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Hall efFect in type-II superconductors
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The Hall conductivity for dirty superconductors is found for a large range of the depairing
factor I'. We estimate that in the range A & I' ( mT, the change of the distribution functions
connected with vortex motion does not have any effect in the Hall conductivity. The quasiclassical
approximation is adapted to the treatment of the Hall effect.

I. INTRODUCTION

In recent years a large number of theoretical and ex-
perimental papers have appeared that are devoted to the
study of the Hall efFect in superconductors. In the main
quasiclassical approximation in superconductors there
exists symmetry between particles and holes and the Hall
efFect is missing. There are two physical reasons leading
to the violation of this symmetry and to the appearance
of the Hall efFect. One is the same as in normal metal.
It is connected with the curvature of the electron trajec-
tory in the magnetic field. This phenomenon gives a main
contribution to the Hall efFect in superconductors with a
large value of the electron mean &ee path at low temper-
atures. Quantitatively, this phenomenon was studied in
Ref. 1. In the present paper we study the second reason
for the Hall efFect. Really the Cooper pair is charged. In
the BCS approximation the charge is connected with the
energy dependence of the density of states near the Fermi
surface. This energy dependence also violates charge-
hole symmetry. This phenomenon is essential for su-
perconductors with a small value of the electron mean
&ee path. Theoretical results have been obtained in the
approximation of the time-dependent Ginzburg-Landau
equation in Refs. 2 and 3. However, this model has a very
narrow application region. The spin-fIip relaxation time
I' ~ should be short enough I' )) T, (T, is the transition
temperature) .

The usual conductivity depends strongly on the con-
centration of paramagnetic impurities. Near T, the main
contribution to the conductivity is connected with the
change of the distribution function of normal excitations.
Below we shall prove that the Hall efFect is not so strong
and is sensitive to the concentration of paramagnetic im-
purities. In the limit I' )) T our results coincide in the
main in the A approximation (A is the effective con-
stant of the electron-electron interaction) with that of
Refs. 2 and 3. In the opposite limit, the Hall efFect is in-
dependent &om the distribution function and hence &om
the spin-fIip relaxation time.

II. I-V CHARACTERISTIC
OF SUPERCONDUCTORS

The I-V characteristic of superconductors in the vor-
tex state (Shubnikov phase) can be found as the linear
response to a weak alternating electromagnetic field.
Such an approach enables us to derive the expression
for the current in the superconductor, averaged over an
elementary cell. Technically our method simplifies sig-
nificantly the calculation of the current. It reduces the
problem to a straightforward determination of the linear
in &equency part of the equations of motion for the order
parameter L, vector potential A, and scalar potential y.
The dissipative and Hall components of the current difFer
not only in the absolute values, but have also quite dif-
ferent origin and structure. In fact, in a weak magnetic
field the Hall component of the current is smaller than
the dissipative part by the factor T,/e~, where e~ is the
Fermi energy.

To find the I-V characteristic of a superconductor in
the vortex state we shall use the Green's function method
in the framework of BCS theory. It can be used as equa-
tions in real time, as well as in imaginary time. The
latter is probably simpler. It will be used below.

The transition to the real time equations is straight-
forward. Equations for the Green's function in a super-
conductor are

|9 1 0 2——ieA~

+4 —ey+ p —Z G r, r', ~, ~' = b r —r' b 7 —~',

where A is the vector potential, y the scalar potential, p
the chemical potential, and

( 0

q
—b2 0 y' '

qO —lp'
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As usual, G is represented in the form

~f
Gg F~

The self-energy Z takes into account the interaction of
electrons with impurities (usual and paramagnetic) and
phonons. The explicit expression for Z is given in Ref. 5.

The charge density p, current density j, and order pa-
rameters Lq 2 expressed in terms of the Green's function
are

d p
p = —e 2evp —TZ Tr G

where we define the O~ —— +2ieA, b tanslation vector,

A=

(E)=

b,p + A~ exp( —iu)p~),(~)

a; + a,"exp( —i~p~),
Ap + Aj exp( ild—pr),
&po + yx exp( —imper),
—(up(B x b) exp( —i(ups).

The scalar potential y is not zero even in the static case.
Below we shall find its value yp. In the general case,
Eqs. (1), (4), (6) for the quantities, AI z, Aq, pq (the
first-order correction terms in wo) have the forms

j = — TE Tr w, pG,
e d p
m 27r 3

1 d p
~

~ ~Eg2+TZ
( )st 2

——0 (4)

where v = mpp/2vr is the density of states on the Fermi
level and A is a constant of electron-electron interaction.
Below we shall set as usual

(&(&)
~

&(i)
Ag

( 0 ) ( 0

0 ) (—div (H x b) )
( b. (9

b O+6*+'~ H b
&b ';;)

A,~ = v
/

A
/

.

The system of the equations (1), (4) should be taken
together with the two Maxwell equations for the vector
potential A and scalar potential p,

1 i O Oy .OA—curl curl A = j —— +i4' 4' O7. Or
1 O2

2
—xO+ 8vre v y = divA —eTZ~4' Or2 4' O~

d p
(2vr) s (6)

yg ——b. , Ai ——H xb,Opp

Or '

In homogeneous superconductors, the system of equa-
tions (1), (4), (6) possess translational symmetry. This
means that corrections to the quantities Lq 2, A, y in a
weak external field to zeroth order in the &equency ~p
are equal to

where the operator K is defined as

(b.B b,
~b O+L'

Hxb
& b ';; )

( y (i)

F()
2

—ev(G, —G2 )
(G(~) + G(~)) )

On the right-hand side we keep only terms proportional
to the frequency up.

The operator L is defined in Eqs. (4) for 6 and (6) for
A, y at up ——0. The operator L has two zero eigenvalues
corresponding to the eigenfunction (7) which are simple
shifts. This property of the operator L enables us to find
the I-V characteristics of a superconductor in the vortex
state,

(b. (9 b, )
Bvd(Bxb)= —((Bxdvd, ', Bxd d, B HBx ~ fC + *

Or Bxbkb;; )

B x div (H x b) — b —(H B)),
1 Opp ap, & a

4m Or c)r
~

Or
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where B~ = &, 62ieA, 0 is the conductivity tensor. The
last term in Equation (11) is always small and below
we shall omit it. Equation (11) is a general one and it
reduces the problem of the calculation of the conductivity
to the determination of the linear in ~o part of Eqs. (4)
for b, and (6) for A, p. We shall use Eq. (11) to calculate
the Hall conductivity in superconductors.

III. QUASICLASSICAL APPROXIMATION

In this section we shall obtain a quasiclassical approx-
imation adapted to the treatment of the Hall effect. For
this purpose we shall integrate the Green's function G
over energy ( counted f'rom the Fermi level,

(12)

The problem that we should take into account in the Hall
effect is that the density of states is not a constant near
the Fermi level. As a result, we obtain from Eqs. (1),
(12)

and the operator C is equal to

8 z 8
Ci i = —~ + —v ——2ieA7. + 6 —ey —Z.

|97 2 Br

Here v is the velocity at the Fermi level. In the approxi-
mation of the &ee electron gas, we have

(16)

Hence, to find the conductivity (including the Hall ef-
fect), we should find the Green's function g. An equa-
tion on the Green's function g with corrections of order
of T/ey', 6/ep can be obtained using the same method as
the equation of the quasiclassical Green s function with-
out correction terms. 5 ~

However, it is more convenient to derive equations for
the Green's function g, where g is defined by the equation

TZ ( = iv~TZ— " 1+ g,
d'p . dn„& C(.) &

2vr s 4vr
~

2p )
dsp - . dQ„~ C()~ „TZ rpG= i v7rTZ — "r p 1 +2z. s '

4vr ] p )
(is)

where

where the operators 17,V* are equal to

z 0
B( )

= —v . ——2ieA~
4p Br

z 0
'D~',

~
= ——v —+ 2ieA(7')7),

4p Or

1 1 |9V

2p vB( (14) and the operator 'V* acts &om the right to left. The
equation for the Green's function g is

kg Og

0~ t9v'

1+-
4p

2

2m

+i v —g+ i[H(r)g —gH(r')]+ —(17C+ C'D)g ——g(17'C*+ C'17')
r) 2

BH BH . B[v . A(r)] „. B[v . A(r')] „1BH Bgg+ g —ie v 7;g —ieg v
Or Or Br Or 2 Br |9pi

]&*(~)a—g&*(~')] — A(~)~ —+ a(~')~ ).= o, — .
2m Br Br

1 Bg OH

2 Bp~ Or

(i9)

A A

where the operators H, |' are equal to
gg= d7yg 7, 'Ty g 7y7 =b 7 —7 (22)

B(7) = —i(A(v) —ep(v) —K+e]v A(v)]~. ),
0 z 0C' =,r, ——v —+ 2ie[v . A(r')r, ]87 2 Br

Equation (19) can be rewritten for real time.
To do this, we should extend the Green's function g

and matrix r"„b, to the size (4x4) in the following way:
+4 —e(p —Z.

0 8
pi 9p

Be(p) B
Bp Be(p)

The transverse derivative B/Bp~ is defined as

(2o)

(2i)

Amb, =
~go
f-R

g M g=
g 0

o ]

gK)

o)
] 0 r)'

The Green's function g satisfies the normalization condi-
tion

and change ——+ z —.8 ~ 8
87. Bt

The self-energy part Z should be modified also. For
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example, the impurity part of Z; ~ is

~imp = inv
Op1 opp, I

1

i dOPl „ r 1+
2 4vr

C))&pp&-PP

2p)

c& o(r~~)-+v C gparz&
2p)

(24)

where r is the inverse spin-Hip relaxation time.

IV. CONDUCTIVITY OF SUPERCONDUCTORS
IN THE DIRTY LIMIT

where

g(r, 'r ) = go(r —'r') + e ' ' gl(7 —'r'), (26)

f n —iP')
go(~) = I;p.

1+ ey r
~

~
~

+I' ap (~~
ru

~

+a'}') '

In Eq. (19) we shall neglect all correction terms with
derivatives in r. These terms are small in the parameter
I
& I' /(r+ ~T)'.
In the linear in the electrical Geld approximation, the

Green's function g is equal to

Now we shall consider the conductivity in supercon-
ductors with small value of electron mean &ee path and
large enough concentration of paramagnetic impurities,
so that the condition

(25)

is fulfilled.
Under these restrictions, we can take into account only

corrections that arise in Eqs. (13), (19), (24), from the
energy dependence of density at states on the Fermi level.

gl((d (d+) =
I I, (d+ =(d+(do.gl fl ~

2 g2$
(28)

In the normal region in (d (sgn(d = sgn(di) we obtain

So, in the statical case, correction terms in Eq. (24) lead
only to the nonessential change of the Green's function P.
The value of the scalar potential y in equilibrium shall
be given below.

The Green's function g1 can be presented in the form

i(ni + n)6l eAy1 1

r(ni+n)+(di+(d I(Cli+Cl) +(di+(d
I

(d
I
+I

i(ni + n) E2 eA'(Pl 1

r(cli+n) +(di+cd r( ni+n) +(id+cd
I

cd
I
+I

1

q) +»fa (29)

Here L1 2 and p1 are linear in the electrical Geld correc-
tions to the order parameter and scalar potential; quan-
tity B1 is equal to

LI (di(ni + n) + (cdini —(dn)

4p cali + (d + I (ni + cl)
(3O)

We keep in Eq. (29) only essential corrections, leading
to the Hall conductivity.

The functions g12 in the normal region can be found
&om the normalization conditions and are equal to

For the Green's functions g12 in the anomalous region,
we have

0 242
g1 —g2

—— -X)
2 2 2 ~22+~ ~1

rl
(d + —

~ (gl + g2)
2p ( 2)

(zr + g*) = ar '((ra» —ra*») + (a" —~')r

gl = — (P+f2+ P*fl),
O.'+ + 0,'

(Pf2 + Pifl)
0,'+ + O.'

(31)

(d+—r + — (ra, ~*+aa»)),2p ( 2)

where the operator I1 is equal to

(33)

In the anomalous region in (d (sgn(d = —sgn(di) we ob-
tain &om the normalization condition

(34)

Zfl= (P+g2+ Pgl)0!+ —Q

(P+gl + P*g2).
0,'+ —CX

(32)

and 'V = vl&, y3 is a difFusion coeFicient.
Below we shall consider superconductors with a large

value of the Ginzburg-I andau parameter x. In the main
approximation in this parameter the contribution of the
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vector potential A~ to the tensor conductivity can be
replaced by the tensor conductivity o~ in the normal
metal. All other essential terms arise Rom Lq 2, yq. The
kernel K in the expression (ll) for the conductivity can
be presented in the form

Kqcl + Kcorr
) (35)

where Kq is the quasiclassical approximation for kernel
K and K' " is the result of the correction terms in Eq.
(13). From Eqs. (10), (29), (33) we obtain

iL d~ I 26+ 2, 2 2 L~ (AA2 —&'Ag) + L2 (4'Ag + b, b, 2)I'2+ 62 2 2

+2ieI z

ep, a* „(1 r l
,g"

j

—+
4(2vrT) 2

(2 27rT )
K» &, + K,', a, + K,'4 ~, = i~

4mT (2 27rT)

d I' 26
2 L, (AA2 —A Al) —

2 2) 2 L2 '(A'E& + b, A2)I'2+ 62 2 2

+2ieL

r l
K4~ b.g+K42 b2+ K44 pz ———iev 2

@" —+
4 27rT 2 i2 27rT)

1 de - ~, 2ie(r +e )-I ~ (AE2 —b.*Kg) + L~ 'yq
8T ch,

where the oPerator Lz given by Eq. (34) in which ~ is replaced by —ie, and the operator L2 is equal to

0I2 ———P (37)

The operator L in Eq. (9) is the second variation of the effective action S,~ by A, b, A, p. The statical part of the
effective action S;~& can be found with the help of Eqs. (4) and (6) and is given by the expression

where T~L is equal to

S'~ ——TGg —v ey— r, (1 r &-+
21rT $2 21rT) I

(38)

(T.l (1 rl (1 r l v, (1 rl-+ —0 -+
I

— 0' -+
( T ) (2 2vrT) (2 27rT ) 47rT j 2 2mT)

(40)

r l r
(»)

In the quasiclassical approximation in the equilibrium state, a scalar potential y is equal to zero. The correction term
in Eq. (13) leads to the appearance of a nonzero value of rp. Prom Eq. (38) we obtain

r
e(p = -+

4p A,~ 27rT (2 2' T )
So, in first approximation in b, /e~, the vortex carries a distributed charge.
Note that the following relation holds:

1 1
((B x eq) . (b . e2)) = —B x b((eq . e2)) + —b((B x eq) . e2),

2 2
(41)

where eq 2 are vectors having rotational symmetry as 8
~

b,
~

/Or Ior (4'0 b, —48+4') j
The expression (36) enables us to find the quasiclassical part &~,~ of the conductivity tensor. The matrix ele-

ments K, (i,j = 1, 2, 3) contribute to the dissipative part of the conductivity tensor. The Hall component of the
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conductivity arises only &om the terms K~4', K4q (i = 1, 2, 3).
Using Eqs. (11), (35), and (41) we obtain

~ qcl ~ pcl ~ pclo =oH +od )

where

(42)

and

gclB o.
d 4

T&' —, +,„T ((~+&*)(~-&))

+~ „. .. , ((I & I' -(I & I'))') )

--=-:- (-'. --: '((- ----'--:))
Bx Dt9+4 —4 0 4 L (44)

here (B x ) stands for the vector product.
The expression (43) for the conductivity (7&' coincides with the result of Ref. 4. In the region 4 « I' « T the

last term is the largest. This term arises &om the Green s function gi —g2 (odd distribution function) and is missing
in the approximation of the time-dependent Ginzburg-Landau (TDGL) equation. As a result, the expression (43)
coincides with the results in Refs. 8—10 only in the narrow range of large values of the depairing factor 1 )) AT .

V. HALL CONDUCTIVITY

To complete our calculations, we shall find the kernel K' ".From Eqs. (10), (13), (29), (32), (33) we obtain

r' -, . r~, , (1

~v 1+1g 4* d~ E'2 rE2, 1 I'K;;"K,+K;;"A, = —— b,2+ . . . , L,, '(AA, ) + @'~ —+22 4 2'IIT 2 27IT)

In expression (45) we keep only terms leading to the Hall conductivity. With help of Eq. (41) we obtain

(45)

corr ~+ 1 + ~efF

SpB4 A g

(~ p )
—

(B „ I I') (EB~E. E.B A)

)27rT (2 27rT) i
b i'

r' & a~~~'lB L, '(KB~A* —d '8 E) ) (B x . ).4T 6 —' I' +
~

(9

Finally, the expression for the conductivity tensor o can be presented in the form
A A ~ qcl ~ Qcl ~ corro =oN+od +oH +oH

(46)

(47)

where o~ is the tensor conductivity in the normal metal and o&q', o~q', and erg" are given by Eqs. (43), (44), and
(46).

For single vortex, the following relation holds:

KB+A' —E'8 b, = ——
~

K
~

e~ sgn(eB),
P

Bxe~=e~ B,
where p is the distance 6.om the vortex core and e~, e~ are unity vectors along gradp, grady.

In the weak magnetic field (R « II,2) we obtain &om Eqs. (44), (46), and (48)

(48)
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n vsgn(e),

1 dE+4T ~ch ~~

1x
&«

1 ) ibi2s') s

where $0 ——m/ i
e

i
is the fiux quantum. In the range

r )) m T expressions (44), (46), and (49) in the main in
1/A, ~ approximation coincide with results in Refs. 2 and
3, obtained with help of the time-dependent Ginzburg-
Landau equation. In the region I (( AT the last terms in
Eqs. (44) and (46) are small. These terms are connected
with the change of both distribution functions [even (gj +
g2) and odd (gi —g2) j. As a result, for the Hall component
of conductivity in the range I' && mT, we have the simple
expression

coxr qc& ]~ i + «

where the function f is a solution of the equation

1+ — x

with boundary conditions

t9 = 0.
Ox

((&~a)-1

(54)

(55)

According to Eq. (46) in this approximation the Hall
conductivity is equal to

(50)
In the weak magnetic field, it reduces to the expression

„qc& 7rvsgn(e) 1+ A,p

mvsgn(e) (2m.T)2

pB2$pA, rr 7((3)

x(1 —T/T, )f(B/H, 2)(B x ),

The order parameter value 4 without a magnetic Geld
is connected with the critical magnetic Geld H, 2 as

|'Bi,(
f H

= f' *0')
H., i
B )

I
~ (56)

2vrT (2 2mT) 4(2mT)2 (2 2mT)

r „, &1 r )
6mT 2 2'T (52)

The critical magnetic Geld H 2 in the round cell approx-
imation is

(57)

V'1 —TIT.f (~/()
/7((3)

7rz7

8(T. —T) ' (53)

In the weak magnetic field (B « H, 2), the last three
terms in Eq. (47) contain large parameters H, 2/B rela-
tive to the first one.

In superconductors with a large value of the Ginzburg-
Landau parameter rc, the order parameter 4 can easily
be found in the approximation of the round cell. Near
the transition temperature from Eq. (39) we obtain

where xp is the first zero of the equation

Jy(xp) = 0, xp —1.841 18. (58)

eHc217 = —(T, —T).4
(59)

Near H 2 we have

In Eq. (58), Ji (2:) is the Bessel function. The exact value
of H, 2 is equal to

-t B) ( B t 2
'

2
'

4 ( B
f

~

= 1 — Ji (xp) dxx J, (x) d2:zJi (2:) = 1.2143 1—
(Hc2) ( Hc2) 0 0 ( c2)

(60)
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0.5—

0.5

FIG. 1. The magnetic field dependence of the function f(z)
in Eq. (56).

And for small values of x

In Fig. 1 we plot the function f(x) in Eq. (56).

VI. CONCLUSION

We have found the Hall conductivity in dirty super-
conductors with a large enough depairing factor I )) 4
in the entire range of temperatures and magnetic fields.
For a small value of the magnetic field B &( H 2, the
Hall conductivity depends on the quantity 1jp that is
proportional to the derivative of the density of states
with respect to the energy. With increasing of the elec-
tron mean &ee path, the corrections to the quasiclassical
Green's function become essential and the nature of the
Hall conductivity will be changed.

In the range 4 & T ( AT, the Hall conductivity does
not depend on the distribution function.

In real superconductors, the pinning phenomenon is
very essential for the Hall conductivity, especially in the
region of weak magnetic fields B (& H~2.

1Vote added in proof. At low temperatures in the clean
limit the Ohmic and Hall conductivities were studied by
N. B. Kopkin (Pis'ma Zh. Eksp. Teor. Phys. 60, 123
(1994) [JETP Lett. 60, 130 (1994)]).
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