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A study of the magnetoinductance L (B) of a planar superconducting fractal lattice, the Sierpinski
gasket (SG), exposed to a perpendicular magnetic field B is reported. Being inversely proportional to the
superfluid density in the gasket, L (B) provides a tool to appreciate how frustration effects created by B
and characterized by a parameter f < B affect phase coherence in a superconductor sharing essential
geometrical elements with a truly percolating system near threshold. Both Josephson junction arrays
(JJA) and superconducting wire networks (SWN) differing in their current-phase relations are considered
and described in terms of interacting phase variables associated with the sites of the gasket. Relying on a
mean-field approach, two central issues are addressed: the fine structure of L (f) reflecting flux-
quantization phenomena in loops with a hierarchical distribution of sizes and the low-field (f —0) scal-
ing behavior of L (f) resulting from the self-similar geometry of the gasket. It is shown that for a partic-
lar set of f values consistent with the requirement of fluxoid quantization in the central loop of a gasket
generated by repeated juxtapositions of gaskets of lower order (f =P /2.4", where N is the gasket order
and P an integer) the problem of computing L (f) reduces to a calculation on a finite gasket and can be
solved exactly once its ground-state phase configuration is known. Considerable simplification is
achieved by making use of the triangle-star transformation of electric networks. The amplitude of the
fine structure is found to depend crucially on the degree of anharmonicity of the phase interaction func-
tion. It vanishes (thereby implying that L is independent of f) in weakly coupled SWN with a strictly
harmonic interaction and reaches its maximum strength in JJA with a cosinusoidal interaction.
Using a perturbative decimation procedure which takes advantage of the self-similar structure of the
SG, the frustration-induced inductance correction 8L (f) is predicted to scale as f* with
v=In(125/33)/In4~0.96 in the asymptotic limit (f—0). This exact result as well as other theoretical
predictions emerging from the model are found to agree with high-resolution measurements of L ( f) per-
formed on triangular arrays of periodically repeated gaskets of proximity-effect coupled Pb/Cu/Pb

1 MARCH 1995-1

Josephson junctions.

I. INTRODUCTION

The concept of fractal structure provides a very useful
geometrical tool to describe some of the features of ran-
dom systems.1 For instance, percolating materials exhib-
it, near the percolation threshold, a natural self-similar
structure with geometrical inhomogeneities occurring
over a broad range of length scales. They can therefore
be described by a family of scale-invariant lattices, such
as the Sierpinski gasket originally proposed by Gefen
et al.? to mimic the topological properties of the per-
colating cluster’s backbone.

With regard to superconductivity, fractal concepts
have proven to be instructive in getting some insight into
the physics of granular superconductors near percola-
tion.>~® These materials, usually conceived as arrays of
randomly distributed superconducting grains weakly cou-
pled by the Josephson effect,’” exhibit intriguing magnetic
properties arising from the combined effect of disorder
and frustration.! Unfortunately, in most cases the
structural aspects of randomness in real superconductors
are poorly known making a detailed comparison of
theory and experiment almost impossible. With the ad-
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vent of modern microfabrication techniques, however, it
has become possible to investigate model systems, such as
Josephson junction arrays (JJA) and superconducting
wire networks (SWN), where both the nature and the
amount of disorder can be accurately controlled and the
level of frustration continuously tuned via an external
magnetic field B.

Within the vast family of systems with fractal features,
the Sierpinski gasket (SG), because of its simple hierarch-
ical structure deprived of the complexity resulting from
randomness and its dilational symmetry, appears to be an
excellent candidate to explore novel behavior emerging
from fundamental ideas in statistical mechanics and
condensed-matter physics. Early work on SG wire net-
works has focused on their mean-field superconducting-
to-normal phase boundary T,.(B) (Refs. 9 and 10) which
was found to agree with calculations based on the
Ginzburg-Landau theory.!®!!

More recently, it has been shown!?!3 that the proper-
ties of vortices in fractals are fundamentally different
from those of vortices in Euclidean systems. It turns out,
in fact, that the energy required to create a vortex in a
(triangular) loop of a given species & (4 is the hierarchical
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index labeling a family of identical loops) scales with the
size r, of the loop as 7, ¢ with ¢ =In($)/In2, in striking
contrast with the logarithmic divergence of the vortex
nucleation energy in a genuine two-dimensional (2D) sys-
tem. Impedance measurements!'> probing the dynamics
of vortices in weakly frustrated SG networks over a range
of length scales covering several levels of hierarchy in the
gaskets were found to be consistent with the unusual scal-
ing of the vortex energy in fractal lattices predicted by
theory. This observation was confirmed in further work'*
where the dynamic response of an unfrustrated (B =0)
SG in the critical region close to the transition was inter-
preted in terms of thermally nucleated vortices moving
like Brownian particles in the hierarchical potential-
energy landscape provided by the gasket.

In this paper we investigate, both theoretically and ex-
perimentally, the magnetoinductance L(B) of a super-
conducting SG exposed to a weak perpendicular field B.
The interest of this quantity resides in the observation
that, being inversely proportional to the (size-dependent)
superfluid density in the gasket, it provides a tool to ap-
preciate how the degree of superconducting phase coher-
ence in the system changes with B. L (B) is therefore of
considerable importance to understand the magnetic
properties of a superconductor sharing essential geome-
trical elements with a truly percolating system. From
previous experimental work!? it is known that L(B) ex-
hibits a complex fine structure reflecting flux quantization
phenomena in loops with a hierarchical distribution of
sizes. Even more significant is the observation that, at
very low fields, L (B) exhibits scaling properties intimate-
ly related to the fractal structure of the gasket. Asymp-
totic scaling (B —0) and fine structure of L(B) are the
central issues we shall address in this paper. For simpli-
city, it will be assumed that screening currents are weak,
so that B penetrates the gasket homogeneously. In this
regime the system is uniformly frustrated, the degree of
frustration being measured by a parameter f proportional
to B.

The model we adopt throughout this paper relies on
the usual description of JJA and SWN in terms of in-
teracting phase variables associated with the sites of the
gasket.”> An exhaustive calculation of L(f) should in-
corporate renormalization effects due to thermal fluctua-
tions which, on account of the reduced (nontrivial)
dimensionality of the SG, are expected to have a pro-
found effect on phase coherence. While vortex fluctua-
tions were studied in detail in connection with the critical
behavior of the unfrustrated gasket (f=0), where they
were found to suppress the Berezinskii-Kosterlitz-
Thouless (BKT) transition,'? the inclusion of fluctuation-
induced renormalization phenomena at nonvanishing ar-
bitrary frustrations appears to be a prohibitive task and
will be ignored in this paper. Within this mean-field ap-
proach, the magnetoinductance merely depends on the
structure of the ground state of the system (more precise-
ly, on the ground-state distribution of the gauge-invariant
phase differences across the links of the gasket). In this
connection, it turns out that the requirement of fluxoid
quantization in the central loop of a gasket resulting from
the juxtaposition of three gaskets of lower order selects a
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particular set of frustrations for which the ground state
of an infinite gasket can be constructed by replicating
that of a finite gasket. Hence, for these f values the prob-
lem of calculating L(f) reduces to a calculation on a
finite gasket and can be solved exactly once its ground
state is known. For computational purposes, it is useful
to rely on an algorithm, the triangle-star transforma-
tions,'® well known in the theory of electric networks.

Although particularly efficient for numerical calcula-
tions, this “direct method” does not provide any insight
into the characteristic low-field scaling properties of the
magnetoinductance resulting from the fractal geometry
of the gasket. To study this interesting asymptotic limit
(f—0), we take advantage of the self-similar structure of
the system to develop a perturbative decimation method
which reduces the problem of calculating the inductance
corrections SL(f) at low frustrations for a given gasket
to an identical problem at higher frustrations for a gasket
of lower order whose ground state can be easily deter-
mined. A major exact result emerging from this treat-
ment is that in the asymptotic limit SL(f) is predicted to
scale with frustration as f* with v=In(1Z)/In4~0.96.
The fraction 2% in the numerator of the exponent v
reflects the scaling of 8L at each decimation step and is
shown to arise from the first nonlinear (cubic) term in the
current-phase relation of the individual junctions of the
gasket (the argument of the logarithm in the denominator
expresses the trivial renormalization of f resulting from
the quadruplication of the cell areas at each decimation
step).

To test the theoretical predictions, we have performed
high-resolution magnetoinductance measurements on a
periodic (triangular) array of fourth-order gaskets con-
sisting of proximity-effect coupled Josephson junctions.
At low temperatures, the asymptotic scaling of the data
with frustration as well as the amplitude and the shape of
the fine structure follow very closely the behavior pre-
dicted by theory. At higher temperatures, thermal fluc-
tuations strongly enhance the fine structure, but have al-
most no influence on the mean-field scaling properties of
L(f) at low frustrations.

The paper is organized as follows. In Sec. II, we show
that JJA and SWN behave as networks of inductances
whose values are inversely proportional to the first
derivative of the current-phase relation on the corre-
sponding bond. In Sec. III, we describe the ‘“direct
method” to compute L(f) using the triangle-star trans-
formation. In Sec. IV, we introduce the concept of de-
cimation and apply it to find the rules governing the scal-
ing of the current-phase relation. In Sec. V, the decima-
tion procedure is generalized to the case of a frustrated
gasket and then used in a perturbative approach to find
the asymptotic behavior of the inductance correction
S8L(f). Magnetoinductance data are presented and dis-
cussed in Sec. VI.

II. INDUCTANCE OF NETWORKS AND ARRAYS

Quite generally, the inductance L of a conductor can
be defined as a measure of the energy E required to drive
a current / into the system:
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This definition is still valid for nonlinear systems provid-
ed one considers only small currents. For a network of
inductive elements {L;}, Eq. (1) can be generalized to

E= 2 I, )

where the index j labels the nodes of the network and the
sum runs over its links {jj’}. Current conservation at
each node j requires

I

To calculate the total inductance of a network, one
needs to know how the currents {I;;}, are distributed in
the system for a given value of the total current I. This
problem is completely equivalent to that of finding the
current distribution in a resistor network. It can be
solved by minimizing, for a given I, the total energy of
the system (in a resistor network the corresponding quan-
tity is the total enmergy loss) with the requirement of
current conservation at each node. Thus, the calculation
of the total inductance of an inductor network is entirely
analogous to that of the total resistance of a resistor net-
work.> For a SG of order N (Fig. 1) consisting of identi-
cal resistances R it has been shown >3 that the resistance
R between the vertices of the gasket is given by
N 2R

= 4)

E

2R /3 being the resistance of the zeroth-ordr gasket (sim-
ple triangle). Therefore, the inductance of a SG formed
by identical inductances L is given by the same equation
with R replaced by L.

Let us now consider a superconducting network (JJA
or SWN) with arbitrary current-phase relation on each
bond exposed to an applied perpendicular magnetic field
B. Since at the low temperature of interest in our mean-
field approach only the phase of the complex order pa-
rameter is a relevant degree of freedom, the energy of the
system can be expressed by a Hamiltonian of the form

FIG. 1. Like other self-similar structures the Sierpinski
gasket is defined by the recursive algorithm of its construction.
A gasket of the order N is obtained by connecting three gaskets
of order (N —1) at their vertices. The construction starts from
a simple triangle which plays the role of the zeroth-order
gasket. The picture shows a third-order gasket.

where @; is the phase of the order parameter in the super-
conducting grain (or node) at the site j, 4;. is propor-
tional to the line integral of the vector potential along the
path connecting j to j’, and ¥;;(0) is an even periodic
function of 0 (with period 27 depending on the form of
the current-phase relation in the link jj’.

In the following, we shall neglect screening effects and
assume that the { 4.} are entirely determined by the
vector potential of the external magnetic field B. Then,
the sum of the A4 ; along any closed path on the network
is proportional to the area S enclosed by the path

2m
24~ gy

where ¢, is the superconducting flux quantum. If we in-
troduce the notion of gauge-invariant phase difference 6;
across the bond jj’,

0 =@ —@p+4;=—6;; , ™

BS , (6)

condition (6) can be rewritten as

3 0,=2m | Sf—m ®)
O SO

where f is the magnetic flux (in units of ¢,) threading
some reference cell of area S, and m is an integer ac-
counting for the fact that the phase is defined only modu-
lo 27r. Equation (8) is nothing but a manifestation of flux-
oid quantization in a multiply connected superconductor.
In the gauge-invariant description it is natural to reduce
the {6,.} to the interval —m <6, <m. Then, in the
ground state the integers {m} can only be zero or posi-
tive (for positive ) and can be interpreted as the number
of vortices penetrating a given cell.

In networks of thin superconducting wires the periodi-
city of V(6) results from phase-slip processes which are
bound to occur if 6 tries to escape from the interval
—m<6<m. This allows one to describe both JJA and
SWN by Hamiltonians having the same structure and
differing only in the functional dependence of the period-
ic interaction ¥ on 6.

Variation of Eq. (5) with respect to ¢ up to second or-
der in 8¢ gives

8E——2V" (0 )8<pj——8<pj:)2 , 9)

where the contribution involving the linear terms van-
ishes because of current conservation at the nodes [Eq.

(3)]. If we now relate 8¢; to the variation 8I;. of the

current I = —(2e /#%)V};:(6;;.) through the link jj’,
81 =—(2e /A)V};(6,;)(8p; —8¢;) ,
we find that 8E can be expressed as
=1 s |2 L 51,y (10)
24 |2e | V(o) Y
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Comparison of Eq. (10) with Eq. (2) shows that, as seen
from an external current source, JJA and SWN behave as
networks of inductances whose values are given by

2
A
2e

1
Vi (6)5)

i (n

For a JJA the interaction functions V(6) is determined
by the energy-phase relation of a single junction and is of
the form

V(6)=J(1—cosb) , (12)

where J is the Josephson coupling energy, the current
across the junction being I=(2e/#)J sinf. It follows
that for a JJA exposed to a perpendicular magnetic field
the effective inductance of the junction jj’ is given by

# 1
L.=|—| ——— .
2e Jcos(Ojj,)

i (13)

Thus, even if all the junctions are identical, their effective
inductances in the frustrated system may differ substan-
tially from each other on account of the nonuniform dis-
tribution of the {6;;}.

On the other hand, in SWN the energy of a link (a
piece of superconducting wire) is almost harmonic in 6,
the anharmonic corrections being of the order of (£/a)?,
where £ is the coherence length and a the length of the
link.!” Accordingly, in SWN the inductance modulation
by a magnetic field should be much less pronounced than
in JJA unless a becomes comparable to £&. For simplicity,
in the following we shall systematically omit the factor
(#1/2e)* which should appear in all the explicit expres-
sions of the inductance.

II1. DIRECT CALCULATION OF THE INDUCTANCE
OF SIERPINSKI GASKETS
AND OF SIERPINSKI GASKET ARRAYS

In an ideal SG (Fig. 1) the area of the large cell located
in the center of a gasket of order N is given by 4V 1S,
where S, is the area of the smallest triangular cell. Since
all the cell areas are multiples of Sy, it is convenient to
use the magnetic flux f threading the smallest cell as a
measure of the frustration of the system. From the struc-
ture of the Hamiltonian (5), it is clear that H is invariant
with respect to changes in the flux of each cell corre-
sponding to an integer number of flux quanta and also to
changes in the sign of the magnetic field. Therefore, it is
sufficient to focus only on the interval 0= f < 1.

For a particular set of frustrations, the structure of the
ground state of the infinite gasket can be found by study-
ing a finite gasket. We start with a gasket of order N at
frustration f and assume that its ground state is sym-
metric (in terms of the gauge-invariant variables {6;;})
with respect to rotations of the system. Then, the sum ®
of the {6;;} along each side of the gasket is given by

®=—231(4Nf_M) ’

where M is the sum of the variables {m} in Eq. (8) and
can be interpreted as the total number of vortices thread-
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ing the gasket. Now, suppose one tries to construct the
ground state of the gasket of order (N +1) by juxtaposi-
tion of three Nth-order gaskets. One can then easily veri-
fy (see Fig. 2 for an illustration) that the constraint (8) im-
posed to the central cell of the new gasket is fulfilled only
if 2-4"f is an integer, that is only if

P
f=<a (14)
where P is an integer.

For a SWN with a linear current-phase relation it has
been shown by Ceccatto et al.3 that the ground state of a
second-order gasket is always symmetric with respect to
rotations of the system. However, even if the ground
state of an Nth-order gasket (with N >2) were not sym-
metric at some frustration and, consequently, the vari-
ables {®} were different on the three sides of the gasket,
the condition

0,+0,+0,=2m(4"f —M)

should still be satisfied. Moreover, for frustrations satis-
fying Eq. (14) the juxtaposition of three gaskets with non-
symmetric ground states (see Fig. 2) can be always per-
formed in such a way that the constraint (8) will be also
satisfied on the central loop of the resulting system. This
means that for frustrations obeying Eq. (14) the condition
(8) will be automatically fulfilled on the central loop of a
gasket generated by repeated juxtapositions. This implies
that the ground state of an infinite gasket will consist of
“replicas” of the same state of a finite gasket. Thus, the
structure of the ground state of an infinite gasket at frus-
trations given by Eq. (14) can be found by determining
the ground state of a finite gasket. Having shown that
the network inductance corresponding to any state is
completely determined by the distribution of the {Ojj,},
we conclude that for frustrations satisfying Eq. (14) the
problem of calculating the inductance reduces to a calcu-

FIG. 2. In constructing a gaskets of order N by juxtaposition
of three gaskets of order (N —1), the arrows associated with the
gauge-invariant phase differences on the central loop of the re-
sulting system turn out to rotate in a direction opposite to that
of the other loops. From the constraints imposed by fluxoid
quantization [Eq. (8)] in the different loops it follows that the
configuration shown in the figure is possible only if
2(®;+0,+®;) is a multiple of 277. Obviously, this conclusion
is still valid if the variables ®; (i =1,2,3) are equal to each oth-
er.
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lation on a finite gasket and can be solved exactly once
the structure of its ground state is known.

As an illustration, let us calculate the inductance of a
SG at f=1,1,3,1. In this case it is sufficient to consider
a first-order gasket formed by nine inductive elements
whose inductances can take only two different values, L,
and L, (Fig. 3). The current distribution in this simple
network is easily determined so that, in terms of L, and
L,, its total inductance (for a current entering at one ver-
tex and leaving at another one) can be written as

2L, 3L,+2L,
= (15)
3 2L,+L,

For a JJA the values of L; and L, at f=1,1,3,1 follow
from Eq. (13) by substituting the values of 6;; deduced
from simple symmetry considerations. For instance, for
= one has 6,,=m/2 on the three internal bonds and
accordingly L,= o, whereas 6, =0 on the six external
bonds and therefore L;=1 (in units of 1/J). Then, using

Egq. (15), one obtains

L(1/4)_6
Lo 5°

The situation is even simpler for f=1, since 0 jj.=7r/ 3 on
all the bonds and therefore

L(1/2) _
L(0)

To eliminate the trivial dependence on the gasket size, in-
ductances are conveniently normalized to L(0), the value
for the unfrustrated system.

For frustrations f expressed by an irreducible fraction
with denominators 16 or 32 it is sufficient to consider a
second-order gasket. In this case one has first to solve a
system of equations (one of which is, in general, non-
linear) in order to find the structure of the ground state at
the frustration of interest and then to calculate the induc-
tance of a network of 27 inductors having five different
values which is rather cumbersome. Considerable
simplification of the second step of this program can be
achieved by making use of the so-called triangle-star
transformation which is well known in the theory of

2.

~ 0, -
~ L, L

FIG. 3. To calculate the inductance of a Sierpinski gasket at
frustrations corresponding to multiples of f= %, it is sufficient
to consider a first-order gasket constructed with only two induc-
tances L; and L,.
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resistive networks.!® An elementary step of this transfor-
mation is shown in Fig. 4(a). The triangle formed by the
inductances L, L,, and L; can be replaced by the star
formed by the inductances

. L,L,L,
T (Ly+L,+L,)L; ’

I (16)

where i =1,2,3. The inverse transformation is given by
L= Lil,+1,1,+151, an
L
For an Nth-order gasket, (N +1) successive applications
of the triangle-star transformation (16) reduce the gasket
[as shown in Fig. 4(b)] to a simple ‘“star” whose total in-
ductance (between the star vertices) can be trivially calcu-
lated, the inductive elements being now connected in
series.

In Fig. 5, we present numerical calculations of the nor-
malized ground-state energy (per elementary bond) and
inverse inductance of a JJA with cosinusoidal interaction
[Eq. (12)]. The calculations were performed on a third-
order gasket at multiples of f = 1- [Eq. (14)]. According
to our previous discussion, these results are valid also for
gaskets of larger order (N > 3), including the infinite SG.

In the experiments discussed later on in this paper (Sec.
V1) the sheet inductance of a regular triangular lattice of
identical gaskets of order N’ connected at the vertices
was investigated. For frustrations satisfying Eq. (14) with
N < N’ the structure of the ground state of such a system
is also determined by the structure of the ground state of
a single gasket of order N. Since the sheet inductance of
a regular gasket array is proportional to the inductance
of its constituent gaskets, the results of the calculation
performed on the third-order gasket (Fig. 5) are also valid
for the normalized sheet inductance of the corresponding
composite periodic system.

Although the direct inductance calculation presented
in this section can in principle be performed for a gasket
of arbitrary (finite) size, the problem of finding the struc-
ture of the ground state becomes more and more complex
with increasing gasket order. In fact, the number of
equations to be solved to determine the structure of a

a)

b)

FIG. 4. (a) The triangle-star transformation and (b) its appli-
cation to the calculation of the inductance of a first-order
gasket.
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FIG. 5. Normalized ground-state energy (per bond) and in-
verse inductance of a Sierpinski gasket of Josephson junctions
with a sinusoidal current-phase relation at frustrations corre-
sponding to multiples of f = 1.

symmetric ground state on an Nth-order gasket is equal
to (3¥+1)/2, an expression showing very clearly why
calculations become rapidly tedious with increasing N.

Even more significantly, numerical calculations
prevent any insight into the asymptotic behavior of the
inductance at small frustrations. To study the scaling
properties of the inductance at small f, it is necessary to
develop methods which take advantage of the self-similar
nature of the SG. Such methods will be introduced in the
next two sections.

IV. SCALING OF THE NONLINEAR CORRECTIONS
TO THE CURRENT-PHASE RELATION

Like other fractals, the SG has a hierarchical self-
similar structure. A second-order gasket can be thought
of as a first-order gasket consisting of three first-order
gaskets and so forth. This suggests that it should be pos-
sible to construct recursive relations allowing to express
the properties of a given gasket in terms of those of a
gasket of smaller order. In this section and in the follow-
ing one we systematically develop such an approach and
apply it to explore the asymptotic behavior of different
quantities, including the frustration-dependent correc-
tions of the inductance. For simplicity, in this section we
start with the analysis of the unfrustrated system.

Let us consider a first-order SG. In the absence of a
magnetic field it is described by the Hamiltonian

H=73 Vig;—9;), (18)
{ij)

where the sum is taken over the nine pairs of nearest
neighbors (Fig. 6). In the following we shall assume that,
even if the gasket under consideration is part of a larger
system (for instance, of a gasket of higher order or of a
regular triangular lattice of first-order gaskets), it can be
connected to the rest of the system only by its vertices
(sites 1, 2, and 3 in Fig. 6). Therefore, since we are deal-

VAN
AVAN

FIG. 6. Labeling of the nodes of the first-order gasket on
which the decimation procedure is carried out. After decima-
tion only the nodes 1, 2, and 3 survive.

ing with pairwise interactions, only the site variables ¢,,
@,, and @5 can interact with the rest of the system
whereas ¢4, @s, and @¢ only interact with ¢,, ¢,, and @s.
This means that, if we find the values of @, @5, and g
which minimize the energy of the first-order gasket for
given values of @,, ¢,, and @3, we can then express its en-
ergy as a function of ¢,, ¢,, and @; only. This procedure,
which amounts to replacing the original first-order gasket
by a zeroth-order gasket (an elementary triangle), is
called decimation and can be applied to all the first-order
gaskets composing a larger system. For example, de-
cimation will transform an Nth-order gasket into an
(N —1)th-order gasket.
For the case of a pure harmonic interaction

J
2
the minimization of the energy of the first-order gasket
with respect to the “internal” variables ¢,, @5, and @g can
be performed exactly.!” Variation of Eq. (18) with
respect to @4, ¢s, and @ results in a system of three linear
equations whose solution is

V(0)==-6* (19)

_ @120t 205
P 5
2¢,+@,+2¢
Ps= P1 ¢;2 3 ’ 20)
_2‘P1+2<P2+¢3
Ps= 5 .

Then, substitution of Eq. (20) into the Hamiltonian leads
to an expression of the form

H=Vg(@1— @)t Vr(@—@3)+Vr(@3;—e) 21

showing that the energy is a sum of contributions associ-
ated with pairs of nearest neighbors on the decimated
gasket. The renormalized interactionV(0) differs from
the original one [Eq. (19)] only in the coupling constant
which is renormalized according to the rule'?

J=Jg=3J .

To illustrate how decimation works in a specific sys-
tem, let us consider a triangular lattice of Nth-order
gaskets as that studied in the experiments described in
Sec. VI. By applying N times the decimation process, one
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is finally left with a regular triangular lattice with a re-
normalized coupling constant

J=()NT . (22)

Since the inductance is inversely proportional to the cou-
pling constant, Eq. (22) implies that the sheet inductance
of the system scales with N as (%)N . This agrees with the
conclusion reached in Sec. II [Eq. (4)].

In real systems the interaction function is not, in gen-
eral, harmonic. Let us explore what happens if we add
the next-order term to the harmonic approximation:

2.9
24
Differentiation of V(6) shows that K sets the amplitude

of the first nonlinear correction to the current-phase rela-
tion:

V(e)=—;—e2— o . 23)

av _ K 3
«BY — g2
1(6) 40 Jo 6 6.
The equations for @4, ¢s, and ¢4 obtained by variation of
the Hamiltonian (18) with the interaction (23) are non-
linear and can be solved only perturbatively, the first
correction to the unperturbed solution [Eq. (20)] being of
the form

8¢, = (K /I )F(@1— @30~ 91,93~ P2) »
8@s=(K /I )F(@r— @1, @3~ @0 @1~ P3) » (24)
3pe=(K /J)F(@3— @0 1~ P32~ 1) »

where the function F(6,,6,,6;)=F(0,,0,,6) is a polyno-
mial of the third degree whose coefficients do not depend
on the coupling constants J and K. Since the values of ¢;
(with i=4,5,6) given by Eq. (20) are those minimizing
the harmonic part of the Hamiltonian, substitution of
@; +8¢; into this part of H only produces second-order
corrections in K. First-order corrections in K only ap-
pear by substituting the solution into the fourth-order
term of H and merely depend on the unperturbed solu-
tion (20). Thus, if we restrict our attention only to first-
order terms in K, it is possible to derive the renormalized
Hamiltonian simply by substituting Eq. (20) into H
without knowing the explicit form of F(60,,0,,0;). It
turns out that the renormalized Hamiltonian has the
same form as the original one, but with the renormalized
coupling constants:

Jp=3J, Kp=2K . (25)
Remarkably, the form of the fourth-order term remains
the same, thereby leaving the pairwise nature of the in-
teraction between the phases unaltered.

The perturbative treatment outlined above shows that
a single decimation step of the SG reduces the relative
amplitude ¥ =K /J of the nonlinear term in the current-
phase relation by a factor of % which is significantly
smaller than one. Therefore, even if the perturbative ap-
proach is not fully justified at the beginning of the de-
cimation process, it becomes quantitatively correct after
a few decimation steps.
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Contributions to the Hamiltonian of higher order in 6
are expected to decay with decimation even faster then
the fourth-order term. For instance, it can be shown
that, if two of the three variables ¢,, ¢,, and @; are equal,
the term of order 2n in V(0) scales with decimation by a
factor of

_3+2242

)\'2" 52n

(26)
which monotonically decreases with increasing n. Notice
that for n =1 and n =2, Eq. (26) correctly predicts the
scaling factors we found before [Eq. (25)] within the
framework of the more general treatment.

Since V(0) is periodic in 6, the fast decrease of the
anharmonic corrections predicted by the perturbative
treatment implies that, even if one starts from a
cosinusoidal interaction [Eq. (12)], the shape of the
effective interaction evolves with decimation towards a
piecewise parabolic function which is significantly more
“rigid” against large-amplitude thermal fluctuations than
the cosinusoidal form. This means that in a triangular
lattice consisting of periodically repeated gaskets of
Josephson junctions fluctuations will be less relevant than
in a triangular JJA with a coupling constant equal to the
renormalized coupling constant of the gasket array [Eq.
(22)].

As can be seen from Eq. (11), the nonlinear corrections
to the current phase relation do not affect the inductance
of an unfrustrated system. On the other hand, at nonvan-
ishing frustrations currents are flowing in the system even
in the absence of an external current. It is precisely the
presence of nonharmonic terms in the Hamiltonian
which provides the coupling between the externally
driven and the internal currents. Since a single decima-
tion step corresponds to a change in the effective frustra-
tion by a factor of 4, we expect that for f—O0 the
frustration-induced corrections to the inductance due to
the presence of nonlinear terms in the current-phase rela-
tion should scale as f* with

= In(125/33) ~0.96 , 27
In4

where the fraction 2 reflects the scaling of the induc-
tance corrections one expects at every decimation step.
In the next section we generalize the decimation pro-
cedure to the case of a frustrated gasket and show that
the power-law asymptotic behavior of the inductance
corrections corresponds indeed to the exponent given by
Eq. (27).

V. DECIMATION OF THE GASKET
IN FRUSTRATED SYSTEMS
AND ASYMPTOTIC BEHAVIOR OF THE INDUCTANCE

A. Transformation of the harmonic Hamiltonian

At nonvanishing frustrations the system can be de-
scribed in terms of the gauge-invariant bond variables
0;=—0;; [Eq. (7)]. Once more, it is convenient to con-
sider a first-order SG described by the Hamiltonian
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Cij)
where the sum runs again over the nine pairs of nearest

neighbors (Fig. 6). The {6}, however, should now obey
constraints of the form (8):

016065+ 05, =27f, 0y3+0,5+605,=27f ,
035105, +0,3=27f, 045+0sc+60g,=27f .

(29)

In writing these expressions we have assumed that there
are no vortices inside the cells of the gasket [i.e., m =0 in
Eq. (8)], which is certainly correct in the limit of low frus-
trations in which we are interested here. After decima-
tion, it is necessary to introduce a set of new {0}
defined on the bonds of the decimated (zeroth-order)
gasket and related to the old variables by (see Fig. 6):

61,=0,616s, ,

0,3=0,410,; , (30)

03,=035+0s; .
The new 0 variables should also satisfy a constraint of the
form (8):

01,1t 0,3+603,=27fg ,
where we have introduced the “renormalized” frustration
fr=4f.

In the harmonic approximation (19) the minimization

of the Hamiltonian (28) under the constraints (29) and
(30) can be performed exactly and leads to

_ 5601160y 05

16 10 ’
—30,,1+0,;,—360
655= 12 2023 31 , (31)
—912+923+5031
517 10

and to analogous expressions for the other six bond vari-
ables of the original (first-order) gasket which follow from
Eq. (31) by cyclic permutations of the indices on the rhs.
Then, substitution of the solution in the harmonic Hamil-
tonian gives

J J 1|3 1

%) ?9;;5 g(9%2+6%3+9§1)—g(27rf)2 . (32)
This expression exhibits the same scaling factor (1) of the
coupling constant which was obtained in the previous
section for the unfrustrated system. It also shows that, if
V(0) is harmonic, the presence of frustration does not
change the functional form of the renormalized Hamil-
tonian (for a given frustration the second term on the rhs
of Eq. (32) simply causes an overall shift of the energy).
Since the inductive properties of the system are deter-
mined by the second derivative of the energy [see Eq.
(11)] and are therefore insensitive to a global energy shift,
this result confirms our previous conclusion that the in-
ductance of a gasket characterized by a purely harmonic
interaction is independent of frustration.

B. Dependence of the ground-state energy on frustration

Decimation transforms a gasket of order N at frustra-
tion f into a gasket of order (N—1) at frustration
fr=4f. For f low enough for no vortices to penetrate
the first-order gaskets forming the Nth-order gasket, Eq.
(32) allows one to relate the ground-state energies of the
two systems without knowing the structure of their
ground states. Moreover, since an infinite SG is self-
similar, we can also use Eq. (32) to find a relation between
the ground-state energies of an infinite gasket at frustra-
tion differing from each other by a factor of 4:

E(f)=% E(4f)~%(217-f)2 , (33)

where the rhs has been multiplied by a factor of § to ac-
count for the ratio between the number of bonds in the
decimated gasket and in the original one.

Iteration of the recursive relation (33) leads to the fol-
lowing expression for the ground-state energy of a gasket
characterized by a linear current-phase relation:

N
E(f /4= |E(f)— 2T gp2| |1
33 5
272 |
—%sz | > (34)

where 0 < f <1. The dependence on N in Eq. (34) shows

that, for f—0,E(f) obeys a power law, E(f) fvE, with
the exponent

. = 1n5
£ In4

and allows one to appreciate how fast the asymptotic re-
gime is actually reached.

The value of the exponent v, was first calculated by
Alexander and Halevi® by studying an expression for an
upper bound to E(f). In contrast to their work, Eq. (34)
is an exact result. The structure of Eq. (34) implies that
in a log-log plot E(f) should look, in the limit f —O0, as a
tilted periodic function with a slope corresponding to the
exponent (35). In the work of Meyer et al.!® it was er-
roneously assumed that the same exponent describes the
asymptotic scaling behavior of the frustration-dependent
corrections to the inductance.

~1.16 (35)

C. Transformation of the 6-dependent inductance corrections
with gasket decimation

Let us now come back to a first-order gasket. At low
frustrations (no vortices) the gauge-invariant phase
differences {6;;.] are small on all the (nine) bonds. As a
consequence, the corresponding inductances {L;;.} are al-
most equal and we can write

L;;=Ly+8Lj;, |8L;|<<L, .

i}

To calculate the small inductance corrections {8L;;}
caused by frustration, we rely on a perturbative approach
which takes advantage of the decimation scheme. A
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two-stage application of the triangle-star transformation
[Fig. 4(b)] and, subsequently, of its inverse (star-triangle
transformation) replaces the first-order gasket by a trian-
gle (zeroth-order gasket) made up by the inductances:

Ly, =3Lo+L[6(8Lg+8L¢,)+3(8Ls; +8L,,)
—2(8L43+8L;5)+8Ls,],
Ly3=3Lo+L[6(8L 4 +8L43)+3(8Lg, +8L3s5)
—2(8Ls5; +68L4)+8Lgs] , (36)
31 =3Lo~+L[6(8Ly5+8Ls;)+3(8L 43 +8L )
—2(8Lgy+8L,)+8L ] ,

where only first-order terms in 8L were retained and the
two-index notation is the same as the one introduced in
Sec. V A (see Fig. 6).

In the perturbative treatment it is sufficient to keep
only the first nonharmonic term in the interaction func-
tion [as in Eq. (23)]. Then, by expanding Eq. (11) to first
order in K, the inductance of each bond before decima-
tion can be related to the corresponding gauge-invariant
phase difference 6 by

=1 ~ K
L(6) J+8L(9), oL (0) 2.]29 . 37

Since we know how the {6;;} transform in the decima-
tion process [Eq. (31)], we can apply Eq. (36) to find the
inductance after decimation without actually knowing
how the {6;.} are distributed in the ground state. In
fact, by substituting Eq. (37) into Eq. (36) and using Eq.
(31), it turns out that the inductance L ‘" of each bond of
the decimated gasket can be expressed as a function of
the corresponding gauge-invariant phase difference 6 as

5 ¢
() gy— > _ 1,
L'(6) 3J[l+a, b,6+ 5 6], (38)
where
161 5
2
al 750( f) Y
b,= 375(21rf)'y, (39)
o = 33
ENTT R

and y =K /J is the ratio of the unrenormalized coupling
constants in Eq. (23).

Let us now turn to larger gaskets, as we did in the pre-
vious subsection. Having demonstrated that the induc-
tance of each bond of a decimated (zeroth-order) gasket
only depends on the value of the corresponding 0, we can
iterate the decimation procedure as long as the renormal-
ized frustration is low enough for no vortices to penetrate
the constituent first-order gaskets participating in the de-
cimation process. If the decimation procedure is repeat-
ed N times, we get

5

L™Mg)= 14+ay— bN9+—02 (40)

1
J
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where
ay(fr)=[ ek (5 +H R (&)Y — 8 (M 2nfr Py
by(frR)=ZL (BN —(TNQmfr)y , (a1
en(fR)I=(ZV

and fr =4"f is the renormalized frustration. For N=1,
Eq. (41) reduces to Eq. (39), as it should.

Notice that on the decimated gasket L(6) is no longer
an even function of 6. Since L(0) is related to V(6) by
Eq. (11), it immediately follows that the renormalized in-
teraction function V(60) also loses its inversion symme-
try. This is quite natural in a frustrated system where the
vector character of the magnetic field enters the decima-
tion procedure. As a consequence, the sign of the linear
term in L(6) is determined by the direction of the field.

D. Asymptotic behavior of the inductance at small frustrations

In the previous subsection we have shown that the
problem of calculating the inductance corrections at low
frustrations for a given gasket can be reduced to an iden-
tical problem at higher frustrations for a gasket of lower
order where the distribution of the {6;;} in the ground
state may be already known. For instance, if we start
from f=1/22"*1 and make N decimations, the effective
frustration f of the decimated gasket will be fr =1. At
this frustration the ground state corresponds to 6=1/3
on all the bonds of the gasket (see Sec. III), so that the in-
ductance change SL(f)=L(f)—L(0) at f=1/2*N*1
can be easily calculated by setting 6=1/3 in Eq. (40):

SL(f) _

3425 (3 33 )N+ 1340( )N 10561 1
L(0) [117273 125 2619 ' 100

N
62—6 ]77-7'/1

(42)

where ¥ =1 for a JJA with a cosinusoidal interaction [Eq.
(12)], whereas for a SWN y will be smaller (or even much
smaller) than one. For N=0 (f=41) the numerical
coefficient within the brackets on the rhs of Eq. (42)
reduces to ; and for N=1 (f=1)to {13

Quite similarly, if start from f=1/22Y*2 and perform
again N decimations, we end up with a gasket with an
effective frustration fr=7+. At this frustration the
ground state corresponds to 0 /2 on the three internal
and to 6=0 on the six external bonds of each constituent
first-order gasket (see Sec. III). To calculate the relative
inductance correction 8L(f)/L(0), we expand Eq. (15)
for the inductance of a first-order gasket to first order in
the corrections 8L; (i=1,2, see Fig. 3) and substitute
Egs. (40) and (41) obtaining, for f=1/ 22N +2

SL(f) _ 14 BL(6=0) _ 1 BL(6=/2)
L(0) 15 L 15 L
m
=aN(%) bN(4) +CN( L)— 120

—-[ 10024 (33 )N+ 1474 ( 7 )N_ },‘7’3.?;(%)”]727 .

586365 * 125 100

(43)
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for N=0 (f=1) the numerical coefficient on the rhs of
Eq. (43) reduces to {3; and for N=1 (f=L) to 2.
Analogous calculations can be performed also for other
families of frustrations whose values scale as 4" with the
result that the final expressions for the relative induc-
tance variation have the same form as Eqs. (42) and (43),
but with different coefficients in front of the powers of the
scaling factors.

The asymptotic behavior of 8L () in the limit f—0 is
determined by the first term in Egs. (42) and (43). Thus,
for f—0 the frustration-induced inductance correction
obeys a power law, SL(f) « f*, with the same exponent

= In(125/33)
In4

we found earlier in Sec. IV [Eq. (27)]. We would like to
stress that the leading terms in Egs. (42) and (43) provide
an exact asymptotic description (prefactors included) of
SL(f)/L(0) for the two specific frustration families con-
sidered above. It is for this reason that the numerical
coefficients in these equations were expressed in their ex-
act fractional form. It should also be noticed that our ap-
proach is not perturbative in the parameter ¥, but in the
inductance variations of the individual bonds of the origi-
nal (undecimated) gasket which quickly fall off with de-
creasing frustration.

An alternative method to calculate 8L(f) within a per-
turbation scheme consists in substituting into the Hamil-
tonian {6;;.] of the form

6;;=6,;(f)+16];, (45)

~0.96 (44)

where {6,;(f)} and {6]} are, respectively, the distribu-
tion of the gauge-invariant phase differences in the
ground state at a given frustration f and the distribution
of the additional ‘““phase twists” induced by an external
current I flowing through the system. If Eq. (45) is sub-
stituted into the harmonic part of the Hamiltonian,
mixed terms will never show up in the energy of the sys-
tem as this quantity cannot be linear in I. As a conse-
quence, the current contribution to the energy resulting
from the harmonic part of the Hamiltonian is indepen-
dent of frustration. However, when Eq. (45) is substitut-
ed into higher-order (nonharmonic) terms of the Hamil-
tonian, the internal currents of the frustrated gasket cou-
ple to the external current I, thereby providing a method
to calculate 8L(f). After computing the {6,;(f)} and
the {GJIJ} in the harmonic approximation, we have explic-
itly performed such a calculation for the fourth-order
term in the Hamiltonian at some frustrations
(f=L1,L, 1L L L) finding expressions for S8L(f)/L(0)
identical to those given by Egs. (42) and (43). Thus, the
two perturbative methods developed in this work are
essentially equivalent. However, the approach based on
the coupling between internal and external currents
shows more clearly why the asymptotic behavior of
SL(f) at small frustrations is entirely determined by the
fourth-order term in the Hamiltonian. On the other
hand, the decimation procedure is more appropriate to
calculate 8L (f) at arbitrarily small frustrations.

Our results in the asymptotic regime imply that on a
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log-log plot 8L(f)/L(0) looks, at small f, like a tilted
periodic function with a slope corresponding to the ex-
ponent v given by Eq. (44). This is valid for both JJA and
SWN, the only difference consisting in an overall down-
ward shift of the curve for a SWN reflecting its lower
value of ¥. In order to estimate the amplitude of the os-
cillations, it is convenient to combine the decimation pro-
cedure with numerical calculations. For frustrations
satisfying f =P /227 *! with 5<P <16 and N > 2 we first
proceed to (N —2) decimation steps to reduce the prob-
lem to a second-order gasket whose inductance is then
calculated with the direct method developed in Sec. III
using Egs. (40) and (41) to define the inductances of the
bonds. The result, expressed in terms of the quantity
AL ~'=[L~Y0)—L ~(f)] measuring the change in su-
perconducting phase coherence caused by frustration, is
shown (open circles) in log-log form in Fig. 7 where it is
compared with that obtained from a direct numerical cal-
culation, based on Eq. (13), performed on a third-order
gasket (solid circles). In order to appreciate how fast the
asymptotic behavior is reached, we have subtracted the
linear background by plotting, instead of log,,[AL ~!/
L710)], log;o[ AL ~'/L ~%(0)]—v1log,of vs log,f [notice
that AL ~'/L ~1(0)=8L /L(0) in the asymptotic limit].

It is seen that already in the second ‘“decade” (or
“hierarchical stage”), i.e., in the interval 4 < f <1, the
behavior is very close to its asymptotic form. However,
in the first “decade” (1 < f < 1) it is rather different from
that observed in the other hierarchical stages. This is
readily understood if one realizes that in this frustration
range the {6;;.} on some bonds can be of the order of one.
As a consequence, the exact value of the corresponding
inductance, as given by Eq. (13), differs substantially from
the approximation (37) which serves as a base for the

04—
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log1o[AL™!/L71(0)] - v logsof

log,f

FIG. 7. log-log plot of the relative change of the inverse in-
ductance of a Sierpinski gasket of Josephson junctions (y =1) as
a function of frustration (the linear background vlog,,f has
been subtracted). Solid circles: result of a direct numerical cal-
culation performed on a third-order gasket. Open circles: re-
sult of a calculation based on the perturbative approach in
which the problem is reduced to a calculation on a second-order
gasket after performing one or more decimation steps. This re-
sult becomes asymptotically exact for f—0. The line connect-
ing the circles is simply a guide to the eye.
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asymptotic calculation. It should also be noticed that, al-
ready in the second hierarchical stage, the results of the
asymptotic approach are very close to those emerging
from the direct numerical calculation, thereby providing
strong support for the reliability of the perturbation
treatment developed in this section.

The peculiar behavior of the inductance in the first
“decade” justifies our reluctance to comment on the self-
similarity of L (f) in Fig. 5. In fact, Fig. 7 clearly shows
that, in order to make the self-similar nature of the re-
sults manifest, the numerical calculations should be per-
formed at least on fourth- or fifth-order gaskets.

VI. COMPARISON WITH EXPERIMENT

In the previous sections we have developed various
theoretical methods to calculate the mean-field induc-
tance of a SG as a function of frustration. In particular,
we have shown (see Fig. 7) that the hierarchical self-
similar nature of the gasket becomes clearly manifest
only in the asymptotic limit of very low frustrations
where the inductance change is predicted to scale with f
according to a well-defined power law reflecting the frac-
tal geometry of the gasket. In this section. we compare
the theoretical predictions with high-resolution magne-
toinductance measurements performed on triangular ar-
rays of periodically repeated gaskets of proximity-effect
coupled Josephson junctions. Under favorable experi-
mental conditions, we have been able to resolve up to
four hierarchical stages in the gasket magnetoinductance,
thereby probing the inductive properties of the system in
the low-frustration limit of interest.

A. Experimental details

The sample studied in this work is shown in Fig. 8. It
consists of fourth-order gaskets sitting on the sites of a
78 X 78 triangular lattice and connected to each other at
the vertices. Each gasket is an array of 3*=81 SNS junc-
tions consisting of superconducting (S) Pb islands
proximity-effect coupled to each other by an underlying

FIG. 8. Scanning electron micrograph showing a portion of a
triangular array of periodically repeated fourth-order Sierpinski
gaskets of proximity-effect coupled Pb/Cu/Pb Josephson junc-
tions. The length of the elementary links of the gaskets is 8 um.
Notice that, with the exception of those centered on the com-
mon vertices of three constituent gaskets, the superconducting
Pb islands have an asymmetric “truncated-star’ shape.
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Cu normal (N) layer. Length and width of the elementa-
ry links of the gaskets are, respectively, ¢ =8 um and
w=2 um. Since the ratio D /£,(T,,) between the junc-
tion gap D(~0.72 um) and the normal-metal coherence
length &£,(T,y) (=0.19 pm) at the transition temperature
T,y (=7 K) of the individual superconducting islands is
of the order of 4, the system is expected to behave as a
genuine JJA with a sinusoidal current-phase relation over
a relatively wide temperature range, V(6) deviating
significantly from Eq. (12) only at low temperature.!” Be-
cause of its 2D nature at length scales larger than the
gasket size, the unfrustrated array (f =0) exhibits a BKT
transition at 7, =5.93 K.

Relying on a numerical inversion procedure, the sheet
magnetoinductance of the gasket array was extracted
from measurements of the mutual inductance change of a
coaxially mounted drive-receive coil system due to the su-
percurrents flowing in the sample in response to a weak
ac field.'® The rms flux created by the driving ac current
in an elementary triangular cell located just underneath
the coils did not exceed 10 “¢,. This low-level excitation
ensured a linear response and, combined with a suppres-
sion of ambient magnetic fields to ~1 mG, allowed f to
be tuned with a precision better than 10™*. Data were
taken at 160 Hz with a sensitive SQUID-operated ac
bridge. The major factor limiting the inductance resolu-
tion during our swept-frustration impedance measure-
ments was the low-frequency noise generated by the
solenoid providing the dc magnetic field. Typically, we
have been able to resolve inductance changes of the order
of 10 pH. The resolution was found to be somewhat
better near the superconducting transition where, on ac-
count of the weaker screening effect provided by the sam-
ple, the gradiometer configuration of the receive coil
suppressed external flux noise more efficiently than at
lower temperatures.

The periodic arrangement of finite-order gaskets stud-
ied in this work ensured sample homogeneity over the
macroscopic length scales set by the diameter (~2 mm)
of the detection coil. This is essential for the analysis of
the diamagnetic response based on the inversion pro-
cedure to apply.!® Moreover, the gasket order (N=4)
is sufficiently high for the set of frustrations f=P /2
X 4N=P /512 [see eq. (14)] at which theory can be com-
pared to experiment to be dense enough.

In the following, temperatures will be expressed in
terms of the reduced temperature 7=kT /J(T) relevant
for the statistical mechanics of the system. The
temperature-dependent Josephson coupling energy J(T')
was inferred from measurements of the ‘“bare” sheet
(kinetic) inductance L(T)=(#%/2e)*(5/3)Y/V'3J(T) of
the unfrustrated array at temperatures well below 7.. In
terms of 7 the BKT transition occurs at 7,=0.23 in good
agreement with the theoretical prediction!? 7, =(3/5)%r,,
based on Eq. (22), 7,o= 1.5 being the reduced BKT tran-
sition temperature of a regular triangular lattice!® with
the same coupling energy J(T').

B. Results and discussion

The inverse sheet inductance L ! of our gasket array
is shown in Fig. 9(a) as a function of the frustration pa-
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FIG. 9. (a) Inverse sheet inductance of the triangular lattice
of fourth-order Sierpinski gaskets shown in Fig. 8 at two
different reduced temperatures as a function of frustration.
Both sets of data were taken at a driving frequency of 160 Hz.
In (b) the flux axis has been expanded by a factor of 16 in order
to highlight the scale-invariant behavior of the magnetoinduc-
tance resulting from the self-similar structure of the gaskets.

1.5625 3.1250

rameter f at two different reduced temperatures, 7=0.09
(Tr=5.51 K) and 7=0.17 (T=5.81 K). The data,
periodic in f with period 1, exhibit a complex fine struc-
ture reflecting flux quantization in loops with a hierarchi-
cal distribution of sizes. This aspect is illustrated by
comparing the inverse magnetoinductance data at
7=0.17 of Fig. 9(a) with those shown in Fig. 9(b), where
the flux axis was expanded by a factor of 16 to highlight
the scale-invariant properties of the inductance resulting
from the fractal geometry of the gaskets. The striking
similarity of the two curves provides a clear demonstra-
tion of the self-similar structure of the gaskets, where the
loop area S; and, consequently, the magnetic flux scale as
4" ! with the hierarchical index h=1,2,...,N labeling
the different families of loops.

Although the overall shape of the inverse magnetoin-
ductance curves at 7=0.09 and 0.17 is quite similar [Fig.
9(a)], the fine structure is found to become richer and
sharper with increasing temperature suggesting that
thermal fluctuations play a major role in the description
of superfluid and vortex dynamics. Similar behavior was
observed also in wire networks of interconnected
gaskets'? and in regular triangular SNS arrays.?’ We in-
terpret it as clear evidence that, at sufficiently high tem-
peratures, phase coherence in the neighborhood of the
“commensurate” ground states at f =P /(2X4"), where
the vortex lattice is pinned, is drastically disrupted by
vortex-lattice defects, created by excess or missing vor-
tices, moving almost freely on the pinned vortex back-
ground. This sharpens the fine structure substantially,
thereby enhancing the amplitude of the oscillations.

In order to verify the asymptotic prediction of Sec. V,
the logarithm of the relative inverse sheet inductance
change AL ~!'/L ~1(0), as deduced from the data of Fig.
9, is plotted against log,f in Fig. 10 and compared with
the result of a calculation identical to that we described
in connection with Fig. 7, where the direct method
developed in Sec. III was combined with the perturbative
decimation procedure based on Egs. (40) and (41). At the
lowest temperature (7=0.09), where thermal fluctuations
are expected to be almost irrelevant, the general scaling
of the data with frustration as well as the amplitude and
the shape of the oscillations follow quite nicely the
behavior predicted by the mean-field theory. However,
on account of the limited inductance resolution
[8L/L(0)=~1%] attainable in the ac measurements, at
7=0.09 we have been able to resolve only two hierarchi-
cal stages and to observe incipient asymptotic behavior
merely in the second one (3; < f <¢). In this respect, the
experimental conditions are much more favorable at
higher temperatures, where thermal fluctuations not only
enhance the amplitude of the oscillations, but also pro-
mote a richer fine structure, as demonstrated by the
larger number (four) of self-similar stages emerging from
the data at 7=0.17 in Fig. 10 (notice that 2 =4 is actual-
ly the largest number of stages compatible with the order
of our gaskets). A shown in Ref. 13, the evolution of the
fine-structure richness with temperature finds a natural
explanation in terms of thermal activation of the vortices
in the potential-energy landscape created by the gaskets.

log,f

FIG. 10. log-log plot of the relative change of the inverse
sheet inductance of the triangular lattice of fourth-order Sier-
pinski gaskets shown in Fig. 8 at two different reduced tempera-
tures as a function of frustration. The theoretical curve (shifted
downwards, for clarity, by one decade with respect to the verti-
cal axis on the left) was computed by combining the direct
method described in Sec. III (open circles) with the perturbative
decimation procedure based on Egs. (40) and (41) (dotted line).
Sfea= -5}—2 is the frustration at which the crossover from the frac-
tal (f > f.4) to the Euclidean 2D (f < f.4) regime occurs.
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Remarkably, in spite of the indisputable evidence for
fluctuation effects, the data at 7=0.17 follow quite close-
ly the asymptotic scaling prediction [Eq. (44)] of the
mean-field theory. A weak upwards deviation sets in only
in the last hierarchical stage (5 < f < ) where the in-
ductance measurements were carried out at the limit of
our experimental resolution and should therefore be tak-
en with caution. Failing a detailed theoretical descrip-
tion including fluctuations, we are unable to explain why
their effect on the asymptotic scaling behavior turns out
to be so weak.

Because of the 2D nature of our sample at length scales
larger than the gasket size, at f.y =1/ (2% 4" )=:L, the
frustration defining the ground-state configuration in
which each (rhombohedral) unit cell of the periodic
gasket array contains just one single vortex, we expect a
crossover from the fractal (f > f,.y) to the Euclidean 2D
(f <f.y) regime.?! The tendency of the high-temperature
data of Fig. 10 to flatten out below f_, does indeed pro-
vide some evidence for the occurrence of a dimensional
crossover. This preliminary observation has been
confirmed by recent high-resolution studies of the fine
structure below f,.y and will be discussed in more detail
elsewhere.

Closer inspection of the fine structure in the data of
Fig. 10 reveals a discrepancy between theory and experi-
ment. It consists in an almost temperature-independent
shift of the structures which becomes particularly mani-
fest in the first hierarchical stage for f > 1, but is also

present at lower frustrations. We attribute this effect to
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the inhomogeneous frustration resulting from the change
in the effective area of the different plaquettes caused by
the asymmetric (with respect to the link direction) di-
amagnetic response of the “truncated-star-shaped” super-
conducting islands (see Fig. 8). Because of this particu-
lar geometrical form, the screening currents flowing in
these grains create a distortion of the triangular current
patterns associated with the individual loops which per-
turbs the self-similarity of the gaskets. Since at the tem-
peratures of interest the magnetic penetration depth in
the Pb islands is much less than their geometrical dimen-
sions, the distortion is appreciable, thereby making f
nonuniform. This interpretation is corroborated by the
observation that the shift is more pronounced at higher
frustrations where the loops providing the dominant con-
tribution to the magnetoinductance, the smallest ones,
turn out to be those exhibiting the largest distortion. A
quantitative account of this sample-specific size effect will
be published separately.
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FIG. 8. Scanning electron micrograph showing a portion of a
triangular array of periodically repeated fourth-order Sierpinski
gaskets of proximity-effect coupled Pb/Cu/Pb Josephson junc-
tions. The length of the elementary links of the gaskets is 8 um.
Notice that, with the exception of those centered on the com-
mon vertices of three constituent gaskets, the superconducting
Pb islands have an asymmetric “truncated-star” shape.



