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We consider magnetic oscillations due to Landau quantization in the mixed state of type-II su-
perconductors. Our work is based on a previously developed formalism which allows the mean-field

gap equations of the Abrikosov state to be conveniently solved in a Landau-level representation.
We find that the quasiparticle band structure changes qualitatively when the pairing self-energy
becomes comparable to the Landau-level separation. For small pairing self-energies, Landau-level
mixing due to the superconducting order is weak and magnetic oscillations survive in the supercon-
ducting state although they are damped. We find that the width of the quasiparticle Landau-levels
in this regime varies approximately as Don„where Ao is proportional to the magnitude of the
order parameter and n„ is the Landau-level index at the Fermi energy. For larger pairing self-
energies, the lowest-energy quasiparticle bands occur in pairs which are nearly equally spaced from
each other and evolve with weakening magnetic field toward the bound states of an isolated vortex
core. These bands have a weak magnetic field dependence and magnetic oscillations vanish rapidly
in this regime. We discuss recent observations of the de Haas —van Alphen e8ect in the mixed state
of several type-II superconductors in light of our results.

I. INTRODUCTION

For normal state electrons the study of de Haas —van
Alphen (dHvA) oscillations, magnetic oscillations associ-
ated with Landau quantization in a magnetic field, has
proved to be one of the most revealing probes of low-

energy quasiparticle excitations. In the superconduct-
ing state, however, the dHvA effect has not been stud-
ied systematically and a great deal of confusion has sur-
rounded its interpretation when the effect has been ob-
served. An external magnetic field is completely screened
&om the bulk of a superconductor at suKciently weak
magnetic fields; this state of a superconductor is known
as the Meissner state. For type-II superconductors a
second superconducting state in which the external field
is only partially screened, the Abrikosov vortex lattice
state or mixed state, occurs in stronger external mag-
netic fields. It is in this state that magnetic oscillations
can occur. The first observation of magnetic oscillations
in the Abrikosov state occurred nearly 20 years ago and
interest has been renewed recently with their observa-
tion in such materials as NbSe2, V3Si, ' Nb3Sn, and
the high-temperature superconductors Y-Ba-Cu-0 (Refs.
8—10) and Ba-K-Bi-O. ~

Theoretically it was realized quite early that
the upper critical magnetic Geld H 2, above which the
Abrikosov state gives way to the normal state, shows
magnetic oscillations due to Landau quantization. How-

ever, much less progress has been made on the ques-
tion of what happens to dHvA oscillations for fields sub-
stantially below H 2, principally because of complica-
tions introduced by the broken translational symmetry
of the vortex lattice state. Several authors have ad-
dressed the limit where pairing occurs within a single
Landau-level resulting in important simplifications. "
This limit can pertain at low temperatures to fields just
above the semiclassical H 2 where the order parameter
is very small. [Plausible suggestions have been made
concerning the possibility of reentrant superconductivity
for H )) H 2(T = 0) but these still lack experimen-
tal verification and considerations of the vortex lattice
state in the reentrant regime have been largely didac-
tic.] The works of Maki and of Stephen, 24 whose anal-
yses are based on semiclassical approximations for the
electron Green's function in the mixed state, are more
relevant to the intermediate Geld situation. Their results
are based in part on different versions of an approxima-
tion which involves positional averaging over the vortex
lattice and was first introduced by Brandt et aL In this
approach the vortex lattice acts much like a random scat-
tering potential which contributes to the inverse lifetime
of quasiparticle states without shifting them away Rom
the Fermi level. When Landau quantization is accounted
for this scattering broadens the Landau-levels and there-
fore reduces the amplitude of the dHvA oscillations. An
interesting alternate approach was taken in a paper by
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Maniv et a/. , which studies magnetic oscillations in the
superconducting condensation energy.

In this paper we study magnetic oscillations in the
mixed state using a previously developed formalism
which allows the electronic structure of the Abrikosov
lattice state to be calculated conveniently in a Landau-
level basis. This approach treats the effects of Lan-
dau quantization without approximation within mean-
field theory. (A similar formalism was independently
derived by Rajagopal. ) Our conclusions are based in
part on numerical calculations for representative models
of weak-coupling superconductors and, in part, on ana-
lytic perturbative calculations. Our results differ qual-
itatively &om those obtained in earlier work. We find
that magnetic oscillations in the normal state free energy
and in the superconducting condensation energy have a
strong tendency to cancel, making studies of the con-
densation energy alone misleading. (The condensation
energy is defined as the difference between the free en-
ergies of normal and superconducting states. ) Close to
H 2, the off-diagonal self-energy of the mean-field equa-
tions is small, and we find in agreement with Maki and
Stephen that the quasiparticle bands consist of broad-
ened Landau-levels which are not substantially shifted
away &om the Fermi level. However, we find that the
width of the Landau-levels varies with the magnitude
(Ao) of the order parameter and the Landau-level in-

dex at the Fermi level (n~) as Dan~ ~ rather than as

Dpn„. This qualitative difference is important for the
interpretation of experiments which show magnetic os-
cillations in the mixed state and is a consequence of the
degeneracy of the Landau bands in the absence of su-
perconducting order. When the width of the Landau
quasiparticle bands becomes comparable to the Landau-
level separation we Gnd that there is a crossover in the
quasiparticle spectrum. The lowest-energy quasiparticle
bands evolve into tight-binding bands corresponding to
the bound states of isolated vortices and are insensitive
to magnetic Geld strength. The higher-energy quasipar-
ticle bands retain Landau-level character but are shifted
well away from the Fermi level. Magnetic oscillations are
negligible in this regime.

Our paper is organized as follows. In Sec. II we
briefly review our formalism for solving the nonlinear
gap equations for the Abrikosov state in a Landau-
level representation. Previous calculations using this for-
malism focused on the self-consistently calculated order
parameter and the tunneling spectra. Some practical
details of these calculations are discussed in Sec. III. In
Sec. IV we focus on the quasiparticle electronic structure.
The nonlinear gap equations are solved numerically for a
representative model of a weak-coupling superconductor.
dHvA oscillations are a consequence of the dependence of
the electronic structure on magnetic field, and specifically
result from Landau-levels crossing through the chemical
potential as a function of magnetic 6eld. In Sec. V we dis-
cuss in detail the consequences for magnetic oscillations
of our results for the quasiparticle spectrum in the mixed
state. Functional fits to the suppression of the magnetic
oscillations are derived and related to experimental data.

Section VI contains a discussion of the magnetic Geld de-
pendence of the energy &om a variational point of view
which aims to explain the importance of competition be-
tween pairing energy and kinetic energy in reducing the
amplitude of magnetic oscillations. Finally in Sec. VII
we briefly summarize our results.

II. NONLINEAR GAP EQUATIONS
IN THE ABRIKOSOV LATTICE STATE

The discussion in this section and the illustrative cal-
culations in subsequent sections are for the case of two-
dimensional superconductors in perpendicular magnetic
6elds. The restriction to two dimensions in this section
is simply a matter of notational simplicity; in the mod-
els we use, the quasiparticle states factorize into a planar
part which is explicitly exhibited below and a part associ-
ated with the degree of freedom along the field direction.
Along the field direction the pairing occurs between time-
reversed partners k and —k, as at zero magnetic Geld;
including the third direction necessitates merely the ad-
dition of a new index for the quasiparticle states which
must be summed over in constructing the self-consistent
off-diagonal self-energy. The strength of the magnetic os-
cillations is stronger in the two-dimensional case than it
would be if we chose a three-dimensional model; in subse-
quent sections, we have added comments at those points
where the translation to the three-dimensional case is not
obvious. The use of a two-dimensional model to illustrate
the points we wish to make substantially simplifies our
numerical calculations. The three-dimensional (3D) case
is straightforward to treat, but is more computationally
demanding due to (i) having to treat a larger number of
Landau parabolas as opposed to discrete Landau-levels
and (ii) having to work with a larger number of k points
in a 3D wave vector space as opposed to a 2D one.

The effect of a magnetic field on electronic orbitals in
quantum mechanics appears through the vector potential
(V x A = B). For a nonzero average magnetic field
A is L where L is the system size and, unless the
electronic states are localized, even a weak magnetic field
cannot be treated perturbatively. A quantum treatment
of the electronic structure of the Abrikosov lattice state
must be performed in a basis where the average magnetic
field (B0) is accounted for exactly; it is this requirement
which fundamentally changes the nature of the mean-
field equations. To describe the vortex lattice state it is
convenient to use a Landau gauge [A = (0, B0x, 0)j in
which the kinetic energy eigenstates are

t'x —X l
WNx(r) =

where Piv(x) = (2 1V!~nl) ~2e ~ Hiv(x) and H~ is
a Hermite polynomial of order N (I. = hc/eB). The non-
linear gap equations for nonuniform superconductors,
commonly known as the Bogoliubov —de Gennes (BdG)
equations, are obtained by making a generalized Hartree-
Fock factorization of the equation of motion for electron
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creation and annihilation operators. To exploit the trans-
lational symmetry of the vortex lattice state we first form
magnetic Bloch states &om the PN~.

C C ~ A $&+ta F
t

(2)

where the sum is over all integers, and for general a and
a„, one restricts k„ to an interval of length a /l2 and k
to an interval of length 27r/a . (Note that there is one
wave vector for each state in the Landau level. ) This
basis is convenient when solving the gap equations for a
vortex lattice with primitive lattice vectors (0, a&) and
(a, —a„/2) where a a„=vr/l . Solutions corresponding
to various vortex lattices can be found by choosing differ-
ent values for the vortex lattice aspect ratio R = 2a /a„
with R = 1 for a square lattice and R = ~3 for the trian-
gular lattice, which is the ground state when Ginzburg-
Landau theory applies. We see below that in this rep-
resentation only states with opposing Bloch wave vec-
tors are coupled by the off-diagonal self-energy, as in the
zero-Geld mean-Geld. equations. Unlike the zero-Geld case,
however, the basis orbitals are labeled by wave vector and
by a I andau-level index and the pairing self-energy is not
diagonal in the Landau-level index. The BdG secular ma-
trix for the case of singlet pairing is of dimension 2NI.
where NI, is the number of Landau levels involved in the
pairing:

((N k)uNk + ) FkNMVMk = 0,
M

(3)

( (N Ek)VNk + ) kMN Mk
M

(4)

Here u~Nk is the coefficient of PNk and vNk is the coef-
ficient of PN k in the real-space Bogoliubov amplitudes
u(r) and v(r) for the pth solution, and (N = Ru, (N +
1/2) —p is the kinetic energy of the Nth Landau level
measured &om the chemical potential. (w, = eB/mc is
the cyclotron frequency. ) FkNM is the k-dependent pair-
ing self-energy matrix in the Landau level representation
and must be determined self-consistently as we discuss
below.

In deriving these equations we have assumed that the
magnetic Hux density (B) in the superconductor is uni-
form. For a strong type-II superconductor, this approxi-
mation should be accurate except for external fields close
to the lower critical field. The above equations also as-
sume that we are dealing with an electron gas model
which is translationally invariant in the normal state; the
discussion could be modified to include band structure
effects but that complication is not discussed here. As
mentioned above, Eqs. (3) and (4) have been written in
a form appropriat;e to the two-dimensional case to avoid
unnecessarily cluttering the notation. The illustrative
calculations performed in subsequent sections are for a
two-dimensional electron gas model with attractive in-
teractions, since aspects associated with the band struc-
ture of a particular material are not important for the
issues we plan to address and since magnetic oscillation

phenomena are more pronounced in the two-dimensional
case.

We use a simple Bardeen-Cooper-Schrieffer (BCS)
model for the frequency dependence of the attractive in-
teraction giving rise to the pairing self-energy so that the
sums over Landau-levels are restricted to states whose ki-
netic energies lie within a cutoff energy (uD) of the chem-
ical potential. For a b-function attractive interaction the
off-diagonal self-energies are given by

FkNM ) gM+N j(k)D—
~

with

yq'(k) = ) e' e ' ~ yq(2kyl + 2ta ),
t

(6)

and

1/2
~j '(N + M —j)!N!M!)

2N+M )

x ) (8)( 1)N m-
(j —m)!(N + m —j)~(M —m)!m!

'

In these equations A is the BCS coupling constant
[Ahu, = V/(2m. E2) where V is the strength of the at-
tractive interaction]. The sum over j in Eq. (5) is over
the possible partitionings of the total quantized kinetic
energy of the pair, Ru (N + M + 1), into contributions
&om the pair center-of-mass motion, Ru, (j + 1/2}, and
the pair relative motion, Ku, (N + M —j + 1/2).

The derivat;ion of this form for the pairing self-energy
closely follows the derivation of the linearized gap
equations, which is greatly simplified by making unitary
transformations for two-particle states between the rep-
resentations in which each particle has a definite Landau-
quantized kinetic energy and the representation in which
definite Landau-quantized kinetic energies reside in the
center of mass and relative motion of the pairs. The
DNM, for which explicit expressions are given in Eq. (8),
are the matrix elements of the unitary transformation.
(D. M)2 is the probability that a pair of electrons in
Landau levels N and M will have center-of-mass kinetic
energy Ru, (j + 1/2). A~ in Eq. (5) is the amplitude
for electron pairing with center-of-mass kinetic energy
hcu, (j + 1/2) and is directly related to the Landau-level
expansion of the Ginzburg-Landau order parameter.
In our formalism, the self-consistent solution of the BdG
equations reduces to the self-consistent determination of
these parameters. In practice it is only necessary to de-
termine a small number of parameters. This is particu-
larly true near H 2 where Ginzburg-Landau theory tells
us that only Ao (the Abrikosov solution) is significantly
different &om zero and we will discuss the approximation
where only this single parameter is retained at length in
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Sec. VI. Even at weaker magnetic fields, it follows &om
symmetry considerations that for a triangular Abrikosov
lattice, L~ is different &om zero only if j is a multiple of
6 and this property helps to keep the number of parame-
ters which need to be determined self-consistently small.
The higher j components of L~ are essential, however,
in describing the reduction of the vortex core size com-
pared to the lattice constant of the vortex lattice as the
Geld is reduced. Lz is given in terms of the eigenval-
ues and eigenvectors of the Landau-representation BdG
equations by the following equation:

j = —) D~ ) L L +M+N ~(k)

x ) (1 —
f~&

—fi",&)u~i, vM»

E„" = E„"—g*Ru.o./4, (1O)

where ~ = +1 is the spin index and g* the effective g
factor (gm'/m).

The diagonal order parameter in a position represen-
tation is related to the L~ by

Once the BdG equations have been evaluated self-
consistently at a particular magnetic field, the free energy
can be calculated using

E=) (~ N~ +E~ —TS,

where the pairing self-energy is

Here N~ is the occupation number of the Ncr Landau
level,

(14)

and S is the entropy,

S = —k~ ) (1 —f& ) ln(1 —f& ) + fi, ln fi, (15).

where E& is the pth positive eigenvalue of the Landau-
representation BdG equations, and f& is the Fermi func-
tion evaluated at the appropriate quasiparticle energy. If
Zeeman coupling is included, the Fermi functions should
be evaluated at energies

III. MODEL CALCULATIONS

In this section we discuss some practical details of the
model calculations performed using the above formalism
and present some results for the magnetic Geld depen-
dence of T,2 and the zero-temperature order parameter.
These results serve as a characterization of the model for
which we will study magnetic oscillations.

We have found that it is necessary to take some care in
cutting off the attractive interaction of the model away
&om the Fermi energy. For many purposes it is adequate
to treat the cutoff in the BCS fashion, that is, to simply
set the attractive interaction to zero when the difference
between the normal state quasiparticle energy and the
chemical potential exceeds some value. This procedure
can lead to undesirable consequences. In our own work
on the linearized gap equation, we found that it leads to
unphysical features in H 2 associated with Landau lev-
els passing through the cutoff energy. In the work of
Markiewicz et al. , strong features were found in the
gap function of the same origin. In our preliminary work
on this problem, we found a more severe problem. In the
two-dimensional sharp cutoff model with fixed chemical
potential, we found that the superconducting condensa-
tion energy increases smoothly with increasing field as
the Landau-level degeneracy increases and then decreases
discontinuously as the number of Landau levels within
the pairing cutoff decreases by 1. This causes the typical
magnetization to be paramagnetic (since the critical tem-
perature increases with fields2) with sharp diamagnetic
spikes at particular fields. By going to a smooth cutoff,
though, we recover the continuous diamagnetic behavior
we expect to be caused by the reduction of superconduct-
ing condensation energy in a magnetic field. A pragmatic
solution is achieved by using a model where the pairing
interaction between Landau levels N and M is scaled by
gW~WM where

W = 1.55e

The sums are still restricted to energies within uD of
the chemical potential but the interactions at the "edge"
of the pairing window are sufficiently weak that they do
not give rise to significant anomalies. We have used this
procedure in all our calculations.

We note that because we are using full quantum wave-
functions for the Landau levels, we are currently lim-
ited to single-particle Landau indices of 60 or less. This
practical limit is reached because of numerical difficulties
originating in the rapid oscillations of the wavefunctions
for large Landau index. This problem could be circum-
vented by using semiclassical approximations when the
Landau-level indices are too large.

We have chosen to work in the grand-canonical ensem-
ble where the chemical potential rather than the par-
ticle number is held fixed. The difference between the
dependence of the magnetization on density and the de-
pendence of the magnetization on chemical potential has
been extensively discussed. by Shoenberg for the case
of the normal state.

For every model we have checked we find that when the
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external magnetic field is weaker than the semiclassical
upper critical field, the energy is minimized by a trian-
gular vortex lattice in agreement with Ginzburg-Landau
theory. (This is not the case for solutions of the mean-
field equations at stronger external fields which are in
the reentrant quantum regime. ' ) All the model calcu-
lations in subsequent sections of this paper are for trian-
gular Aux lattices and one can exploit the symmetries of
that situation. It is possible to show that for a triangular
vortex lattice the Bdc equations have the symmetry of a
triangular Brillouin zone with an origin at I'—:(4, ).
This allows us to limit our sums over wave vectors to k's
in an irreducible triangle of the zone with vertices at I',
M—:(4, 2 ) and K—:(4, s ). The area of this

irreducible triangle is 1/12 of the area of the full zone
and the labeling of the points at the vertices is the con-
ventional one for symmetry points in a triangular lattice.
For most of our calculations, we have used a k mesh
with a spacing which is 0.2 times the I'-M distance for
the wave vector sums, although we have done a number
of calculations with a mesh which is twice as 6ne. The
two meshes lead, respectively, to 21 and 66 k's in the
irreducible triangle.

Most of the self-consistent calculations in subsequent
sections used a coupling constant A = 0.75. This choice
places the semiclassical upper critical field at a low
enough Landau index (strong enough magnetic field) so
that we could access most of the semiclassical phase re-
gion with our code s restriction on the maximum Landau-
level index. A large ratio of the cutoff uD to the chemical
potential p of 2 was chosen so as to maximize the num-
ber of Landau levels involved in the pairing. For the sake
of definiteness we choose the g factor to be zero in our
model calculations. (Zeemaxi spin splitting does modu-
late dHvA oscillations in the normal state in a way which
is well understood and will have a similar effect in the
superconducting state. )

In Fig. 1, we show a plot of the critical temperature
T 2 versus 6eld for this model. The field is parametrized
in terms of n„= p/Ru, —1/2 which gives the Landau-
level index of the Fermi level. (Note that, in contrast
to our previous work, no magnetic oscillations are vis-
ible in this curve at larger values of n~; the oscillations
at large n~ found previously are an artifact of using a
sharp cutofF. ) At strong enough fields, the critical tem-
perature is driven to a low enough value that k~T 2 is
much smaller than ~ and the system crosses over to
the quantum regime where magnetic oscillations in T,2

appear. In this regime a signi6cant portion of the pairing
occurs within the Landau level at the Fermi level, even at
T 2. These quantum oscillations in T q are much less ro-
bust in three-dimensional models and do not appear until
k~T,2 ( Ru, /n~. Zeeman spin splitting and broadening
of Landau levels due to disorder also will suppress these
oscillations. The maxima in T 2 occur when the density
of states at the chemical potential is largest, i.e., when a
Landau level occurs at the chemical potential. Regions
where T 2 vanishes occur because we work at fixed chem-
ical potential; at fixed particle number, the chemical po-
tential is locked to a Landau level, and so cusps occur
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10 20 25 30 35 40

FIG. 1. T,2 and the spatial average of the off-diagonal
self-energy I" at ksT/y, = 10 in units of the chemical po-
tential p versus n~. These results are for the A = 0.75 model
with a smooth cutoff as discussed in the text. All results are
for this model unless otherwise noted.

instead of gaps. For the present model once n„) 12 no
quantum effects can be seen in the dependence of T 2 on
field.

Also shown in Fig. 1 is a plot of the root-mean-square
spatial average of the off-diagonal self-energy in a coor-
dinate representation (I" 0.44ARu, &o) for this xnodel
obtained by solving the nonlinear gap equation self-
consistently for the same model at k~T/p = 10 s. As we
approach the weak-field limit we expect that E(r) should
be constant over much of the area of the system and that
E should approach the zero-field BCS energy gap for this
model. We see in Fig. 1 that at weaker 6elds the ratio of
E to T 2 approaches a constant. The ratio of these quan-
tities varies &om 1.87 for n„= 20 to 1.77 for n„= 40,
compared to the zero-field BCS value of 1.76. Magnetic
oscillations occur in this curve since the temperature used
is low. Their suppression at weaker magnetic 6elds must
originate &om changes in the electronic structure associ-
ated with superconductivity. It is this suppression which
is our primary interest in the present paper.

In Fig. 2, we show the spatial dependence of the self-
consistent order parameter at k~T/p = 10 s along the
line connecting neighboring vortex cores. Results are
shown for various fields &om n„= 12 to n„= 39. At
small values of n„(i.e., near H 2) the order parameter
is close to the Abrikosov order parameter which is ob-
tained when only Ao g 0. At larger values of n~, the
vortex core size becomes small compared to the distance
between vortex cores and the magnitude of the order pa-
rameter becomes nearly constant outside the cores as ex-
pected. (Many b,~ need to be nonzero to obtain this
behavior. ) Interestingly, the dependence on r has oscil-
lations which, as we will see later, are related to discrete
quasibound states in the vortex cores.
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n„. At low n„, the decrease of the eigenvalues in field is
just a reHection of the decrease in cyclotron &equency
with decreasing field (i.e. , the levels behave like Landau
levels). These levels then cross over to field-independent
behavior at high n„with an energy scale characteristic of
vortex core bound. states. In fact, the low-energy quasi-
particle bands shown in Fig. 4 occur in pairs and the
energies of the lower-energy member of the three lowest
pair of bands at the I' point are approximately in a ratio
of 1:3:5. This is the ratio of energies expected. for the
lowest-energy quasiparticle states bound to an isolated
vortex core and in fact the lowest-energy eigenvalue is
close to the predicted value of b,2/p. We believe that
the low-energy bands seen in Fig. 4 correspond to quasi-
bound quasiparticles which can tunnel &om core to core,
with a weak-field dependence of the energies since the
cores have a size much smaller than a magnetic length
(see Fig. 2). There are two bands for each bound state
since each band has one state for each electron magnetic
fiux quantum through the system (4, = hc/e) while the
system has one vortex for each superconducting magnetic
fiux quantum (4sc = 4, /2); i.e, there are two vortices
for each single-particle orbital in the normal state Lan-
dau levels. There is also a connection of this doubling
behavior to the normal state where pairs of excitations
(particle, hole) exist, in that if one member of a pair
has weight in Landau-level n for the u component of
the wavefunction, the other has approximately the same
weight in level n —1 for the v component. The di8erence
is that at low n„ the weight is primarily in one Landau
level, whereas at high n~ the weight is distributed among
many Landau levels.

This vortex core interpretation of the low-energy bands
at n~ = 40 has been verified by further analyzing the
corresponding wavefunctions. Near an isolated vortex
core, the quasiparticle amplitudes can be expanded in
a set of basis wavefunctions with definite angular mo-
mentum. The lowest-energy bound quasiparticle state is
formed &om pairs with angular momentum 0 for the u
component and angular momentum —1 for the v compo-
nent; the next bound quasiparticle state is formed &om
pairs with angular momentum —1 for the u component
and —2 for the v component and so on. The order pa-
rameter is proportional to the product uv'. The contri-
bution of the mth bound state to the order parameter is
therefore proportional to r +~ exp(iP) at small r where
r and P are circular coordinates in the system centered
on the vortex core. The common angular d.ependence
is required to self-consistently maintain the unit vortic-
ity of the vortex. In Fig. 6, we plot the contributions
to the order parameter &om the lowest two quasiparticle
bands for n„= 40. We see that the contribution &om
the lowest pair of bands is proportional to r at small r
while that &om the second pair is proportional to r,
as expected &om the above discussion. Near the vortex
core the order parameter is dominated by the contribu-
tion &om the lowest-energy pair of quasiparticle bands;
far &om the vortex core the low-energy "bound-state"
bands contribute little to the order parameter. The non-
monotonic behavior of the order parameter as a function
of r seen in Fig. 2 is due to the "shell structure" of the
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FIG. 6. Contributions to the order parameter from the four
lowest-energy quasiparticle bands. The modulus of the order
parameter is plotted along the same line connecting neigh-
boring vortices as in Fig. 2. These results are for n~ = 40.
To aid clarity we plot the modulus of the contributions from
the first two bands and the negative of the modulus of the
contributions from the second two bands. We see that the
contributions from each member of a pair are essentially iden-
tical. The contribution of the first pair of quasiparticle bands
corresponds to what is expected for the lowest-energy bound
state in an isolated vortex core while the contribution from
the second pair of bands corresponds to what is expected from
the next bound state in an isolated vortex core.

quasibound states.
When n~ is close to an integer and 4 is small the Bdc

equations can be truncated to the Landau-level closest
to the Fermi level. The lowest-energy quasiparticle band.
dispersion in this quantum limit is given by

Since EgN~ generically vanishes at some value of k this
implies gapless behavior in the quantum limit in our two-
dimensional model when (~ = 0. For the hexagonal
lattice this approximation leads to a third-order zero in
the excitation spectrum at the I' point and a first-order
zero at the K point, as pointed out by Dukan et al.
We also find five other points along the three symme-
try lines of the zone where the gap goes to zero. For
three-dimensional models s (~ depends on k, and there
will always be a A,, for which (~ vanishes for each oc-
cupied Landau level in this approximation. As pointed
out recently by Dukan et al. , gapless behavior is not
ruined by the weak Landau-level mixing which is always
present and persists for a finite range of magnetic field
below H 2. In Fig. 7 we plot the lowest two quasiparti-
cle energies at 21 inequivalent k points as a function of
n~. Near the quantum limit, gapless excitations occur
for integer values of n~. At weaker fields gapless excita-
tions occur in our two-dimensional model at more widely
spaced and, in general, nonintegral values of n~ (Pre-.
sumably, for a three-dimensional model, there would still
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FIG. 7. Magnetic field dependence of quasiparticle ener-
gies at 21 inequivalent k points in the irreducible triangle
for the four lowest bands. The quasiparticle energies are in
units of iku and the field is parametrized by n„. In these
field-dependent units the energy of field-independent eigen-
values is proportional to n„. We see the emergence of weakly
field dependent quasibound states at low fields.

be a discrete set of A: values at which gapless excita-
tions occur in this regime. ) The eigenvalue spectrum in
the quantum-limit (i.e. , diagonal) approximation differs
significantly &om what the full theory gives and overem-
phasizes gapless behavior. (It is the terms off diagonal
in Landau-level index which are responsible for the de-
crease of T 2 with increasing Geld, and so one can never
ignore them in the semiclassical regime. ) Nevertheless,
true gapped behavior sets in only when the supercon-
ducting order is sufficiently strong to increase the ener-
gies of the quasibound states in the vortices above ~ .
We have been unable to divine any simple principles be-
hind the seemingly complex pattern of eigenvalues in the
crossover region between the quantum-limit regime and
the vortex-core bound-state regime. It appears that some
kind of nonmonotonic and possibly oscillatory behavior
occurs which does not originate &om Landau quantiza-
tion. This behavior is characterized by oscillations be-
tween wide and narrow bands, with the lowest-energy
state of the wide bands tending to alternate between the
I' and K points of the zone. This behavior is reminiscent
of a tight-binding eÃect, indicating that the source of this
"long-period" behavior is vortex-vortex interactions (i.e. ,
due to the spatial modulation of the order parameter).
At the I' point there is a pattern of oscillations which are
approximately periodic in n~ with a period roughly of 6
which reflect the fact that at this high-symmetry point in
the irreducible triangle only Landau levels with indices
difFering by 6 are mixed in the u-amplitude of the quasi-
particle state. The v amplitude behaves in the same way
with Landau-level indices which for one member of the
pair of bands is onset by 1 and the other member by 3
&om the u-amplitude Landau-level indices. The field de-
pendences at lower-symmetry k points are less simple in

FIG. 8. As in Fig. 7 but for the model with A=0.55.

this regime and there is a complicated pattern of avoided
level crossings. We have examined this regime for sev-
eral different models and have not succeeded in identify-
ing universal features in the electronic structure in the
crossover regime except as mentioned above. In Fig. 8
we show results for the Geld dependence of the quasipar-
ticle spectrum for the model with %=0.55. For this case,
one crosses over &om the quantum regime to the semi-
classical regime for n~ 21. No apparent long-period
structure is seen in the crossover regime. For this model
quasi bound states just begin to emerge as we reach our
code's limitations at n„40.

In Fig. 9 we show a plot of the Landau-level occupa-
tion numbers in the semiclassical regime at n„= 40. In
the zero-field BCS case, it is known that the momentum
distribution function at T=O is approximately that of a
Fermi function at T . The analogous statement applies

1
4 ~ WMWWL I

0.8
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0.4

0.2

20 25 30 35 40 45 50 55 60

FIG. 9. Landau-level occupations numbers in the mixed
state at k~T/p = 10 for n,„=40. The solid curve is the
Fermi distribution function evaluated at T = T 2 at the same
magnetic field.
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in the semiclassical mixed-state regime, as demonstrated
in Fig. 9. A least-squares fit of the Landau-level occu-
pation numbers to a Fermi function parametrized by a
temperature T gives an optimal T equal to T 2 to within
a few percent.

V. de HAAS —van ALPHEN OSCILLATIONS

To determine the magnetization M in the grand-
canonical ensemble we self-consistently solve the mean-
Geld equations at a set of Gelds spaced so that Ln„= 0.1
and evaluate the free energy using Eq. (12). A finite
difference approximation is used for the derivative with
respect to Geld which yields a two-dimensional magneti-
zation we deGne by

OE
MzD(B) =-

t9B

For the normal state the resulting magnetization accu-
rately reproduces the analytically known T = 0 result
in which M2D/(Np~) is periodic in n„with period 1
and varies between —1 and 1. The magnetization in
the normal state jumps by 2Np~ whenever the chemical
potential passes through one of the degenerate Landau-
levels. It is the bunching of the density of states into
Landau-levels which leads to the period 1 oscillations,
known as dHvA oscillations. We remark that in evaluat-
ing the magnetization we have ignored the screening of
the external magnetic Geld so that our approach is valid
only for strong type-II superconductors. For a three-
dimensional system composed of isolated layers, the bulk
magnetization is related to the two-dimensional magne-
tization defined above by M = M2D/Ad where A is the
area of the two-dimensional system and d is the separa-
tion between two-dimensional layers. Our approximation
is valid (using Gaussian units) as long as M ((B.

In Fig. 10 we show a plot of M2D(H) for the A = 0.75
model at a very low temperature. At small n„(str ong

field), there are dHvA oscillations with period 1 as in
the normal state. The dHvA oscillations are rapidly
damped as the superconducting order develops. Compar-
ing with Fig. 7 we see that strong dHvA oscillations are
present only in the quantum regime where the quasiparti-
cle bands retain a clear Landau-level structure. There is
some structure in the magnetization curve in the compli-
cated crossover regime discussed above but these features
are not dHvA oscillations and we suspect that they will
tend to be washed out in three-dimensional models. At
weaker fields (n„) 22) we cross over to the regime
where bound states are supported by the vortex core
and the Geld dependence of the magnetization becomes
relatively featureless. The negative sign of the magne-
tization in this region occurs because the condensation
energy associated with superconducting order decreases
with magnetic Geld. If the Geld dependence of these mag-
netization curves is Fourier transformed with respect to
n„oc 1/H, the peak at period 1 comes almost entirely
&om the quantum regime. At higher temperatures where
the magnetic oscillations are damped out, we find that
the magnetization is proportional to 1/H —1/H, 2 in con-
trast to Ginzburg-Landau theory where it is proportional
to H —H2.

In Fig. 11, we plot the contributions to M2D &om the
kinetic energy and the pairing contributions to the mag-
netization at zero temperature. We see that in all regimes
the two contributions to the magnetization oppose each
other. This should be expected since the superconduct-
ing state is always formed at a cost in kinetic energy in or-
der to take advantage of the attractive interparticle inter-
actions. This occurs in both quantum and semiclassical
limits. The quantum limit is particularly simple. Pairing
is strongest when n& is an integer, leading to a maximum
in both the increase of kinetic energy due to supercon-
ducting order and in the pairing self-energy. The total
&ee energy of the system is decreased by much less than
either component is shifted. The total &ee energy in the
normal state is at a maximum when n~ is an integer and
at a minimum when n„ is at a midpoint between integers;
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FIG. 10. Msn(H) for the A = 0.75 model vs n„. The
magnetization per particle is in units of

FIG. 11. Decomposition of Mso(H) into kinetic and pair-
ing energy contributions for the A = 0.75 model.
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at such values of n~ the &ee energy is identical to the &ee
energy in the absence of a magnetic Beld. The difference
between minimum and maximum &ee energies is reduced
by introducing superconducting order so that the ampli-
tude of the dHvA oscillations is reduced because of su-
perconductivity. At the same hand the amplitude of the
oscillations in the kinetic energy alone is increased. This
behavior reveals the importance of determining the su-
perconducting order self-consistently within each dHvA
oscillation period. Earlier work which neglected dHvA
oscillations in the superconducting order itself will not
be valid in general. Because of self-consistency, oscilla-
tions in the superconducting condensation energy also
tend to oppose oscillations in the normal state energy.
Well outside of the quantum regime this cancellation is
nearly complete. Therefore the interesting work of Maniv
et al. which focused on oscillations in the condensation
energy alone also has limited validity. We comment fur-
ther on self-consistency and the cancellation between nor-
mal state and condensation energy magnetic oscillations
in the following section.

In Fig. 12, we show M2D(H) for the model with
A = 0.55. Again, magnetic oscillations are damped in the
quantum regime and exhibit a complicated pattern in the
crossover regime which is associated with the appearance
and disappearance of gapless behavior as a function of
Geld. As stated previously we believe that these oscilla-
tions will wash out for three-dimensional models. There
is no simple relationship between the magnetizations in
the crossover regime for the A = 0.55 and A = 0.75 mod-
els. For the A = 0.55 model, the regime of quasibound
vortex states is just approached at the weakest magnetic
Belds we have considered.

Our results for these models cannot be compared di-
rectly with experiments on specific materials. However,
it is possible to make some general qualitative remarks
that we believe are important for the interpretation of
experiments. In the Lifshitz-Kosevich theory of dHvA
oscillations in the normal state the amplitude of the os-

I I I I I I I I I I I I I I I I I I I

0

cillations is reduced by a factor of

Rp ——exp( —7r/(u, ~p)

because of disorder broadening of Landau levels. This
specific result is based on the assumption of a magnetic-
Geld-independent Lorentzian line shape, with a full width
at half maximum of h/wp, for the density of states of the
disorder-broadened. Landau level. In the superconduct-
ing state (with no disorder) the density of states of a
broadened Landau level is not Lorentzian and, more im-
portantly, it is not independent of magnetic Beld. Within
each period of the dHvA oscillation the superconducting
order is strongest and the Landau level is broadest when
n„ is an integer. This Landau-level broadening reduces
the increase in &ee energy due to Landau quantization
and therefore reduces the amplitude of the dHvA oscilla-
tions. Following Springford and co-workers ' we there-
fore assume that the damping of dHvA oscillations due
to superconductivity in the mixed state is given approx-
imately by

Rs = exp( vr/w, —ws) (2o)

where 5/~s is some measure of the Landau-level width in
the mixed state of the n&th Landau level when ( „=0.
[In the case of three-dimensional models, dHvA oscilla-
tions come &om k, values where the Landau-level index
at the Fermi level is a local minimum or maximum (ex-
tremal orbits); the remarks below apply as well to the
three-dimensional case. ]

In the region near H 2 where dHvA oscillations are
strong we can assume that only Ap g 0 so that from
Eq. (17)

h~~ ' oc ALu. apn '/".

The factor n„which appears in Eq. (21) comes from
the large-quantum-number limit of the factor Dp""" in
the expression for the off-diagonal self-energy; (Dp" ")
is the probability for two electrons with Landau-level
index n„ to have center-of-mass kinetic energy her, /2
(Abrikosov solution) and its rate of decrease with n„
in the large-quantum-number limit can be understood
&om simple phase-space considerations. The actual dis-
persion relation within the quasiparticle Landau band is
complicated for large Landau indices and we estimate the
proportionality constant in Eq. (21) by numerically cal-
culating the standard deviation of quasiparticle energies
within the band. Results are shown in Fig. 13 &om which
we infer that
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FIG. 12. M2o(H) vs n„ for the A = 0.55 model.

As emphasized above Lp is itself a strongly oscillating
function in the quantum limit so that some caution must
be used in applying this relationship. An exception oc-
curs for dHvA oscillations coming &om a small piece of
Fermi surface in a system where the Beld dependence of
Lp is dominated by larger pieces of Fermi surface. In this
case it may be possible to use the dHvA oscillations &om
a small piece of Fermi surface as a probe to look at the
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FIG. 13. Quasiparticle Landau-level width (standard de-
viation for 66 ic points) at ( „=0 (has ) at integral n„
neglecting inter-Landau-level pairing for an input Ao ——1 (re-
sults including inter-Landau-level terms are very similar). In
this approximation, the band width is proportional to Ao.
The curve is a 6t to a power law of n„

Geld dependence of Lo as suggested recently by Harrison
et al. 7

We can use these results to estimate the typical range
of fields over which dHvA oscillations &om large pieces
of Fermi surface will be observable. As mentioned in
Sec. III the spatial average of the off-diagonal self-energy
E 0.44AA4J Lo retains its familiar BCS relationship to
the critical temperature for almost all fields. Assuming
this relationship, we obtain

6 ~ 0.6n„ / kggT, 2. (23)

Using a Ginzburg-Landau form for the Geld dependence
of T,2 (Ref. 29) this becomes

h~~ 0.6n„k~T, gl —H/H, 2

dHvA oscillations will be strongly damped when the right
hand side of Eq. (24) is larger than Ru, . Since the typi-
cal value of her, at H, 2 is (k~T, ) /p, this occurs for
(H, 2 —H)/H, 2 ) k~T, /p which is a number much less
than 1. [We have used n„p/(Ru, ) to obtain this esti-
mate. ] For our simple model k~T, /y, 0.1 so that this
simple estimate is consistent with the range of fields over
which we see dHvA oscillations persist. For more real-
istic models, k~T, /p is typically much smaller, at least
for the largest pieces of Fermi surface, and dHvA oscilla-
tions should be seen only close to H 2. We remark that
Eq. (24) implies that small pieces of the Fermi surface

-X/4are more damped than large ones due to the n„ fac-
tor. Finally, we note that magnetic oscillations of the gap
function are determined by the large pieces of the Fermi
surface, and so the gap function will oscillate many times
over the period of a small orbit. This could potentially
complicate the analysis of such orbits.

Our results differ qualitatively from those of Maki
and Stephen who find, in our notation, that 57&
(F~~) /(Ru, ) rather than (F~~(. In calculating the
Landau-level width these authors do not take account
of the Landau-level quantization of the density of final
states into which the quasiparticles can be scattered. The
Landau-level width can then be calculated treating the
scattering of quasiparticles by the vortex lattice using
what is essentially a golden rule. In this language we find
that the density of states in the quasiparticle Landau-
level is enhanced over the zero-field value by a factor
of u wp. The density of final states in the golden rule
calculation is inversely proportional to h~& so that we

find hw& ~F~~~2/h7& Whe.n the Landau level is al-
ready broad because of disorder scattering (u ro (( 1),
which we have neglected here, the results of Maki2 and
Stephen are more appropriate than ours. However, in
this case dHvA oscillations will be difficult to observe
even in the normal state and we believe that our result
will typically be more useful in analyzing experimental
results. This discussion underscores the serious approxi-
mations involved in assuming that disorder and supercon-
ducting order are responsible for additive contributions
to the Landau-level width and correspondingly to inde-
pendent attenuation factors in the expression for dHvA
oscillation amplitudes. We have focused here on the situ-
ation where the dominant attenuation factor is that due
to the presence of superconducting order since it is in
this situation that dHvA oscillations have the greatest
potential as a probe of the mixed state.

As a further test of these ideas, we have analyzed the
Fourier transform of our calculations in more detail. The
problem with analyzing the magnetization presented in
Figs. 10 and 12 is that single-period oscillations exist
only over a small field range due to the rapid growth
of the order parameter below H, 2 and the limited num-
ber of Landau levels we can treat in a fully quantum
approach. To circumvent this, we evaluated M2D(H) at
fixed Ao so as to access a large range of n„with the same
input order parameter; this could be physically sensible
if the superconducting order were determined primarily
by pieces of Fermi surface much larger than the one be-
ing studied, which is the case for experiments done to
date. These calculations were performed using the A = 1
model so that the average off-diagonal self-energy in Lu,
units is E = 0.436Lp as discussed previously. Using the
BCS ratio of E to k~T 2 of 1.76, this would mean that
Lp 4 should give an amplitude suppression similar to
that in the normal state at k~T = Ru, . We find that as
Lo is increased &om 0 to 4, peaks in the Fourier trans-
form of M(H) at all dHvA harmonics are suppressed,
and for values larger than 4, no detectable peaks occur.
(With our convention the fundamental harmonic of the
normal state oscillations occurs in the sine transform; in
our calculations, no signficant effects occur in the cosine
transform except for the constant diamagnetic response. )
In Fig. 14, we plot the peak height of the fundamental
harmonic versus Lo and compare it with the result ob-
tained neglecting Landau-level mixing and with the nor-
mal state oscillations at the estimated T 2 0.248~ Lo.
We see that the suppression of the amplitude of the oscil-
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FIG. 14. Plot of the fundamental harmonic of the sine
Fourier transform of MqD(H) over the interval from n„= 20
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h~~ 2n„~ k~T 2. (25)
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FIG. 15. Mqn(H) for an input Ao = 1 (solid line in the
calculations of Fi . 14.ig. . The dashed lines show results obtained
when Landau-level mixing is neglected.
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FIG. 16. Power spectral density for an input Ap = 1
(dashed line) and b,s ——4 (solid line) versus n, , the harmonic
index.

of the data, with the diagonal approximation significantly
underestimating the damping and a thermal suppression
factor of T 2 strongly overestimating the damping.

Recently, several groups have reported very inter-
esting dHvA results on the cuprate superconductor
Y-Ba-Cu-O. Unfortunately, a detailed extraction of
the field dependence of the dHvA amplitude near H 2 has
not been possible in this case because of the large value
of H 2. Most of the experimental data of these groups
were taken well below H 2. We note that the power spec-
tral densities extracted &om these experiments have at
least a qualitative similarity to the Lo ——4 power spec-
tra shown in Fig. 16. Although this observation could
be misleading, it does suggest that the difBculties in ex-
tracting Fermi surface calipers &om the power spectra
which were discussed in these papers might be due to
the appearance discussed above of features in the power
spectra at fields well below H 2 which are unrelated to
the Fermi surface.

VI. VARIATIONAL APPROACH
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FIG. 17. 7.
& in terahertz units versus Geld in tesla ex-

tracted from the dHvA data of Ref. 7 for the 581 T orbit
of NbsSn (solid circles) compared to results of the diagonal
approximation of Eq. (23) (+), including inter-Landau-level
efFects, Eq. (25) (x), and to a therinal damping factor equal
to T,s (open circles). Results for other orbits are similar. H, s
is 19.7 T.

surface. As in earlier work, these orbits are fairly small
compared to the Brillouin zone dimensions. In Fig. 17,
we compare the experimental scattering rate for the one
orbit with the most data to three theoretical predictions
(results for the other two orbits are similar). The first is
the diagonal approximation of Eq. (23), the second the
nondiagonal approximation of Eq. (25), and the third is
extracted by equating a thermal suppression factor with
a temperature equal to T 2 to Eq. (20). T,2 was deter-
mined using the standard method of Werthamer et al.
As can be seen, Eq. (25) gives a very good representation

In this section we discuss superconductivity in the
mixed state &om a variational point of view. In our for-
malism the ofF-diagonal self-energy [Eq. (5)j in the BdG
equations is specified by a discrete set of parameters A~.
As we have mentioned previously, close to H 2 only Lo
is significantly different &om zero and the oK-diagonal
self-energy can then be characterized by a single pararn-
eter. Given the ofF-diagonal self-energy, a BCS-type vari-
ational state can be constructed &om the eigenvectors of
the BdG equations. We can therefore think of the L~ as
a set of parameters which specify a trial wave function.
The order parameter of this trial wave function is speci-
fied by a (in general) difFerent set of parameters which are
evaluated &om the solution of the BdG equations using
Eq. (9); in the following we refer to the two sets of pa-
rameters as L'" and 4 " . The expectation value of the
Hamiltonian in this wave function is given by Eq. (12)
with the pairing energy evaluated from Eq. (13) using

It is clear &om the variational derivation of the
BdG equations that the &ee energy of the model has ex-
trema at the L~ which are self-consistent solutions of the
BdG equations.

We will discuss in detail the approximation where we
consistently assume that only b, o g 0 so that the super-
conducting state is characterized by a single parameter as
in the zero-field situation. We note that the ofF-diagonal
self-energy, and therefore the variational state, depend
only on the combination ADO" = Lo". In Fig. 18 we plot
the grand potential at k~T/p = 10 4 (0 = E —pN) as
a function of the variational parameter Lo" at n~ = 9.5
and n~ = 10 for A = 0.75, A = 1.00, and A = 1.25. In the
normal state, the grand potential reaches its minimum
when the chemical potential is at the midpoint between
Landau levels, i.e., when n~ is half an odd integer. At
these chemical potential values the normal state grand
potential equals its zero-field value 00. The grand po-
tential has a local maximum when n~ is an integer; at
integral values of n& the relative increase in the grand
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FIG. 18. Dependence of the grand potential on the vari-
ational parameter Ap" for three different values of A with
k~T/p = 10 . The dashed curves are for n„= 10 and
the solid curves are for n~ = 9.5.

FIG. 19. Equilibrium order parameter as a function of A.

The solid line is for n„= 30 and knT/p = 10; the dashed
line is for n„= 40 and k~T/p = 10; the long-dashed line
is for n„= 40 and k~T/p = 10

potential compared to its zero-field value is 1/(2n„+ 1)
In Fig. 18 we see that for A = 0.75 the free energy min-
imum occurs at L&" ——0 for n„= 9.5 and at Lp 1 8
for n„= 10. Integral values of n„are more favorable for
superconductivity because of the high density of states
at the Fermi level. The small condensation energy at
n& ——10.0 reduces the grand potential di8'erence between
the two fields and therefore reduces the amplitude of the
dHvA oscillations. This is an alternate point of view
on the damping of dHvA oscillations in the quantum
regime. For larger values of A the superconducting con-
densation energy is either comparable to or larger than
the amplitude of the magnetic oscillations in the normal
state grand potential. For A = 1.25 the minimum grand
potential occurs in the vortex-core bound-state regime
where magnetic oscillations are essentially absent. In this
regime the grand potential is lower at larger n„(weaker
field) as expected because of the diainagnetism of the
mixed state, but the magnetic field dependence is not
periodic in n„.

Using this approach we can study the dependence of
the equilibrium order parameter on the model parameter
A. Prom the self-consistency condition we see that the
value of A at which the self-consistent order parameter
value is A " is

-0.06

-0.07

0
C7

-0.08—
-40

this model at arbitrarily small A. For k~T/p = 10
the inequality k~T (( Lu, is satisfied and the quantum
regime of strong magnetic field superconductivity is seen
in the persistence of superconducting order to very small
A values. At half odd integral values of n„ the order pa-
rameter curve would be shifted toward larger values of A

rather than smaller values of A in the quantum regime.
In Fig. 20 we compare the dependence of the supercon-

ducting condensation energy E on the order parameter
with expectations based on Ginzburg-Landau theory by
plotting I" /(b, o" ) against (b,o"t) . (We define I', in
the grand-canonical ensemble as the difference between
the normal state grand potential and the superconduct-

~in
A=

~out [~in]

In Fig. 19 we plot the order parameter as a function of A

for our model at np = 40 and np = 30 at k~T/p = 10
For n„= 40 results are also shown for k~T/p = 10
We note that the order parameter grows like (A —A, ) /

for A & A where A is the coupling strength required
for superconductivity to occur. This is the expected re-
sult within mean-field theory. A decreases with decreas-
ing magnetic field and is expected to approach zero at
zero Geld since in that limit superconductivity occurs in
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FIG. 20. Superconducting condensation energy as a func-
tion of the order parameter of the variational wave function,

The solid line is for n„= 30 and k~T/p = 10; the
dashed line is for n„= 40 and kn T/p = 10;the long-dashed
line is for n„= 40 and k~T/p = 10
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ing state grand potential. ) These results are for A = 1;
with our simple model results at other values of A differ
only by a constant vertical shift of the curves. Plots are
shown for k~T/y, = 10 2 at n„= 40 and n„= 30 and for
Ic~T/p = 10 at n~ = 40 as in Fig. 19. In Ginzburg-
Landau theory these plots should give straight lines
whose y intercepts are proportional to the coefBcient of
the quadratic term in the Ginzburg-Landau energy func-
tional for the lowest Landau level of the Cooper pairs
and whose slopes are proportional to the coefFicient of
the quartic term in the Ginzburg-Landau energy func-
tional. The intercept is expected to increase with in-
creasing magnetic field and with increasing temperature
in agreement with our calculations. We see evidence in
Fig. 20 for some temperature and magnetic field depen-
dence in the coefBcient of the quartic term which is ex-
pected far away &om the zero-Geld critical temperature
but is normally neglected in Ginzburg-Landau theory.
A large departure &om Ginzburg-Landau theory is seen
at small order parameters for the low-temperature case.
Again this deviation appears only in the quantum regime
where pairing is dominantly within an individual Landau
level. At half odd integral values of n„ the magnitude of
the condensation energy would be decreased rather than
increased upon entering the quantum regime.

VII. SUMMARY

In this paper, we have presented an exact mean-field
treatment of the Hux lattice state and discussed in detail
the resulting quasiparticle electronic structure and mag-
netization in the 2D limit. We have found that as the
Geld is lowered, the Landau levels nearest the chemical
potential cross over to vortex core bound states. More-
over, the field dependence of the quasiparticle electronic

structure shows rich behavior, due to the strong field
dependence of the Landau levels, order parameter, and
vortex-vortex interactions, and their interplay with one
another. We also find that as the field is lowered be-
low H 2, the single-period magnetic oscillations become
rapidly damped due to broadening of the Landau lev-
els, and essentially disappear when the average super-
conducting gap becomes of order of the cyclotron energy.
This is consistent with observations of the dHvA effect
in the mixed state. For lower Gelds, gaplessness can still
occur, but the uniform periodicity of the gaplessness (as
occurs near H 2) is destroyed by the various competing
effects mentioned above. For even lower fields, the vortex
core regime is reached and gaplessness no longer occurs,
but there is still structure in the magnetization driven by
the spatial modulation of the order parameter. We would
like to conclude by saying that the rich behavior we pre-
dict for the field-dependent quasiparticle electronic struc-
ture has important implications not only for the dHvA
effect, but for all experiments which measure low-energy
excitations in the vortex lattice state.
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