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We explore the interplay between various interaction and hopping terms, in particular the e8'ect of
O-O hopping, t» on the charge instabilities and phase separation in the three-band extended Hubbard
models. Within a weak-coupling mean-field approach, we find that in two dimensions (2D), t» moves
the phase separation boundary appreciably to higher dopings. This would increase the window of dop-
ing over which charge-transfer-mediated superconductivity can occur. Considering a larger phase space,
we also obtain a more complete picture of the coexistence lines and spinodal decompositions, and deter-
mine the charge-transfer-instability critical point. We also consider the 1D case: t» is found to play a
similar role, but the phase separation occurs at significantly lower dopings compared to 2D. This may
be of interest to recent Monte Carlo calculations.

I. INTRODUCTION

In trying to arrive at a clear understanding of the insta-
bilities of a system, it is natural to ask about the nature of
incipient phase transitions, and whether the system
would be in homogeneous or in coexisting phases. This is
especially important for constructing a meaningful phase
diagram of a system with competing instabilities. Gen-
erally, if two phases of a system have different symmetry,
they are completely separated by a line of transitions, as
for liquid and solid. The situation is different if there is no
change in symmetry between the phases, as in the liquid
and the gas phases in a Van der Waals Auid. As is well-
known the first-order phase transition from the liquid to
the gas phase ends in a critical point, as may be seen, for
instance, on a pressure-temperature (p T) phase di-a-

gram. ' It is evident from the corresponding pressure-
molar volume (p-V) diagram that a part of the p-V phase
space is physically disallowed. In this region, instead of a
single phase with a well-defined molar volume, the system
separates into two coexisting phases with different molar
volumes. The physical isotherm is then obtained by en-
forcing thermal and mechanical equilibrium. While in
general it is not a priori clear if a system will undergo
phase separation, it is expected if there is a first-order
transition. Our study here will be concerned with an
analogous situation that can arise in the extended Hub-
bard model for correlated electron systems.

In recent years there has been a tremendous interest in
understanding the instabilities that may exist in correlat-
ed electron systems. Interacting electrons in solids are
sufficiently screened from each other so that the underly-
ing Coulomb interactions are often approximated by a
shorter-range interaction. Accordingly, some variant of
the Hubbard-Anderson models with on-site interaction
is expected to contain the key physics of correlated elec-
tron systems such as the transition metal oxides, high-T,
cuprates, etc.

With the discovery of the high-T, copper oxides, the

study of Hubbard-like models have intensified greatly.
The high-T, cuprates exhibit diverse behavior as a func-
tion of doping: insulating, antiferromagnetic, metallic,
superconducting, and possibly novel non-Fermi-liquid
features. A significant theoretical effort has been devot-
ed to modeling the Cu02 layers that form the basic build-
ing blocks of the cuprates. A large fraction of these cal-
culations are within the framework of the two-
dimensional (2D) single band Hu-bbard model for on-site
repulsion on Cu, or within the t-J model. While these
models have had a fair amount of success with the mag-
netic properties, especially at —,'-filling, they do not ac-
count for charge Quctuations on the same footing as spin
excitations. Moreover, since the cuprates are low-density
and essentially 2D systems, they are expected to be less
screened than in usual 3D solids, so that the underlying
interaction may be long-ranged. The three-band extend-
ed Hubbard model has been proposed ' as a minimal
model for describing the physical properties of these sys-
tems. Due to the presence of both intrasite and intersite
interactions, the extended Hubbard model lends itself to
a rich variety of competing instabilities and phase transi-
tions. In special limits this model reduces to the t-J mod-
el or to the single-band Hubbard model.

The importance of nearest-neighbor Cu-0 repulsion
and on-site repulsion on Cu and 0 sites, for various
charge and spin collective modes and instabilities, have
been investigated both in the weak- ' and strong-
coupling' ' ' limits. Weak-coupling RPA calcula-
tions" ' have shown that a strong nearest-neighbor
repulsion is important for different charge instabilities of
the model. As we discuss later, for fairly large dopings
the dominant instabilities are known" to be the charge
transfer (CTI) and valence (VI) instabilities, which are
driven by interband coupling induced by Cu-0 interac-
tions. It has also been suggested that for Cu-0 com-
pounds, where the Cu and 0 orbital energies are close to
each other, and the nearest-neighbor repulsion between
them exceeds the Cu-0 hybridization, extended s-wave or
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d-wave pairing may be enhanced close to the charge-
transfer instability. Subsequent detailed BCS (Ref. 8) and
strong-coupling Eliashberg calculations' have shown
that the interband charge-transfer resonance (CTR) or
exciton can mediate an extended s-wave pairing with high
transition temperatures. Strong-coupling (I/N expan-
sion) calculations' in the same model have since pointed
out that the CTI is necessarily accompanied by a diverg-
ing uniform compressibility of the system. Then the pair-
ing mediated by the CTR could be preempted by the oc-
currence of a charge phase separation in the region of
doping where the pairing with the highest T, 's had been
found earlier. ' Subsequent weak-coupling mean-field
(Hartree-Fock) calculations' are in agreement with this
result. However, it is important to note that the effect of
0-0 hopping has not been taken into account in previous
calculations. In addition, it is dificult to make quantita-
tive comparisons since the collective boson used in the
pairing calculations was obtained from a detailed RPA
calculation on a lattice, and hence went beyond the static
Hartree-Fock approximation.

In this paper, we carry out a detailed analysis of the
charge instabilities of the three-band extended Hubbard
model within a weak-coupling mean-field approach and
reexamine the issue of charge phase separation. Thus we
extend previous work' and study the interplay of various
interaction and hopping kinetic-energy parameters. In
particular, we examine carefully the effect of 0-0 hopping
on the charge phase separation. In so doing, we have at-
tempted to provide a physical understanding of phase
separation in this model by drawing analogy with the
phenomenon in other systems. We find that the model ex-
hibits a first-order transition line of valence instability (at
constant density), ending in a "critical point. " As in the
case without 0-0 hopping, we also find a locus of
charge-transfer instability (at constant chemical poten-
tial), that coincides with the line of divergent compressi-
bility. In agreement with previous findings, ' ' we find

that the system separates into coexisting phases with
different valences, i.e., different Cu and 0 occupancies.
The phase-separation boundary surrounds both the VI
critical point as well as the line of CTI. But one of the
main points we want to make here is the significant role
that 0-0 hopping plays in determining the location of
the instabilities and the region of phase separation. This
is important to the question of pairing via charge excita-
tions. The phase-separation boundary is shifted by an ap-
preciable amount to larger dopings, away from the re-
gime where superconductivity was obtained in earlier cal-
culations. "" This is to be contrasted with previous
weak-coupling results. '

We also explore a larger parameter space than previ-
ously studied so as to examine more completely the re-
gion of phase separation, and the spinodal lines. This en-
ables us to locate the CTI critical point, distinct from the
VI critical point. We comment on the possible dynamics
of the nonequilibrium phenomena to be expected from
such a model system at dopings in the phase-separation
region.

In addition to the two-dimensional case in Sec. II, we
also consider the one-dimensional extended Hubbard
model in Sec. III. The findings are similar to that in 2D,
except all the phenomena occur at a substantially lower
doping. This may be of interest to recent Monte Carlo
calculations of pairing in 1D. '

II. STUDY OF THE 2D CASE

A. Extended Hubbard model and mean-Seld approximation

We begin with the Hamiltonian for the 2D extended
Hubbard model defined for the d 2 2 orbital on Cu andx —y
the p„and p orbitals on the corresponding two 0 atoms
in the unit cell (Fig. I shows a unit cell in the copper-
oxide layer):

x x y y 0 xf yH= g t (d; p"'~+H. c. )+edgd; d; +e'g(p" p" +p.j' p.J )+t' g (p pP ~ +H.c. )+Udge(nz )(nd )
(ij ),a 2

+ U g[(n" )(n ) +(nz~ )(n~ )]+V g nd n
J ij,o cr'

The vacuum is taken to be the usual d '
p

configuration. Thus the d; (d; ) operators are the
creation (annihilation) operators for holes in the d 2

orbitals of Cu atoms while p and py are the corre-
sponding operators for the p„and p orbitals on the 0
site. o is a spin index and (i,j ) is the nearest-neighbor
sum; E'p and ed are the atomic levels on 0 and Cu, respec-
tively; the occupation numbers per spin, nd =d; d; and

l 0'

n~' =p~"' pj . t,'- is the Cu-0 hybridization energy and
corresponds to the overlap of the Cu and 0 orbitals. As
can be seen from Fig. 1, the difference in symmetry be-
tween the Cu d and 0p orbital is such that t,'. , which cor-
responds to the overlap integral of Cu and 0 orbitals,
takes the values +t'd alternately within a layer. Also in-

I

eluded in H are the on-site repulsions Ud and U for
holes on Cu and 0 sites, respectively, and the repulsion V
between nearest-neighbor holes on the Cu and 0 sites.
Finally, t' represents the oxygen p„-p hybridization en-
ergy and causes hole hopping between the two nearest-
neighbor oxygen sites. As we shall show, the inclusion of
t ~ is very important for the location of the instabilities
and phase separation in this model.

In order to obtain the band structure for the model, we
Fourier transform the Hamiltonian in the usual way by
introducing Wannier functions. Diagonalization of the
noninteracting part of H in the Wannier basis yields the
usual tight-binding bands: antibonding (AB) band, bond-
ing (B) band, and a mixed band. In the absence of t~~, the
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0

FIG. 1. Schematic diagram of a unit cell in
the Cu-oxide layer showing the orbitals, their
symmetries, and the hybridizations t» and t~z.
a is the distance between any two neighboring
Cu or 0 sites.

0

A, .=—~ 2a cos sin
1 —I

l 3 2(x
3+g,. +

where a=+(3a +3bt »+e, ), and

02
P= —9a e, —2e, 9b ( 2t»» e,—+6—tz& ),

with

and

a =4t~& [sin (k„a/2)+sin (k»a /2) j,

b =16t»» sin (k„a/2) sin (k a/2),

g; = —n. /6, n./2, —5n./6,

mixed band reduces to the usual fiat nonbonding (NB)
band. The eigenvalues corresponding to the three bands
are

variational wave functions ~g(e, t»~, t»») & where ~f& is the
ground state of the noninteracting part of the Hamiltoni-
an with renormalized e, and t'&. For the bonding band
( A A 3 ), the resulting variational wave function is

x~14'(~', t»g, t»») & =II(ukdk. +Ukpk. +wkpE )Io&
k, a

with ukuk +vkvk +wkurk =1, and uk, vk, and wk to be
determined. An equivalent approach to direct minimiza-
tion of energy is to linearize the interaction terms in the
Hamiltonian by making the Hartree-Fock approximation
and then calculating the number densities self-
consistently. This entails replacing two of the four-
fermion operators, i.e., products of the type a~a by their
averages (a a &. Only the expectation values that con-
serve hole numbers survive. All others average to zero.

The mean-Seld "self-consistency" equations can then
be shown to be

respectively, for AB, mixed, and B bands. e, =op —
e&

denotes the energy difFerence between the 0 p level and
the Cu d level in the absence of any interaction. The oxy-
gen level lies higher than the copper level, and the refer-
ence level is chosen such that e» =e'/2= —ez. The first
Brillouin zone is defined by ~ k„» ~

~ n. /a.
As in Ref. 17, we work in the hole picture, i.e., within

the lowest-lying bonding band; the insulating half-filled
state then corresponds to one hole per unit cell. In this
scheme, inclusion of the interaction terms in the Hamil-
tonian renormalizes the orbital energies E'p and e&, and
the p-d hybridization energy t'&. The renormalized ener-
gies can be obtained by minimizing (H & among a class of

0
U

E' =E' + p
p cf 4

1+v
2 2

U~ U
(4)

and

2it»„=2it'z+ V( (p„d &
—(p d & ),

where ( nz &
=gk uk uk ', ( n» &

=
—,'( ( n» & + ( n»» & ) with

(n,"&=y„u„uk and (n & =gzwkwk ', and

(d p„» & =1/csin(k„'»a/2)uk yk
k'
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where yk. =uk (wk. ) for the p„(p ) orbitals; 5 is the hole
doping, and (1+5)/2=(nd)+(n ) is the total hole
density. All the energies are in units of tpd It is impor-
tant to note that the O-O hopping t' manifests itself in
the expectation values (nd ), (nz ), (d p„,, ), etc.

B.Charge instabilities

The renormalized Cu-0 energy difference 'E E'p E'd

controls the valence of the system. This together with the
renormalized bandwidth t d, and the O-O hopping t' are
important for studying the instabilities of the model. t
is not renormalized since the Hamiltonian does not ex-
plicitly contain an interaction term for the repulsion be-
tween the nearest-neighbor oxygen, i.e., an interaction of
the type Vpp.

On solving numerically the mean-field self-consistency
equations [Eqs. (4) and (5)], as in Ref. 17, we find that the
renormalized level e may not necessarily be a single-
valued nor a continuous function of the parameters. For
a fixed V, U, Ud, e„and t', with increasing doping 5,
the valence becomes unstable, i.e., e jumps discontinuous-
ly to a negative value. This discontinuous jump could al-
ternatively be seen on a plot of e vs e', wherein the jump
appears as e' is reduced at fixed doping (Fig. 2). The
jump in e is associated with an abrupt change in the rela-
tive occupancy of Cu and 0 orbitals. This has been
termed" ' valence instability, VI. At this point the
valence susceptibility, defined as the charge-transfer sus-
ceptibility (CTS) at constant density and given by

B(n~ —nd)
X$

—10—

t' =0
PP

-----t = 2
0
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I
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FIG. 3. (a) Effect of O-O hopping (tpp). Shown is the varia-
tion of e with doping 5. The discontinuity in e moves to higher
dopings as tpp is increased. V=2.5, Ud =3, Up =1, and e, =1.1.
(b) Position of the discontinuity in e as a function of tpp The
figure shows how this discontinuity saturates for low values of
tpp in the 2D case.

diverges.
Some of the features of VI have been discussed previ-

ously. ' ' Here we shall focus on the effect of O-O hop-
ping. Its effect is to push the VI to higher dopings. This is
shown in Fig. 3(a) for a representative value of tz =0.2.
The location of VI, 5vi shows signs of fiattening as t~z is
increased to values of t' =0.35 [Fig. 3(b)]. The O-O hop-
ping also tends to act counter to the effect of V, the
nearest-neighbor repulsion between Cu and O. In the ab-
sence of t', increasing V pushes the system towards the

VI instability at lower dopings. Consequently, at a fixed
hole density, for a nonzero t', a larger V is needed to
drive the model to the instability at the same doping; see
Fig. 4. Thus the role of tpp is similar to that of Ud and
opposite to that of V.

The collected mode associated with VI has the full A
&

symmetry of the underlying lattice. " Hence the VI line,
obtained from examining the instability at different dop-

10

0—

=0; V=9.5
PP

—10 -10—

—15
0.5 1 ' 0 1.5

O, P.

I

0.4
I

0.6 0.8 1.0

FICx. 2. Discontinuous jump in e as e, is varied at a fixed
doping (5=0.7). V=2.5, Ud=3, Up=1, and tpp 0 2.

FIG. 4. Effect of Vin the presence of tpp Up 3 Up 1, and
e, = 1.1. The system becomes unstable at a higher V in the pres-
ence of tpp.
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ings, 5, is not expected to be symmetry breaking, and the
transition is necessarily first order. The VI line is shown
in the e'-5 plane in Fig. 5; it ends in a "critical point"
(evi, 5vi). At the VI line e, obtained from the mean-field
equations [Eqs. (4) and (5)] is multivalued; the solution
that minimizes the free energy has been chosen to be the
physical one. In Fig. 5, moving across the VI line in e,
at a fixed doping, the valence e jumps discontinuously, as
shown in Fig. 6. If e' is reduced beyond the VI critical
point, the valence becomes a continuous function of dop-
ing, as also shown in Fig. 6. Comparison of the VI lines
for t' =0 and 0.2 in Fig. 5 shows that it is moved to
higher dopings by a nonzero O-O hopping.

To appreciate related instabilities in the system, it may
be observed that although the VI line is not symmetry
breaking, an appropriately constructed free energy
should contain coupling to all degrees of freedom having
the same symmetry, as well as to n«, . Following Little-
wood, ' the fluctuating part of the free energy, expanded
about the equilibrium may be written as

FIG. 5. Phase diagram for the 2D model in the e, -5 plane for
V =2.5, Uq =3, U~ = 1, and e, = 1.1 for t~~ =0 and 0.2. Shown
are the valence instability (VI) lines ending in critical points, the
CTI lines, and the phase-separation (PS) lines for both values of
t~~. The points marked by the square and the triangle corre-
spond to the points on Fig. 8 and are obtained from Maxwell's
construction.

is the previously defined valence susceptibility or the CTS
at constant density, p is the chemical potential, a the
compressibility in the absence of coupling to charge
transfer, and a a coupling constant. As one approaches
the VI critical point, y& diverges. But due to coupling,
the instability of the model can occur when CTS at a con-
stant chemical potential (y„) diverges, i.e.,

' —a'~ 0 . (&)

This divergence of y„, termed charge-transfer instability,
is accompanied by the divergence of the uniform
compressibility, a=dn„, /dp. The locus of such points
on the phase diagram (Fig. 5) defines the metastable spi-
nodal line along which y„and the uniform compressibili-
ty diverge simultaneously. This had been arrived at by a
difFerent argument in previous work' ' that did not in-
clude t'. In addition to the VI lines, Fig. 5 also shows
the CTI lines for t' of 0 and 0.2. It is evident that t'
moves CTI to higher dopings as well.

C. Phase separation

The issue of the accompanying phase separation can be
readily understood on considering the behavior of p with
5. ' As shown in Fig. 7, the behavior of p with respect to
5 is similar to that of e; it becomes continuous beyond the
VI critical point. In the continuous region, the diver-
gence of y„can be obtained by looking for dopings where
dp/dn«, =0, i.e., where the compressibility diverges.
Figure 7 shows that beyond the discontinuity in p or
beyond the point at which dp/dn„, =0 (for the dashed

10

—6—
2

=.70

—10
0 ' 2 0.4 0.6 0.8 1.0

I I

0.5 1.0 1.5 2.0 2.5 3.0
6

FIG. 6. Variation of e as a function of 5 for two values of e, .
The Sgure shows the discontinuity in e disappearing as the criti-
cal point is crossed. Here V=2.5, Uq=3, U~=1, and t~~=0.2.

FIG. 7. Variation of chemical potential with doping for
V=2.5, U&=3, U~=1, and tpp 0.2. The discontinuity in p
disappears as the critical point is crossed.
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7.0
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E:.70

5.0
2.5 3.00 0.5 1.0 1.5 2.0

FIG. 8. Maxwell's construction in the p-5 plane. V=2.5,
Ud =3, U~ =1, and t~~ =0.2. A and B represent the two equal
areas. The triangles mark the points where the compressibility
diverges and the squares denote the boundary of the unstable
part of the p vs 5 curve.

curve), the chemical potential decreases with increasing
doping. The compressibility is thus negative and signals a
charge phase separation in the model. This is reminiscent
of the case of a Van der Waal's Quid. ' There in the p-V
plane, the isotherms exhibit nonanalytic behavior at the
boundaries of the two-phase (liquid and gas) region. But
as an artifact of the Van der Waal's equations being ana-
lytic throughout the two-phase region, the liquid phase is
continued into the region of the phase diagram where it is
in fact metastable or even unstable. In other words, the
isothermal compressibility, ~T= —I/V(d V/dp)T &0.
This is because global equilibrium conditions had not
been ensured from the outset. The horizontal physical
isotherm is properly constructed by enforcing thermal
and mechanical equilibrium, which is tantamount to per-
forming a Maxwell equal area construction in the p-V
plane. Analogously, here a region of p-5 phase space is
disallowed, and the corresponding Maxwell construction
has to be carried out in the p-5 plane. This is shown in
Fig. 8 for a set of parameters. A and B represent the two
equal areas. The triangles represent the points at which
the compressibility diverges, whereas the squares denote
the lower limit of the unphysical part of the p vs 5 curve,
and thus lie on the phase separation line. These are
shown on the phase diagram, Fig. 5.

Insight into the model in general may be gained by ex-
amining a more complete phase space. For this, though,
the numerical values of e, and 5 has to be extended to
ranges that are unrealistic for the cuprates. This is
shown in Fig. 9 for t' =0.2. Here the t' WO part of the
phase diagram from Fig. 5 is repeated showing both the
charge-transfer instability and the valence instability, in-
cluding the VI critical point (solid circle) at lower doping.
In addition, the large-5 part of the phase-separation dia-
gram is also shown. It should be noted that in this region
we find the CTI critical point, distinct from the VI criti-
cal point; this is indicated by the solid square at
(5=5,=1.96, a=co= —1.317), so that at e, e&'„no
phase separation occurs. For e, & e„ the solid lines indi-
cate the two states that form as phase separation occurs.
The dashed lines are spinodal lines since the regions be-

3.00

1.75—

0.50—

—0.75—

—2.00
0 0.5 1.0 1.5 2.0 2 ' 5

FIG. 9. A more complete picture of phase separation in the
2D extended Hubbard model. The parameters are those of Fig.
5, and t~~ =0.2. The solid lines represent the phase-separation
boundary, ending at the CTI critical point (5, = 1.96,
e', = —1.317), denoted by the solid square. The dashed lines are
the metastable spinodal lines. The first-order VI line that divides

two metastable regions is indicated by "VI;" it ends in the VI
critical point (5vI=0. 63, e»=1.01), shown as a solid circle.

tween the solid and dashed lines are metastable: these
states have higher energy than the phase-separated states,
but still have a positive compressibility. The region en-
closed by the dashed lines is completely unstable (i.e., the
compressibility is negative). Note that at large e„ this
unstable region collapses, and the first-order VI line (also
shown in Fig. 9) divides the two metastable regions. An
example showing the consequence of the phase separation
may be found by choosing a fixed e, =0.4. A system
doped so that 5& =0.596 & 5 & 5z =2.265 will separate
into inhomogeneous configuration where some regions
have 5& and others 52. The relative volumes of the sam-
ple having 5j and 52 are such that the average doping is
5. The actual configuration that results will be deter-
mined by the dynamics of the phase separation and the
interfacial surface energy considerations.

In is instructive to compare the phase-separation (PS)
line for a nonzero O-O hopping with that for t' =0. As
evident from Fig. 5, the PS boundary moves by an appre-
ciable amount to higher dopings for a modest tpp 0 2.
Generally, the phase separation, as well as the charge in-
stabilities of the model, are found to be very sensitive to
O-O hopping. As opposed to V that promotes charge
segregation, including t' in the model promotes charge
uniformity. Earlier calculations, ' that did not include
O-O hopping, found that in the weak-coupling limit, the
extended s-wave pairing region lies within the thermo-
dynamically disallowed region. To properly compare
with these results, we use the same set of parameters used
in those calculations, and reconstruct the phase diagram
shown in Fig. 10. We find that, as in our previous case
(Fig. 5), the PS boundary is moved to higher densities
even in the presence of a modest t p. This increases the
window of doping over which charge-transfer-mediated
superconductivity can occur, and in fact the pairing re-
gion is found to lie well outside the region of phase sepa-
ration. It must however be pointed out that the super-
conductivity calculations' were done using the random-
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FIG. 10. Phase diagram for the 2D case for tpp =0 and 0.2,
for another set of parameters, namely V=1.8, Ud=2, and

Up =0.

phase approximation (RPA) and thus true comparison
between the two results is difficult. On the other hand, it
is known that pairing mediated by interband charge-
transfer excitation is comparatiuely more robust to the
variation of parameters such as t'." The point we
would like to make here is that O-O hopping appears to
play an important role in the issue of phase separation,
and has to be properly accounted for. By contrast, it ap-
pears not to be crucial for pairing. This may be roughly
understood as follows: One of the chief effects of different
hopping terms is to modify the shape of the Fermi sur-
face in ways that do not have an appreciable effect on
pairing, which is more susceptible to changes in interac-
tions. On the other hand, introduction of additional
near-neighbor hopping makes it energetically favorable
for the holes to progress from an inhomogeneous
configuration to a more homogeneous one, thus inhibit-
ing phase separation. Thus hopping kinetic energy has a
more significant effect on short-range phenomena such as
charge instabilities and phase separation than on long-
range order such as superconductivity. In view of the
sensitivity of perturbative calculations to model parame-
ters such as O-O hopping, we feel that one has to be cau-
tious in arriving at conclusions regarding competing in-
stabilities and coexisting phases.

0.70

0.56

0.42—

0.28—

0.14—

I

0.5
I

1.0
t'

PP

I

1.5 2.0

7.5

4.0—

0.5—

—3.0—

—6.5—

V=1

---- V=1.8

FIG. 11. (a) Effect of tpp in 1D. Here V=1.8, Ud=3, Up=1,
and e'=0.7. (b) Position of the discontinuity as a function of
tpp o

III. STUDY OF THE 1D CASE
—10.0

0.2 0.4
I

0.6 0.0 1.0

For the sake of completeness, and owing to current in-
terest, ' ' ' we also studied phase separation in the 1D ex-
tended Hubbard model. For instance, our calculation
would be of relevance to recent 1D calculation of the
pairing instability by Monte Carlo methods. ' O-O hop-
ping in the 1D case comes into play in a slightly different
manner than in 2D. In this case we consider a chain of
alternating Cu and 0 atoms, say along the x axis. Thus,
t~~ in the 1D model corresponds to hopping between the
two nearest oxygen sites, i.e., p„—p . Such an interac-
tion term was ignored in the 2D case since we were in-
terested only in the leading O-O hopping term which cor-
responds to hopping between the p~-p~ orbitals of O.

The Hartree-Fock Hamiltonian for the 1D problem
reduces to

10
(b)

0

----U =1
P

U =2
P

—10
0

I

0.2 0.4 0.6 0.0 1.0

FIG. 12. (a) EfFect of V in 1D. Ud=3, Up=1, e'=0.7 and

tpp
= 1. (b) Effect of Up in 1D. V =1.8.
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~=g[eqdk dk ~+e~pk ~pk ~]++2itzz[sin(ka/2)dk pk ~
—sin(ka/2)pk dk ]

k, a

+ g 2'~ cos( ka)pk ~p„~+ Uz ( nz )gd„d„+U~ ( n~ )gpk ~pk ~
k, cr k, o k, o

+4VQ[nzd„dk +nt pk pk ]—2'[(d p )pk dk (p d )dJ, Pk ] sin(ka/2),
k, (y k, o.

e=e' U&n&—+ Uzn~ 4V(nz —nz—),
t „=t'„+2V(p d) .

(10)

where (n&~ ) and (p d ) are the 1D analogs of the corre-
sponding averages in 2D, and can be obtained in analytic
forms. The noninteracting part of 8 gives rise to two
tight-binding bands with energies that depend on t' . As
in the 2D case, here also we work with the lower band.
The above equations need to be solved self-consistently.
The mean-field equations in the ID case are

even in the presence of a fairly large t' =1.0, the PS
boundary occurs at significantly lower dopings. Thus, it
is conceivable that phase separation may compete with
possible pairing transition in ID; recent Monte Carlo cal-
culations. ' find pairing to occur quite close to half-
filling. We note that in talking about pairing instabilities
in lower dimensions, we have taken the liberty of making
the usual tacit assumption that fluctuations are stabilized
by some weak couplings in other dimensions.

IV. CONCLUSIONS

1.0

0.4—

0.2—

0
0 0.2 0.4 0.6

I
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The results of our calculations for the ID model are
similar to those obtained in 2D. However, since in ID,
each Cu is surrounded by only two oxygen compared to
four in the 2D case, the efFect of O-O hopping is expected
to be relatively more pronounced. Consequently, the flat-
tening of the VI instability is reached at a much higher
doping in the 1D tnodel [Figs. 11(a) and 11(b)]. The
effects of V and U on charge instability are similar to
those found in the 2D model [Figs. 12(a) and 12(b)].
Thus in both ID and 2D, at a fixed doping, V promotes
instability whereas U moves the system towards equilib-
rium. Figure 13 shows a typical phase diagram for the ID
case. Although qualitatively similar to the 2D results,

In conclusion, our main results are as follows.
(a) We have investigated the role of O-O hopping and

its interplay with other model parameters both in the 2D
and the ID extended Hubbard models. We have studied
the effects on the instabilities and consequently on phase
separation in these two cases. We have found that the
charge instabilities, as well as the phase separation are
quite sensitive to O-O hopping. In the 2D case, this in-
creases the window of parameter space over which pair-
ing can occur.

(b) To gain further insight into the charge instabilities
and phases of the two-dimensional case, we have extend-
ed our calculation into a larger parameter space. Part of
this parameter range is unphysical for the cuprates, nev-
ertheless may be of interest more generally. This allowed
us to obtain the CTI critical point, the complete boun-
daries of phase separation, and the spinodal decomposi-
tions at both the lower and higher doping regions of the
phase space.

We remark that the occurrence of phase separation in
these types of models is presumably due to the short-
range nature of the interactions in the Hamiltonian. In
the presence of truly long-range forces as the Coulomb
interaction, phase separation will be suppressed, unless
compensated by screening charges. One may still be able
to see charge phase separation on a short length scale,
giving rise to some sort of "striped phases. "But this will
depend on the competition between the long-range
Coulomb force and the fluctuating part of the free ener-
gy. It would be interesting to explore this possibility.

FIG. 13. Phase diagram for the 1D case. Here V=1.8,
Uz =3, and U~ =1. The figure shows two cases, namely, t~~ =0
and 1.0.
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