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T~o theorems on superconductivity in tight-binding metals
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The one-band tight-binding model is used to calculate the effective interaction between electrons in su-
perconductors. Two theorems are proved. One is that the effective interaction is always repulsive when
including only electron-electron interactions. The second theorem relates to the electron-phonon in-
teraction. The interaction due to charge fluctuations can become attractive when the effective potential
changes sign.

I. INTRODUCTION

Superconductivity is due to the pairing of electrons at
the chemical potential. The mechanism which pairs elec-
trons in high-temperature superconductors is actively de-
bated and still undecided. Most analytical modes of
high-T, superconductors assume a tight-binding model
for the electrons in the conduction band. Here we use
the tight-binding model to prove two theorems relating to
the pairing of electrons. One theorem relates to
electron-electron interactions, while the other relates to
electron-phonon interactions. These theorems relate to
the sign of the effective interaction between quasiparti-
cles: when is it attractive'

There have been many past discussions of the pairing
potential between electrons. ' If the effective interac-
tion is written as V= u /E(q) then this discussion is about
the possible sign of the dielectric function s(q). Refer-
ences 1 —7 provide the inspiration for the present work.
Many of these papers also discuss the relation of the sign
of the dielectric function to superconductivity. The
present theorem should be regarded as an extension of
these earlier papers, as well as our earlier paper which ar-
gued against a plasmon mechanism for superconductivi-

8

Electrons in metals are described by several possible
basis sets. In the homogeneous electron gas, the eigen-
states are plane waves, and the dielectric function de-
pends upon e(q, co). Previous work' has related the on-
set of superconductivity to whether s(q, O)(0. For a
solid with periodic unit cells, the dielectric function de-
pends upon two wave-vector components e(q
+Cx, q+Cx', co) where G are reciprocal-lattice vectors.
This function has also been discussed with relation to su-
perconductivity.

The other common basis set for discussing electrons is
the tight-binding model. Here the electrons are in orbit-
als on atoms, and motion occurs by weak bonding be-
tween neighboring orbitals. This basis has not been pre-
viously discussed in relation to the sign of the dielectric
function and superconductivity. In prior work, using
other methods, the authors have concluded that it is
quite important to include an accurate description of lo-
cal electron correlation. The tight-bonding model does

this in a natural way. An advantage of this basis is that,
for a single band, the dielectric function again only de-
pends upon a single spatial or wave-vector variable
E(q, co).

Our system is a solid, in either two or three dimen-
sions, with a single conduction band given by the overlap
of s-wave orbitals. We include the hopping term between
neighboring atoms. Electron-electron interactions are in-
cluded between electrons on distant sites VJI as well as on
the same site U= V". Mattis and co-workers have
shown that the effective potential for charge fluctuations
is given by

U iq.R.
OV(q)= —+ g Vjoe

jAO

This interaction is strongly repulsive at small wave vec-
tor. However, it may change sign and become negative
for wave vectors near the edge of the Brillouin zone. We
find that the effective interaction between electrons de-
pends upon the sign of V(q). The first theorem states
that the interaction is repulsive, regardless of the sign of
V(q), if one includes only electron-electron interactions.
The second theorem states that, when including phonons,
the pairing due to charge fluctuations is attractive when-
ever V(q) is negative. These theorems are quite general:
they apply to any lattice, to any kind of phonon force
constants, and to dielectric functions with any kind of
local-field corrections. Their only restriction is to a one-
hand tight-binding model.

The properties of the superconductor are usually well
described by the Eliashberg equations " for the super-
conducting correlation function W(p)

W(p) = —g V,s(q)

w'(p +q)
(p„+q ) Z(p +q) +g~+e+ W(p +q)

Z(p) = l- &(p)
LPn

We use a four vector notation p =(p, ip„) in terms of the
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wave vector p and the complex frequency
ip„=2niksT(n+1/2). The symbol g + denotes the
quasiparticle dispersion in the tight-binding model, while
X(p) is the electron self-energy from the efective interac-
tion V,&. These equations simplify at the transition tem-
perature T, of the superconductor. There the gap van-
ishes (W~O} and one obtains a linear equation for W.
One also uses the normal-state expression for X(p).
Owen and Scalpino showed that the easiest way to solve
the above equations is by staying with imaginary frequen-
cies, rather than continuing the equations to the space of
real frequency. One reason is that most of the quantities
are real when using imaginary frequency. We find that
our discussion of superconductivity is also much easier in
this case.

Here we extend this discussion to the case of tight-
binding models. We must write down a Hamiltonian,
derive the form for the effective interaction V,z, and to
examine whether it can be negative. The first theorem is
that V,z is always positive for any value of four vector q.

The problem is the minus sign in (2). A solution to the
equation requires that one or more of the terms be nega-
tive. If V,z is positive for all values of four vector q, then
a solution is only found if the negative sign comes from
W(p). That is possible, as is discussed in the next sec-
tion.

5E = ——g in[1 —V(q)P(q)]+ln 1+ P(q)—1 U
2 2

q

X(p)= —g G(p+q) V(q)
1 —V(q)P(q)

V(q) + U/2
1 —V(q)p(q) 1+( U/2)P (q)

U/2
1+(U/2)P(q)

(12)

The electron-electron interaction has been separated into
charge Auctuations and spin fluctuations. We assume
that these contributions are independent and do not mix.
This assumption underlies most theories of electron
correlation. In the present model it is true for random-
phase approximation (RPA)-type theories, as well as
those including Hubbard corrections. In writing expres-
sions such as p,p, we omit the contribution of a particle
interacting with itself. With this form for the interaction,
we give the expressions for the change in ground-state en-
ergy, the self-energy X(p) in the normal state, and for the
effective interaction in the gap equations. We follow
Mattis and employ the screened-exchange approxima-
tion

II. EXTENDED HUBBARD MODEL

Here we consider only electronic contributions to the
effective interaction, and discuss phonons in the following
section. The model will be an extended Hubbard model
for a single band

H =g W(5)CJ+s, C~ + Up njtn~~+ g njn&V«,
j5' j j+l

n C CJ

(4)

(5)

H =g gk Ck~Ck~
ko.

+ g V(q)p (q)p ( —q) ——p (q)p ( —q) . ,
1 U

q

p (q)=g C„+~ C„
kyar

p, (q) =g crCk+q Ck
kcr

(8)

(9)

(10)

7lj = llj~,
a=+

p(r))p(r2)
V( —e dr)dry +R

~

~

) r) —r~+ Rj(

The onsite Coulomb repulsion is U while the Coulomb in-
teraction at different sites is labeled Vj&. Both depend
upon the charge distribution p(r} from the orbitals at one
site. In the one-band model we assume there is only one
site per unit cell of the crystal. We convert the operators
to collective coordinates of wave vector, and write the
Hamiltonian as

V(q)+ U/2

[1—V(q)P(q) ][1+( U/2)P(q) ]
(14)

Note that the spin Quctuations have different signs in the
contribution for the electron self-energy and for the
effective interaction in superconductivity.

The electron polarization operator P(q) is defined and
discussed below. In a simple model it could be RPA, but
it could also include Hubbard-type local-Geld corrections.
Our theorem includes both cases.

Now we show that V,z & 0 for this form of the interac-
tion. This proof relies on three assumptions:

V(q)+ —& 0,U
2

(15)

P(q, iq„) &0,

1+ P(q) &0 . —U
2

(17)

The first assertion (15) was proved by Mattis. Starting
from the definitions of U and V

&
one can show that in

three dimensions

4~e'I&(&+q) ~'Vq+ —=
V, ~G+q~'

A(Cr+q)= fdre"' +&'p(r),

where Cx are the reciprocal-lattice vectors of the solid.
The right-hand side of (18) is positive, which proves (15).
A similar proof applies to two dimensions for any distri-
bution of charge p(r). A simple result is obtained when
the distribution is a three-dimensional Cxaussian
p(r)=exp( r /b )/(&~b)—
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U 2ne erfc(IG+qIb/ 2)
2 ~, fa+qI

(20)

The interesting aspect is that V(q) can be negative for
large values of wave vector. However, the combination
of V(q)+ U/2 must always be positive. The symbols Vo
in (18},and Ao in (20}, are the volume and areas of the
crystal unit cell.

The second assertion (16) we discuss below. The third
assumption (17) is that the system of electrons is nonmag-
netic. Reversing the inequality in (17) is an indication
that the system prefers the electrons to be magnetically
ordered. We assume that this is not the case.

If we assume the validity of (15)—(17) then we can
write

V(q)+ —P &0,U
2

(21)

1+ P& 1 ——V(q)P .U
2

(22)

The second equation follows immediately from the first.
Since we assume that the system is not antiferromagnetic
then we combine the inequalities

0& 1+ P& 1 ——V(q)P .
2

(23)

P(q, iq ) = ——f dre ( T,p, (q, r)p, ( —q, O) )
0

(24)

P(E —E )

"I & n Ip, (q) lni ) I' .
'

nm &qm+En —Em

(25)

R (q, co)sinh(Pco/2)dc'
00 lcm CO

(26)

R(q, co)=—g e "
I
(n Ip, (q)Im ) I'

V„

X5(co+E„E). — (27)

We have used the fact that p, (q) =p, ( —q). It is obvious
that the kernal R (q, co} is positive or zero for all values of
frequency m. Next, it is easy to prove that

R(q, co)=R( —q, —co) . (28)

The proof just involves interchanging dummy variables n

We have proved that both factors in the denominator of
V,s in (14) are positive. The numerator is positive. So we
have proved that V,z is positive, which is the theorem.

This proof does not rely on the specific form for the
band dispersion. The theorem is valid in two and three
dimensions, and also for layered solids. Neither do we
assume any specific approximation for the electron polar-
izability P(q) The theo. rem is valid even if one includes
contributions such as Hubbard-type local-field correc-
tions.

Now we prove (16). Start with the definition and inset
various exact eigenstates

I
n ) and

I
m ) of the Hamiltoni-

an"

&0.P
1 —V(q)P

(30)

This has two possible solutions. The first is P &0 and
1 —V(q)P &0. This is in accord with (23), since we as-
sumed that P & 0 in proving that 1 —V(q)P & 0. So P & 0
and 1 —V(q)P & 0 are consistent statements.

The other case has P &0 and 1 —V(q)P &0. We be-
lieve it is inconsistent, since if P changes sign then
1 —V(q)P does not change sign at the same place. Since
P &0 at the origin (iq„=O,q~O) and it cannot diverge,
then it gets to positive values by going through the ori-
gin. For infinitesimal positive values one would have that
P &0 and 1 —V(q)P & 0 which contradicts the above re-
quirement.

Note that Hubbard-type corrections to the dielectric
function do not change this result. They serve to modify
the value of P (q), but do not change its sign.

We have shown that V,z is always positive for all
values of (q, iq ) for any one-band tight-binding model of
electron-electron interactions. In deriving this result we
make several assumptions: (i) The metal is paramagnetic,
so that 1+UP/2 &0; (ii) There is inversion symmetry so
that P( —q, iq )=P(q, iq ). Then the result is true for
any tight-binding model which involves only one band.

We have shown that tight-binding models require that
the effective electron-electron interaction in the Eliash-
berg equation is always positive. In order to have a su-
perconductor, one must have a solution to (2), which
means one must find a minus sign someplace. Three ways
have been suggested for finding this sign.

(1) The gap function 8'(p, ip„) could vary in sign as the
direction of the wave vector p changes around the Fermi
surface. For the cuprate superconductors, where the
conduction is largely two dimensional, it has been sug-
gested that the gaps have d-wave symmetry. Another
way is to have a very anisotropic s wave, with nodes, as
we suggested before. Many experiments have been done
to test this hypothesis. '

(2) There has been continuous development' ' of the
idea that plasmons could be the intermediate boson
which pairs the electrons in the superconductor. Most of
these theories have used an effective interaction V,~
which is strictly positive, and assumed an isotropic gap.
Sham and co-workers' ' have suggested that the sign
change occurs because IV(p, ip„) changes sign as a func-
tion of ip„. Recent work' ' ' ' on plasmon mechanisms
includes local-field corrections, which considerably
reduce T, or even eliminate superconductivity.

and m in the definition of R (q, co). We assume the lattice
has sufficient symmetry that P( —q, iq ) =P(q, iq )

which means that R( —q, co}=R(q,co)=R(q, —co). So
we have proved that R(q, co) is symmetric in frequency if
the lattice has a center of symmetry. In this case we can
write

P (q, iq ) = 4—f dc@ sinh(Pco/2)R (q, co) z . (29)
CO +pm

This proves P(q) & 0 since all factors in the integrand are
positive. In the screened-exchange approximation, we
have that
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(3) The third possibility is that phonons could change
the sign of the dielectric function. The spin Quctuation is
a single site term, and is unaffected by phonons. The
effective screening for charge fluctuations is changed

V(q) V(q)
1 —V(q)P 1 —V(q)P+ e~„

g, (q)

V(q) ~
co (q) +q

(31)

(32)

g, (q) =2';(q) ~M (q) ~2 . (33)

At first sight this change appears to makes the dielectric
function for charge Auctuations more positive since the
phonon term c h appears positive. However, the phonon
frequencies co (q) which appear in this expression are not
the physical ones measured by neutron scattering or x
rays. Instead, they are the phonons calculated without
the benefit of electron-electron interactions. They are un-
screened. Since they are not the physical frequencies,
they may have unphysical properties. Reference 3
discusses the possibility that co (q) & 0 which could make
the phonon term attractive at imaginary frequencies.
This contribution, if large enough, could make V,z &0 at
zero frequency. This is the basis of the phonon theories
of superconductivity. They work if the unscreened pho-
nons have co~(q) &0.

In the cuprate superconductors, the phonons are mea-
sured in the antiferromagnetic state, which is an insula-
tor, where there is no screening from charge fluctuations.
Here all of the phonons have positive frequencies, as re-
quired by crystal stability. The superconductivity state is
achieved by doping the sample to make it conducting.
According to the phonon scenario, this doping must
cause a lattice instability for the unscreened phonons.

5 p5„„=g S „(q~KK")&„p(q~K"K'},
PK

e (KIqj)ep(K'Iqj)
=&~p(q KK') .

J COJ.

(3&)

(36)

The matrix % p is the inverse of the phonon force ma-
trix. The usefulness of this result arises when we realize
that we can write the numerator in (32) as

g, =fe w/', (37)

E~h(q, 0)= 1

V(q) J coJ
r

(38)

=w' 1 'w
V(q)2)'

(39)

u (l,K)= g Q (K~qj}e (40)

p2
H „=g " +— g Q (K~qj)2) p(q~KK')Qpt(K'lql')

IK K aPqKK' jj'

The vector w(q) is the force on an electron due to an ion
displacement. Vectors are in a space given by (a, K): the
spatial direction and ion in the unit cell. The dot product
of two vectors is over this space.

We see that we can write the phonon part of the dielec-
tric function, at zero frequency, in terms of simple vec-
tors and matrices. Now we have to decide the proper
form for the factor 2)' which enters the above expression.

The ion displacements can be expressed in terms of col-
lective coordinates Q~(K~qj). Two terms in the Hamil-
tonian are of interest: the quadratic term in Q for the
phonon dispersion, and the linear term in Q for the
electron-phonon interaction. They can be written as

III. PHONONS

+ g p, (q)Q w(q) .1

N q

(41)

co~e (K~qj)=+2) p(q~«')ep(K'~qj) .
PK'

(34)

The function g(q) does not contain the frequency and
it must be positive. However, the factor V(q) could be
negative at large q, which would make the phonon term
negative even for co (q) )0. Here we wish to develop
this idea further. We prove our second theorem, which is
that the denominator in (31) is negative at zero frequency
when V(q) &0.

We adopt the notation of Ref. 22 for the phonons. Let
8 (l, K) be the displacement of the ion in cell l at site K in
the direction a. Similarly, e (K~qj) is the unit vector
which gives the displacement of ion ~ in the direction a
for the mode (q,j) where j denotes polarization. These
unit vectors are an orthonormal set. The eigenvalue
equation for the phonon modes are given in terms of a
symmetric force matrix 2) p as

Starting from this type of phonon Hamiltonian, Ref. 11
describes several ways of deriving the form for c h. The
easiest method is just adding the electron-phonon interac-
tion to the electron-electron interaction for charge Auc-
tuations. That is, combine the second term in (8) with
the above terms in the following combinations:

V= —g V(q) +
N V(q)

Pc + Q.w
~N V(q)

+—$Q. &—— Q.1 WW

2
q V(q)

In this derivation, the expression for c. h has precisely the
form given in (32), where the phonons have as their
effective force tensor the quantity in the last term of the
above equation. At zero frequency we derive an expres-
sion for the total dielectric function for charge Auctua-
tions

Divide this expression by co., multiply by e„*, and sum
over all phonon modes j. One then produces the identity

E= 1 —V(q)P+w. 1 'w
V(q)2) —ww*

(42)
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The last term is from the phonons, and contains in the
denominator the inverse matrix from the effective force
tensor. Another method in Ref. 11, of finding the pho-
non part of the dielectric function, proceeds by treating
the electron-phonon and electron-electron interactions as
perturbations. This method yields the expression

w ( I/2)). w'

V(q) —w ( I /$). w'
(43)

The above two exPressions for mph are equal.
Equation (42) vanishes when V(q) =0. In that case the

phonon term is minus one, which cancels the first term.
This result is the basis for the second theorem. The
dielectric screening for charge fluctuations vanishes when

V(q) =0.
The Coulomb part of the effective interaction can be

written as

V(q)
1 —V(q)P+s h

(44)

When V(q)~0 at zero frequency then both numerator
and denominator vanish. Using L'Hopital's rule, the ex-
pression becomes

Vph
lim V, =
V=0 ph

1
V z(q, O) = —w. —.w',

(45)

(46)

/e. w/'
V h(qiq )= —g 2 z

j ~J q +qm
(47)

Equation (45) is Dyson's equation for the phonon Green's
function. The frequencies co (q) are calculated with the
phonon force matrix 2). It is the correct interaction, for
charge fluctuations, in the absence of electron-electron
interactions. In the present example, electron-electron
interactions are absent at those values of wave vector
where V(q)=0.

The condition of having V(q)(0 is easy to achieve.
For example, take a square lattice in two dimensions.
The largest wave vector is qa=m. (+1,+1)/a where a is a
lattice constant. Assume that the local charge densities
are three-dimensional Gaussians. Then using (20) it is
easy to show that V(q0) (0 for b )0.25a. The numerical
factor of 0.25 comes from a summation over reciprocal-
lattice vectors in two dimensions.

The interaction V(q) is strongly repulsive at small
wave vector. If it is negative near the zone edge or
corner, then it changes sign by going through zero. In
this case there is a surface in the Brillouin zero where
V(q)=0 and there are no electron-electron interactions.
On that surface (45) is the correct expression for the pho-
non Green*s function. These phonons are the physical
ones which are measured by x rays or by neutron scatter-
ing. For physical phonons, the right-hand side of (45) is

negative at zero frequency, which requires that Vph &0
and VphP & 1. Thus we have shown that the charge fluc-
tuations give an attractive interaction whenever V(q) =0.
We assume that the interaction continues to be negative
when V(q) (0, although we have no proof of this latter
assumption.

The important question is whether the effective in-
teraction is attractive. When V(q) (0 does the attractive
charge fluctuation overcome the repulsive spin fluctua-
tion? For V(q)=0 we can write

V h+ U/2

y(q~)=0 (1—V„hP)t 1+(U/2)P]
(48)

We have shown that both factors in the denominator are
positive. However, we have found no theorem relating
the two terms in the numerator. The phonon force ten-
sor 2) has an inverse factor of the ion mass. We have ab-
sorbed into w an inverse factor of the square root of the
ion mass. Thus V~h(q, O) does not have a factor of the
ion mass, and contains only electronic energies and
forces. Thus this factor should be a similar size to U, but
of the opposite sign.

IV. DISCUSSION

Here we have proved two theorems concerning the
effective interaction between electrons in superconduc-
tors. The theorems apply only to metals which are well
described by a one-band tight-binding model. Our model
and theorem do not apply to metals such as tin and
aluminum, which are described well by the nearly free-
electron picture.

One theorem showed that the effective interaction was
always repulsive when one considered only electron-
electron interactions. In the second theorem, we also in-
cluded phonons in the interaction term between elec-
trons. The second theorem is that the interaction due to
charge fluctuations could be attractive for wave vectors
near the edges or corners of the Brillouin zone.

We conclude that the interaction between quasiparti-
cles is attractive for large wave vectors: those near the
corners of the Brillouin zone. In this case the interaction
is most attractive for electrons on scattering to opposite
sides of the Fermi surface, and it is repulsive for scatter-
ing by small wave vectors. Earlier we constructed a
theory of superconductivity which utilized this behavior.
Nonzero solutions to the gap function were found only
near to the van Hove singularity in two dimensions.
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