
Yu. V. Kovdrya and Yu. Monarkha, Fiz. Nizk. Temp. 12)
1011 (1986) [Sov. J. Low Temp. Phys. 2, 571 (1986)].
Yu. V. Kovdrya and V. A. Nikolaenko, Fiz. Nizk. Temp.
18, 1278 (1992) [Sov. J. Low Temp. Phys. 18, 894 (1992)].
O. I. Kirichek, Yu. P. Monarkha, Yu. Z. Kovdrya, and V.
N. Grigor'ev, Fiz. Nizk. Temp. 19, 458 (1993) [Sov. J. Low
Temp. Phys. 19, 323 (1993)].
V. A. Buntar', V. N. Grigoriev, O. I. Kirichek, Yu. Z.
Kovdrya, Yu. P. Monarkha, and S. S. Sokolov, J.Low Temp.
Phys. 79, 323 (1990).
V. B. Shikin and Yu. P. Monarkha, J. Low Temp. Phys. 16,
193 (1974).
M. C. Pereira, G. E. Marques, and N. Studart, Phys. Rev.
B 46, 1857 (1992); Yu. P. Monarkha, S. S. Sokolov, and V.
B. Shikin, Solid State Commun. 38, 611 (1980).
M. Saitoh, J. Phys. Soc. Jpn. 42, 201 (1977).
Yu. P. Monarkha, Fiz. Nizk. Temp. 2, 1232 (1976) [Sov. J.
Low Temp. Phys. 2, 600 (1976)].
B. N. Esel 'son, V. N. Grigor 'ev, V. G. Ivantsov, and E.
Ya. Rudavskii, Properties of Liquid and Solid Helium (Iz-
datel'stvo Standartov, Moscow, 1978).
G. Q. Hai, F. M. Peeters, J. T. Devreese, and N. Studart
(unpublished).
B. N. Esel'son, A. S. Rybalko, and S. S. Sokolov, Fiz. Nizk.
Temp. 6, 1120 (1980) [Sov. J. Low Temp. Phys. 6, 544
(1980)].
V. A. Buntar', Yu. Z. Kovdrya, V. N. Grigoriev, Yu. P.
Monarkha, and S. S. Sokolov, Fiz. Nizk. Temp. 13, 789
(1987) [Sov. J. Low Temp. Phys. 13, 451 (1987)].


