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Magnetoplasma resonances and nonlinear mode coupling in pools of ions trapped
below the surface of superfiuid helium
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The results are reported of experiments on magnetoplasma modes of oscillation in two-dimensional
circular pools of ions trapped below the free surface of superQuid helium. The theory of such modes is
summarized, and experiments are described in which the modes are excited by an external oscillating
electric field and detected by the current induced in a neighboring electrode. This technique for direct
detection is satisfactory for modes that are axisymmetric, but proves to be rather insensitive for those
that are not. A method of detection based on a nonlinear coupling between the two types of modes is de-
scribed, and the application of this method to the study of the full range of magnetoplasma modes (in-

cluding edge modes) is shown to lead to experimental results that are in good agreement with theory.

I. INTRODUCTION

This paper is concerned with the behavior of quasi-
two-dimensional pools of ions trapped below the free sur-
face of superQuid He. Such pools have already been
studied in some detail in our laboratory, and an account
of this earlier work was given in Ref. 1.

Two types of stable charged particle, or "ion," can be
produced easily in liquid helium, by applying a suitable
potential to a field emission or field ionization tip im-
mersed in the liquid. The negative ion is an electron in a
bubble; at low pressures the bubble has a radius of about
1.9 nm and a temperature-independent effective mass (M)
of about 237m4, where m4 is the mass of a helium atom.
The positive ion is probably a He2+ ion embedded in a
small volume of solid helium, formed by electrostriction;
the radius of the solid is about 0.55 nm; the effective mass
of the whole object depends on temperature and is equal
to about 30m4 at the lowest temperatures.

Both types of ion can be trapped just below the free
surface of superfiuid helium by the combination of an
external electric field Eo that forces the ion towards the
surface and an image potential that forces the ion away
from the surface. In practice the liquid surface is situated
approximately midway between two parallel electrodes
(spacing h) that produce the field Eo. With a suitable
fringing field a circular pool can then be trapped, the den-
sity of ions (no) being almost constant over the area of
the pool except within a distance of order h /2 of its edge,
where it falls rapidly to zero. The density no cannot
exceed 2 ~E/e0, which is typically 10 m 2. At temper-
atures above about 3 mK, there is some thermally excited
vertical motion of the ions, but its amplitudes is very
small compared with a typical ionic separation. The sys-
tem is therefore two dimensional in much of its behavior,
and it can support two-dimensional plasma waves in
which the ionic motion is essentially horizontal. In a cir-
cular pool standing plasma waves can form, giving rise to
plasma resonances.

In earlier papers we reported detailed studies of ax-
isymmetric plasma resonant modes, both in the absence'
and the presence of a steady vertical magnetic field. In
this paper we report an extension of our work to modes
that are not axisymmetric, and we concentrate particular-
ly on plasma modes in the presence of a vertical magnetic
field (magnetoplasma modes). We also report the obser-
vation of nonlinear coupling between different magneto-
plasma modes, and the way in which this coupling can be
used to facilitate the observation of nonaxisymmetric
modes.

Plasma resonances of the type that we describe here
were first observed in two-dimensional pools of electrons
trapped above the surface of superAuid helium. Magne-
toplasma resonances in these electron pools were first ob-
served and explained by Glattli et aI. and by Mast,
Dahm, and Fetter, and our paper is in part a
confirmation of the existence of these modes, and of the
theory underlying them, in the two-dimensional ion sys-
tem. However, the experiments that rely on nonlinear
coupling between the modes are new and have not, to our
knowledge, been carried out on the electron system.

The paper is arranged as follows. In Sec. II we summa-
rize the theory of the magnetoplasma modes, and in Sec.
III we present a few rather unsatisfactory data obtained
by direct detection of these modes. In Sec. IV we present
experimental data on the nonlinear response of a single
plasma mode and, more importantly, on the nonlinear
coupling that we find between one mode and another.
Section V is devoted to the results of "double-drive" ex-
periments in which we exploit the existence of this cou-
pling to detect the nonaxisymmetric magnetoplasma
modes in a way that is more satisfactory. In order to ac-
count for the exact frequencies of these modes it is neces-
sary to take full account of the actual density profile in
the pool, and this is discussed in Sec. VI. Experimental
data on the dependence of the damping of magnetoplas-
ma modes on the magnitude of the steady magnetic field
are presented and explained in Sec. VII. A preliminary
report of this work has already been published.
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II. ELEMENTARY THEORY
OF THE MAGNETOPLASMA MODES

The theory of these modes was first given in outline in
Refs. 4 and 5, and the basis of the theory as applied to the
ion pools was set out in a convenient form in Ref. 1. We
have a circular ion pool of radius R with a uniform
magnetic-Qux density B applied in a direction normal to
the plane (z =d) of the ions [we use cylindrical polar
coordinates (r, B,z)J. The pool is situated between two
plane highly conducting electrodes, at z =0 and h. The
pool will have plasma resonant modes, the frequencies of
which are determined by the boundary conditions at the
edge of the pool. In this section we shall assume that the
edge of the pool is sharp, the pool density dropping
abruptly from the constant value no to zero, and that, as
discussed in Ref. 1, the radial component of the ionic ve-
locity v, is zero at the edge. The perturbed charge densi-
ty associated with any mode then has the form

J (r „r)expi(m 8 cot ), — (2.1)

co&(k) = noe k
F(k) .

2s
(2.3)

The factor F(k), given by

2 sinhkd sinh(h —d)
sinhkh +(s—1)coshkd sinhk (h —d)

where m is a positive or negative integer and the discrete
set of wave numbers k „are determined by the boundary
condition at r =R. The frequency co and the wave num-
ber k are related by the dispersion relation

co =cop(k)+co, ,

where co, is the cyclotron frequency e8/M, and

explained in Ref. 1.
The axisymrnetric (O, n) modes are nondegenerate for

all values of B. The nonaxisymmetric modes are degen-
erate with respect to the sign of m for B =0, but this de-
generacy is lifted by a finite magnetic field. We see from
Eq. (2.5) that the values of k~„ for an axisymmetric mode
are independent of B. The frequency of each axisym-
rnetric mode therefore increases with B in accord with
Eq. (2.2), where co& is now independent of 8, the frequen-
cy tending asymptotically to ~, . In the case of the
nonaxisymmetric modes, however, the values of k „do
depend on B, and the resonant frequencies vary with B in
a more complicated way. The case of modes with no
nodes in the radial direction (n =1) is particularly in-
teresting. It can be shown that the frequency of a mode
with negative m increases with increasing B, and again
tends to co, in the limit of large B. In contrast, the fre-
quency of a mode with positive m decreases with increas-
ing B. As we see from Eq. (2.2), when the frequency falls
below co„co&(k) must become imaginary, and then k
must also be imaginary. This means that the wave be-
comes evanescent in its dependence on (R r). Th—e
wave propagates round the edge of the pool, but is
strongly localized near this edge. It is then called an edge
magnetoplasma wave. Such waves were observed in two-
dimensional electron systems trapped aboue the surface of
superfluid helium.

We emphasize that the quantitative results of this sec-
tion apply only if the edge of the pool is abrupt and the
boundary condition is the vanishing of v, at this edge.
We discuss the effects of relaxing these unrealistic as-
sumptions in Sec. VI. We emphasize that we have also
assumed that the pool has exact circular symmetry.

III. DIRECT DETECTION
OF THK MAGNKTOPLASMA RESONANCES

where c is the dielectric constant of the liquid helium, al-
lows for the screening effects of the electrodes on the
Coulomb interaction between the ions. The boundary
condition, v„=0 at r =R, leads to the condition

(co —co, )mJ (kR) —cokRJ +,(kR)=0, (2.5)

the solutions of this equation yielding the values of k „,
which depend in general on both co and co, . A particular
mode is described by the pair of integers (m, n ). In zero
magnetic field the modes are essentially longitudinal; in a
finite field the Lorentz force leads to some transverse
motion.

As explained in Ref. 7, the ion pools can probably exist
in three phases, depending on the temperature: a crystal
phase, a hexatic phase, and a Quid phase. The crystal
phase has a shear modulus, which gives rise to the possi-
bility of shear modes, which generally have a much lower
frequency than do the plasma modes; the hexatic and
Quid phases have conventional or effective viscosities.
The shear modulus present in the crystal phase has only a
very small effect on the plasma mode frequencies; the
viscosity gives rise to a very small contribution to the
damping of the plasma modes, most of the observed
damping arising from the finite mobility of the ions, as

Our apparatus and experimental techniques are similar
to those described in Ref. 1. The cell is in the form of a
pill box. The upper and lower plane faces are two plane
electrodes that provide the dc holding field Eo. The cy-
lindrical "wall" of the box is a third electrode that pro-
vides the fringing field required to confine the pool in a
circular shape. The plasma modes are excited by apply-
ing a small ac potential of the required frequency to the
wall electrode. They are detected by amplifying the
current induced on a central part of one of the circular
plane electrodes, with lock-in detection to achieve accept-
able signal-to-noise ratios. The frequency of the (0, 1)
mode is typically 40 kHz for negative ion pools; and typi-
cally 120 kHz for positive ions.

The cell used in our present work differs from that de-
scribed in Ref. 1 in that the wall electrode is split into
four equal segments to which different potentials can be
applied. If the four segments are at the same potential the
cell has cylindrical symmetry, within the accuracy with
which it was constructed, and the extent to which the
nonaxisymmetric modes can be either excited or detected
ought to be small. If different potentials are applied to
the segments, the cylindrical symmetry is breached, and
excitation and detection of the nonaxisymmetric modes
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ought to be easier. We have checked that this is indeed
the case. However, departures from cylindrical symme-
try would complicate the theory of Sec. II in a way that
we did not attempt to pursue, and would therefore invali-
date a comparison of our experimental results with this
theory. We have therefore used the cell in a mode in
which the cylindrical symmetry is breached only as a re-
sult of imperfections in its construction. As a result the
direct detection of the nonaxisymmetric modes proves to
be insensitive, and we have not devoted much time to it.

A few experimental results for a positive-ion pool are
shown in Fig. 1. The experimentally observed frequen-
cies are qualitatively in agreement with theory, but agree-
ment is less good than is the case with the results we re-
port in Sec. V. This failure may be associated with the
fact that the pool had to be driven very hard in order to
detect the nonaxisymmetric modes, so that the results
may have been affected significantly by nonlinear effects.
It is also the case that for these results we were using a
pool with what was probably too large a radius, so that
the density profile in the pool was affected by the liquid
meniscus close to the wall electrode.

We note that the frequencies of the different unper-
turbed modes often cross as the applied magnetic field is
changed. However, the modes never become degenerate
at these level crossings, as is shown clearly in the inset to
Fig. 1. The residual lack of cylindrical symmetry of the
cell perturbs the modes, and the resulting hybridization
near a level crossing lifts the degeneracy. The degeneracy
between the modes (km, n ) in zero magnetic field is also
removed. When hybridization with an axisymmetric
mode occurs, a nonaxisymmetric mode is more easily
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generated and detected.
It must of course by emphasized that a different design

of cell would have facilitated the direct observation of the
nonaxisymmetric modes, so that the indirect method,
which we describe in Sec. V, may seem unnecessary.
However, as we shall explain, the indirect method has en-
abled us to confirm the existence of the magnetoplasma
modes without our having to build a new cell. More im-
portantly, it provides a technique that is useful when
efBcient detection cannot be achieved by simply redesign-
ing the cell; this is the case with shear modes, which we
mentioned briefly in Ref. 7 and which shall be discussing
in more detail in a later paper.

IV. NONLINEAR EFFECTS AND MODE COUPLING
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The response of any plasma mode becomes markedly
nonlinear as the drive is increased, as has been previously
reported. ' Examples are shown in Fig. 2, where we see
that, in general, there is a broadening and a shift in the
resonance.

The theory of magnetoplasma wave propagation given
in Sec. I was based on the equation of motion for the ions
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FIG. 1. The frequencies of magnetoplasma modes excited in
a pool of positive ions, plotted against magnetic-fiux density.
T =15 mK; no=2. 29X10" m . 0 (+1,1); 0 (+2, 1);
(+3, 1); 0 (+4, 1); D ( —5, 1); A ( —6, 1); X (0, 1). Inset. Mode
crossing: the frequencies of the ( —3, 1) and (+2, 1) modes plot-
ted against magnetic-Aux density, for the same positive-ion pool.

FIG. 2. Nonlinear efFects: plasma mode line shapes for
difFerent drive levels. (a) Negative ions: drive levels: 0, —5,—10, —15, —25, —35 dB relative to 10 mV p to p on wall elec-
trode; T =14 mK; trapping depth: 24.2 nm. (b) Positive ions:
drive levels: +20, +10, 0, —10, —20, —30 dB relative to 10
mV p to p on wall electrode; T =30 mK; trapping depth: 27.3
nm.
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Bv +(v V)v=-
t (Vjg —vXB), (4.1)

where V~ is the two-dimensional gradient operator and P
is the electrostatic potential, and the equation of con-
tinuity

0 +Vi (o v) =0, (4.2)

where o. is the charge density in the pool. Both these
equations contain nonlinear terms that were neglected in
Ref. 1. Part of the nonlinear response is due to these
terms. ' In particular, the second term on the left-hand
side of (4.1) gives rise to a nonvanishing change in the
average ion density, through what is essentially the Ber-
noulli effect, and this shifts the resonant frequency of a
pool to a lower value. It also leads to a coupling of
modes, as we shall see more clearly later, and coupling to
the thermally excited plasma modes of high frequency
can increase the attenuation of the type of low-frequency
mode that we observe.

At least in the case of positive ions there is probably an
additional source of nonlinear response. It is known
from experiments on the ion pools that the effective mass
of the positive ion is quite strongly temperature depen-
dent. It is probable that this temperature dependence is
due fundamentally to a velocity dependence of the
eB'ective mass (Ref. 1 and references therein), and such a
velocity dependence would contribute to the nonlinear
plasma response when the ionic How velocity becomes
comparable with the ionic thermal velocities. The non-
linear response does indeed set in when these two veloci-
ties are comparable in magnitude. (See Fig. 3.)

These nonlinear effects can be expected to lead not
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FIG. 4. Response of the (0, 1) mode, driven at small ampli-
tude, when a second drive at relatively large amplitude is swept
through a range of frequencies: the in-phase and quadrature
responses of the (0.1) mode plotted against the frequency of the
second drive. Positive-ion pool; T=30 mK; B =3 T; the fre-
quency of the (0, 1) mode is 416.02 kHz.

only to a nonlinear response of a particular plasma mode,
but also to a coupling between two modes, the excitation
of one mode at a relatively large amplitude having an
effect on the response of another mode excited at small
amplitude. In general the frequency of maximum
response of the second mode will presumably be shifted,
and its linewidth will be increased. We have confirmed
that these coupling effects do exist, and that they set in
when the strongly driven mode is itself starting to exhibit
a nonlinear response. The effects are illustrated in Fig. 3
for the case of a positive-ion pool, where we show the
response of both the (0, 1) and the (0,2) modes separate-
ly, together with the effect on the low-amplitude response
of the (0,2) mode when the (0, 1) mode is driven hard. In
the double-drive experiment both modes are driven from
the wall electrode, but the lock-in detection records only
the response the weakly driven mode, in this case the
(0,2) mode.
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V. THE APPLICATION OF MODE COUPLING
TO THE DETECTION OF NONAXISYMMETRIC MODES
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FIG. 3. Nonlinear effects: plasma mode linewidths and fre-
quency shifts plotted against drive level expressed as a peak ion
velocity. Positive ions; T =30 mK. 0, : response of the (0, 1)
mode; 0, ~: response of the (0,2) mode; E, A: response of the
(0, 1) mode driven at low amplitude in the presence of the (0,2)
mode driven at the level indicated by the plotted peak ion veloc-
ity.

We have already noted that our experimental cell is
ill-suited to the direct detection of the nonaxisymmetric
modes. The poor coupling of these modes to the elec-
trodes means that both excitation and detection are
inefBcient. However, the nonlinear coupling of one of
these modes to one of the axisymmetric modes is not di-
minished as a result of the cell design. It follows that if
this coupling could be used to detect the response of a
nonaxisymmetric mode, then we would be limited only by
the ineKcient excitation. Observation of the nonaxisym-
metric modes ought then to be easier. Furthermore, al-
though the nonaxisymmetric mode has still to be driven
fairly hard, it does not have to be driven as hard as it
would in a direct detection experiment, so that the mode
will be affected less by nonlinearities.
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is difficult or impossible. Its use in theirect detection is i
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VI. DETAILED THEORY
OF THE MAGNETOPLASMA MODE
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dependence of linewidth on magnetic field agree with the
results of theoretical analysis.
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FIG. 7. Dependence of plasma mode linevndth of magnetic
6eld: linewidth plotted against the square of the magnetic-flux
density for the (0, 1) mode. Positive ions; T =15 mK; trapping
depth 43.5 nm. The solid line shows the predicted dependence
(7.1).

published in detail, and we have therefore been unable to
trace the origin of this discrepancy.

VII. DAMPING OF THE MAGNETOPI. ASMA WAVES

The damping of the magnetoplasma modes is due to
the finite mobility, p, of the ions, as explained in Ref. 1.
This finite mobihty can be taken into account by adding a
term (ev jMp) to the left-hand side of the equation of
motion (4.1). It is then easy to show that in a linear ap-
proximation the plasma resonant linewidth (full width at
half height in angular frequency) ought to be given by

o (r, 8, t )=a 0(r)+cr, (r)expi(m 8—tot ), (A 1)

where the suKx 1 denotes a perturbation associated with
the magnetoplasma mode. We assume that all time vary-
ing quantities have the dependence on time and azimu-
thal angle indicated in (Al). The linearized version of the
equations of motion (4.1) may then be solved for the radi-
al and azimuthal components of the ionic drift velocity in
terms of P, and E, = —BP,/Br, where P, is the perturba-
tion in the electrostatic potential due to o'i. When the re-
sults are substituted in the continuity equation (4.2) we
obtain

(A2)

In th18 append1x we describe a computational study of
the magnetoplasma mode frequencies that takes account
of the real density profile in the pool.

Let era(r) describe the equilibrium charge-density
profile of the ion pool [o0(r) =eno(r)]. In the presence of
a magnetoplasma mode the total charge density can then
be written

Qpp +2'~
Mp

(7.1)

An alternative form of this equation, avoiding explicit
mention of the derivative oo (which diverges at the edge
of the pool} is obtained by integrating both sides between
Oand r

The linewidth ought therefore to increase by a factor of 2
as the applied magnetic field is raised from zero to a very
large value. Experimental confirmation of this predicted
dependence of linewidth on applied magnetic field is
shown in Fig. 7.

Vm. CONCI. USIONS

We have carried out an experimental investigation of
the plasma resonant modes that can be excited in a circu-
lar two-dimensional pool of ions trapped below the free
sul face of superfj. u1d He 1n the presence of a vertical
magnetic field. Modes with and without axisymmetry
have been studied, and those without have included
"edge magnetoplasma modes" in which motion is
confined to the edge of the pool. Excitation of the modes
has been detected both directly and through a nonlinear
coupling to one particular axisymmetric mode, the use of
this nonhnear coupling proving to be a more sensitive
method for the detection of modes that lack axial symme-
try. The observed frequencies of the modes and the

M(t0 —t0, )
2&TO (

Nl QP~
=pro(r) ' rEi+

p tBfi Coq
+Pl POO P' ' + E1 (A3)

Computational techniques have been used to find eigen-
functions o& of this equation and their corresponding
eigenfrequencies co.

As already explained in Sec. II, the perturbation o, is
expected to have the form J (kr) near the center of the
pool. However, by analogy with the exact solution avail-
able for the same problem in semi-infinite Cartesian
geometry, o i is expected to diverge like (8 —r} '~ near
the edge of the pool. " A fiexible form of o, capable of
modeling this behavior is provided by expression o i as a
linear spline multiplied by v . The region 0~ v ~ R is di-
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vided into N annuli, and on each annulus o &(r)/r is as-
sumed to have a linear variation. This is equivalent to ex-
pressing o,(r)/r as a sum of B splines B& each of which
is nonzero only on two annuli

where

Q, (r) = f 2~rB~(r)dr,
0

(A4) ili(&)= f oo(&)
0

CO~

r co

N+1 N+1
yi(1)= y uiyi(r) E](r)= y u/E((r)

1=1 1=1

Substituting (A4) and (A5) into (A3) we find

(A5)

N+1 N+1 CO

ui gi (r) =o o(r) g ui rE&+ m
1=1 1=1 N

N+1
+m g u&rl&(r),

1=1
(A6)

where the uI are parameters to be determined. Better
convergence as a function of N is obtained by including
an explicit divergence at, the edge of the pool in place of
the final B spline. The form r /(R r)—'~ enables in-
tegrals involved in deriving the corresponding potential
to be evaluated explicitly. It should be noted that the
field corresponding to this term is finite at the edge of the
pool. Using the known Green function, the potential and
field can be written as sums corresponding to the above
form of o.1.

and

(CO CO~ )
M

27Te

The integrals gI must be evaluated numerically, since we
have no analytic form for oo(r);oo(r) is obtained by nu-
merical modeling as described in Ref. 1. For best numer-
ical stability (A6) is applied at the centers of the annuli
and at the edge of the pool. We then obtain (N+1)
equations in the form of a generalized eigenvalue prob-
lem, which can be solved by standard routines. Note that
co, /co must be specified as a parameter; we then obtain
corresponding values of (co —oi, ) and hence extract co as
a function of co, .

Stable eigenfrequencies are obtained with N of the or-
der of 50. The method does not depend on (h/R) being
small and can be used for all values of the magnetic field.
The procedure could, in principle, handle any form of the
equilibrium profile.
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