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Magnetic impurities coupled antiferromagnetically to a one-dimensional Heisenberg model are stud-

ied by numerical diagonalization of chains of finite clusters. By calculating the binding energy and the
correlation function, it is shown that a local singlet develops around each impurity. This holds true for
systems with a single impurity, with two impurities, and for impurities forming a lattice. The local char-
acter of the singlet is found to be little affected by the presence of other impurity spins. A small effective
interaction is found between a pair of impurity spins, which oscillates depending on impurity distances.
For impurity lattices, the energy spectrum shows a gap which is found to be much smaller than the bind-

ing energy per impurity if the coupling constants are small. For larger coupling constants, it increases to
the same order of magnitude as the binding energy, indicating that a local singlet is broken to create ex-
cited states. Impurity lattices with ferromagnetic couplings are also studied and their connection to the
Haldane problem is discussed.

I. INTRODUCTION

H, =J g [S;;S;,+a(S;,S,+$»S» )], a= 1, (1.2)

Hf =J So 'Sof

with J)0, J')0. Here S;, and Sof denote the spin- —,
'

operators for the electron at site i of the chain and for an
electron in an impurity which is close to site 0. The nota-

A magnetic impurity embedded in a system of conduc-
tion electrons forms at zero temperature a spin singlet
through the antiferromagnetic Kondo coupling. This
Kondo problem has been extensively studied and even
solved exactly. ' In these studies, the interaction be-
tween conduction electrons is usually neglected. The
general question arises, what changes we should expect
when the interaction between conduction electrons be-
comes important so that they are strongly correlated? As
a first step toward an answer of this question, we consider
strongly interacting conduction electrons in a half-filling
band in one dimension. Charge fluctuations are
suppressed by the strong interaction, and the physics of
the low-lying excitations is well described by the spin- —,

antiferromagnetic Heisenberg model in this strong-
coupling limit. The Hamiltonian is given by

H=H, +Hf, ,

where

tion (i,j ) refers to nearest-neighbor sites in the chain. A
periodic boundary condition is imposed on the chain sys-
tem. The system is schematically shown in Fig. 1.

In the presence of an Ising-like anisotropy [a ( 1 in Eq.
(1.2)], the ground state is Neel ordered, and the excita-
tions described by H, have an energy gap. In the classi-
cal picture, the impurity spin is antiparallel to the neigh-
boring spin in the chain. Quantum Iluctuations reduce
(Sof )

~
from its classical value, but do not completely

destroy the classical picture. [Here ( A ) denotes the
average of A with respect to the ground state. ] As ana-
lyzed in the Appendix on the basis of a spin-wave expan-
sion, "' ~(Sof)~ deceases rapidly when a approaches 1,
while the transverse spin correlations

~
( SQfSo ) ~

grow to
nearly maximum value 0.25. Although the spin-wave ex-
pansion may not work well for ca~i, these results sug-
gest that in this limit the quantum Auctuations are large
enough for the impurity spin to form a singlet with the
spins of the chain. The purpose of this paper is to study
the nature of this singlet formation for a = 1 by exact di-
agonalization of finite-size clusters, which has been suc-
cessful to study quantum-spin models in one dimension.
In order to obtain a comprehensive understanding of the
problem, we consider not only the single-impurity case
but also the cases when two impurities are present or
when the impurities form a lattice (see Fig. 1).

If one of the impurity spins forms a singlet with a spin
in the chain closest to the impurity site, the energy gain
by Hf, is —,

' J'. This local singlet, however, will lose some
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FKx. 1. Sketches of system with (a) a single impurity, (b) two
impurities, and (c) impurities forming a lattice. Open circles
represent spins. Furthermore J and J' represent the exchange
interactions between spins in the chain and between an impurity
spin and a spin in the chain, respectively.

energy due to the presence of H, . Calculating the bind-
ing energy, we find that the energy gain per impurity spin
is considerably reduced from —', J'. As shown later, the re-
duced values are, however, still much larger than those
for the conventional Kondo problem, suggesting that the
binding energy is enhanced by increasing interactions be-
tween conduction electrons. It is also found that the
binding energy per impurity spin is nearly independent of
the number of impurities.

We also calculate the correlation function between an
impurity spin and the spin in the chain closest to the im-
purity site. The absolute value is found to increase rapid-
ly with increasing J . Just like the binding energy, it is
nearly the same for the three different systems under con-
sideration. Even for small values of J', this coincidence
seems to hold. The local disturbance generated by an im-
purity site seems to be little influenced by the presence of
other impurities. However, this does not necessarily
mean that correlations between impurities are small; as
shown later, they may be substantial, particularly for
small values of J'. The reason is that a local triplet is ad-
mixed to the singlet state due to interaction with the oth-
er spins in the chain and this results in an indirect in-
teraction between impurities and an increase in the bind-
ing energy. In the conventional Kondo model, the two-
impurity problem has been studied by several
methods. ' Thereby a main issue is the interplay be-
tween the single-site Kondo effect and the Ruderman-

Kittel-Kasuya-Yosida (RKKY) interaction. In particu-
lar, the half-filled one-dimensional Kondo lattice has been
studied by several authors. " ' It is known that for
small Kondo-coupling constants the RKKY interaction
becomes more important than the Kondo-singlet forma-
tion. ' The present findings extend those observations to
the case of strongly correlated electrons.

In the impurity-lattice case, we also calculate the ener-

gy gap between the lowest excited states and the ground
state. It is found that they are triplets with momentum
k =~ when the lattice constant is set equal to one. The
gap is very small for small values of J'. This is consistent
with a nonanalytic dependence ~ e ' where a is some
constant which is found for the half-filled one-
dimensional Kondo lattice. " The gap increases with in-
creasing values of J', and eventually becomes of the order
of the binding energy per impurity spin. This suggests
that the excited states are local triplets which are created
by breaking up local singlets. This result is consistent
with the one found for the double-chain model, ' which is
slightly different from the present model.

In addition to the studies involving an antiferromag-
netic coupling, we also study systems of impurity lattices
with a ferromagnetic coupling (J'(0) to the spins in the
chain. By calculating the binding energy and the correla-
tion function, it is shown that local triplet states develop
with increasing values of ~J'~. As a whole, the ground
state is a singlet, and the lowest excited states are triplets
with momentum k =m., just as before. The energy gap is
very small, and increases gradually with increasing values
of

~

J'~. It is much smaller than the binding energy per
impurity spin, indicating that the excited states do not
destroy the local triplets which are mainly responsible for
the binding energy. In the limit J' —+ —~, the gap goes
over into the Haldane gap. ' In this context, there have
been several models studied which are slightly different
from the present one, such as the ferromagnetic-
antiferromagnetic alternating Heisenberg chain model'
or the double-chain model. ' The present results are con-
sistent with the ones found previously.

In Sec. II, numerical analysis is given of exact diago-
nalization of finite clusters. Section III contains the con-
cluding remarks. In the Appendix, a system is analyzed
within the spin-wave expansion, in which an impurity
spin is coupled to an Ising-like anisotropic chain.

II. NUMERICAL ANALYSIS

A. Single impurity

We consider the Hamiltonian given by Eq. (1.1) with
a=1. The ground state is a singlet. The binding energy
b,E,(J',N) is defined by

AE, (J',N)=E (O, N) Eg(J', N), —(2.1)

In the following we present the results for binding en-
ergies as well as various pair-correlation functions of
finite Heisenberg chain systems with a single impurity,
with two impurities, and with impurities forming a lat-
tice. ' Thereby we measure energies in units of J.
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FIG. 2. Binding energy AE&(J', N) for systems with a single
impurity. The solid lines correspond to even numbers N, from
N=4 (lowest line) to N=22 (upmost line). The dashed lines
correspond to odd numbers N, from N=5 (upmost line) to
N=23 (lowest line). The values extrapolated to N~~ are
shown by open circles with error bars as indicated. The broken
line represents —'J', i.e., the energy of the perfect singlet.

where E (J',N) denotes the ground-state energy for a
spin chain consisting of N sites with an impurity coupled
to it according to Hf, . Figure 2 shows the calculated
values. The number of sites N varies from 4 to 23.
Values for b,E&(J',N) are naturally grouped into two
series according to even or odd numbers of N. The values
for odd numbers N are larger than those for even num-
bers. This is explained as follows. The ground state for
chains with odd numbers N is a doublet. From it a local-
ized doublet may be easily generated to form a singlet
with the impurity spin. But the ground state for chains
for even numbers N is a singlet, from which a localized
doublet cannot be created. With increasing N, binding
energies decrease for N being odd, while they increase for
even numbers of N. Since effects caused by the impurity
spin are expected to be confined to a finite range from the
impurity site, one might think that the binding energy is
independent of the system size if it exceeds the size of the
spin correlation. This is not the case though, since the
energy gain due to singlet formation depends on the ener-
gy spectrum of the chain, which is discrete and depends
on the system size. When extrapolating each series to
N~~, we assume a dependence of AE, in powers of
1/N,

to it, the energy gain due to Hf, would be —,'J'. This
singlet state suffers an energy loss through H, though.
Therefore some compromise between the two energies
must take place. We find that the net binding energy is
considerably reduced from —,'J', with a factor which is
larger for smaller values of J'.

We also calculate the correlation function (Sof So, )
between the impurity spin and the spin in the chain
closest to the impurity site. Figure 3 shows calculated
values of —(Sof.So, ) as function of J'. Like for the
binding energy, they fall into two series according to odd
and even values of N. The correlation is antiferromagnet-
ic. With increasing N, —(Sof.Sof ) decreases for odd
values of N, while it increased for even values, just like in
the case of the binding energy. We extrapolate each
series of N ~~ in a similar way as done for the binding
energy, although the assumption of a power expansion in
1/N is uncertain for this quantity. The values extrapolat-
ed by the two series are so close that we obtain reliable
estimates of the correlation function of J')0.2. For
small values of J'( (0.2), however, the two series do not
approach each other closely enough to obtain reliable es-
timates. This suggests that the assumption concerning
the power expansion in 1/N is inadequate. The absolute
values first increase rapidly and then move gradually to-
ward 0.75 with increasing values of J', which is the value
for a perfect singlet. Contributions from triplet states of
the two spins Sof and So, appreciably inhuence the value
of (Sof So, ) provides J' is not too large. Another way of
stating this is by saying that the impurity spin forms a
singlet with the spins of the chain over a region which is
rather extended. Spin correlations between an impurity
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EEi(J',N)=DER(J')+ + + +

N N N
(2.2)

to which we fit the data by a least-squares method. '

Since the two series approach each other, we can evaluate
accurately their limiting value. If the impurity spin
forms a perfect singlet with the spin in the chain closest

FICJ. 3. Correlation function —(Sof So, ) for systems with a
single impurity. Solid and dashed lines correspond to even and
odd numbers of N, in the same way as in Fig. 2. The extrapo-
lated values are shown by open circles with error bars as indi-
cated.
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spin and that of conduction electrons in a Hubbard chain
have also been considered by Hallberg and Balseiro,
who found an oscillatory behavior with distance.

B. Two impurities

In this subsection, we study the case of two impurities
placed on nearest-neighbor and on next-nearest-neighbor
sites, respectively, as shown in Fig. 1(b). The binding en-
ergies, b,Ez"(J',N), bEz""(J',N) are defined by the same
equation as Eq. (2.1), where superscripts nn and nnn
stand for nearest-neighbor and next-nearest-neighbor po-
sitions, respectively. Figure 4 shows the binding energy
per impurity spin EE&~(J', N )/2. The series of values for
even and odd numbers of sites X approach each other
more rapidly than for the single-impurity case. We have
also calculated DER""(J',N)/2, whose dependence on J'
and N is similar to b,Ez"(J', N)/2. Figure 5 shows the
extrapolated values to N~ ae for KE2"(J') l2,
DE&""(J')l2 and their comparison with AE, (J'). Both
values are close to hE, (J'), indicating that the presence
of another impurity spin affects the first one so little that
the impurities can be considered as being almost indepen-
dent. The value EEz"(J')/2 is slightly larger, while
KE2""(J')l2 is slightly smaller than hE, (J'). The mutu-
al inhuence of impurities, though it is small, seems to
show a small energy gain or loss respectively, i.e., an os-
cillatory behavior, depending on the distance between the
two impurities.

Figure 6 shows the correlation function —(Sof So, )
between one of the impurity spins and the spin in the
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FIG. 5. Binding energies per impurity spin,
hE&" (J')/2, AE2""(J')/2, and E&"(J'), in comparison with
EEl(J').

chain closest to it, when the two impurities are placed
onto nearest-neighbor sites. A local singlet develops with
increasing values of J . By comparing Fig. 6 with Fig. 3,
we find that the extrapolated values are very close to
those for the single-impurity case. Therefore the pres-
ence of second impurity has little effect on the pair corre-
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FICx. 4. Binding energy per impurity spin EEz"(J',N)/2 for
systems with two impurities placed on nearest-neighbor sites.
Solid lines correspond to even numbers N, from N=4 (lowest
line) to N=22 (upmost line). Dashed lines correspond to odd
numbers N, from N=3 (upmost line) to N=21 (lowest line).
The extrapolated values are shown by open circles with error
bars.

FIG. 6. Correlation function —( Sof So, ) between an impur-
ity spin and the spin in the chain closest to it, when two impuri-
ties are placed on nearest-neighbor sites. Solid and dashed lines
correspond to even and odd numbers of N, in the same way as in
Fig. 4. The extrapolated values are shown by open circles with
error bars as indicated.
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lation, in agreement with the findings for the limiting en-
ergy.

The small mutual effect on both, the binding energy
and the correlation function (Sof So, ), suggests a small
correlation (Sof.S» ) between two impurity spins. Fig-
ure 7 shows the calculated values of —( Sof S» ) for im-
purities placed on nearest-neighbor sites. Against what
we would expect, their absolute values are not small. An
impurity spin does not form a perfect singlet with the
spin in the chain closest to it, instead a triplet state is
mixed in, as shown in Fig. 6. We speculate that an in-
direct interaction, though small, is based on these degrees
of freedom, thereby affecting considerably the spin corre-
lation. The correlations decrease monotonically with in-
creasing values of J' for even numbers N, while they first
increase and then decrease for odd numbers N. Their de-
crease with increasing J' (J' & 0.25) may be taken as an
indication of the development of a singlet state between
each impurity spin and the spins in the chain, resulting in
weaker correlations between impurity spins. The values
extrapolated to N —+ ~ for even and odd values of N are
sufficiently close in order to allow for reliable estimates of
the limiting behavior provided J )0.25. But when
J'~0, the values for even and odd numbers of N differ
considerably. This may be interpreted as follows. In the
absence of Hf„ the singlet and triplet states of two im-
purity spins are degenerate. Now let us turn on Hf, . If
J' is smaller than the finite gap in the excitation energy of
the finite-size systems, the state of the spins in the chain
is little modified by the impurity spins. For even values
of N, the ground state of the spins in the chain is "near-
ly" a singlet. Since the total system must be a singlet, the

C. Impurity lattice

In this subsection, we study systems in which the im-
purities form a lattice, as shown in Fig. 1(c). Each impur-
ity spin is coupled to a spin in the chain with exchange
constant J', and the impurities do not interact directly
with each other.

We calculate the binding energy per impurity spin
which is defined by

E~"(J',N)=[Eg(0, N) Eg(J', N—)]IN . (2.3)

Figure 8 shows the calculated values of E~"(J',N). Al-
though the sizes of chain are smaller (N=3 —14) than
for the single impurity case, the two series for even and
odd values of N approach each other very closely, and
therefore we can extrapolate them accurately to N —+ ~.
The extrapolated value of E~h'(J') is nearly the same as
for hE, (J').

singlet state between two impurity spins is favored, re-
sulting in large absolute values of the pair correlation.
On the other hand, for odd values of N, the ground state
of the spins in the chain is nearly a doublet, and that of
the total system must be a doublet. Both, the singlet and
triplet states of the two impurity spins, can couple to the
spins in the chain to form a doublet. In fact, for
sufficiently large systems in which the gap is much small-
er than J', the states of the spins in the chain can easily
be deformed locally to form a singlet with the impurity
spins. It seems difficult to obtain reliable limiting values
for the correlation function from the present sizes of
chain when J' is small.
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F&G 7. Correlation function —(Sof.S&f ) for two impurity
spins placed on nearest-neighbor sites. Solid lines correspond to
even numbers N, from N=4 (upmost line) to N=11 (lowest
line). Dashed lines correspond to odd numbers N, from N=3
(lowest line) to N=21 (upmost line). The extrapolated values
are shown by open circles with error bars as indicated.

FIG. 8. Binding energy per impurity spin E&"(J',N) for im-
purity lattices. Solid lines correspond to even numbers N, from
N=4 (lowest line) to N=14 (upmost line). Dashed lines corre-
spond to odd numbers N, from N=3 (upmost line) to N=13
(lowest line). The extrapolated values are shown by open circles
with error bars as indicated.
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FIG. 9. Correlation function —(Sof So, ) between one of the
impurity spins of the lattice and the nearest spin in the chain.
Solid and dashed lines correspond to even and odd numbers of
N, in the same way as in Fig. 8.

We also calculate the correlation function between one
of the impurity spins and the nearest spin in the chain.
Figure 9 shows the calculation function —( Sof .So, ) .
For this quantity, it is dificult to extrapolate the value to
N~ ~, partly because of small sizes of chains. But even
without the extrapolation, we can guess rather accurately
the limiting value, since the two series for even and odd
values of N are already suSciently close. The amplitude
of the singlet increases with increasing values of J'. This
value is nearly the same as for the single-impurity case.
When taking together with the result for the binding en-
ergy, we may state that the local character of each impur-
ity is little inAuenced by the presence of the impurity lat-
tice.

Inspecting E~"(J') more closely, we notice that it is
slightly larger than bE2" (J')/2, as shown in Fig. 5.
Forming an impurity lattice leads to an increase in the
binding energy. Also comparing (Sof.So, ) with that for
the single-impurity case shown in Fig. 3, we notice that
the absolute values are slightly larger here. Forming an
impurity lattice results in an increase in the amplitude of
the local singlet.

Figure 10 shows the correlation function —(Sof S]f )
between a pair of impurity spins on nearest-neighbor
sites. The dependences on J' and N look complicated,
particularly for small values of J'. The extrapolated
values first increase and then decrease with increasing
values of J'. For J')0.5, the values are very close to
those for the two-impurity case (Fig. 7), indicating again
that forming a lattice affect little the pair correlations be-
tween impurities.

In addition to the ground-state properties, we also cal-
culate the energy and the wave function of the lowest ex-
cited states. The lowest excited states are triplets with

0.50

CG

~ 0.25$
V

I N=3

0.00 Q.S 1.0

momentum k =m. The energy gap b, (J',X) in defined by
the difference between the energy of the lowest excited
state and of the ground state. Figure 11 shows the calcu-
lated values of b, (J',X). The gap decreases with increas-
ing N (even and odd), and no lower limit of the gap exists.
The extrapolated value b, (J') is much smaller than
Ez"(J') for small values of J' ( (0.5). For J'(0.3 it is
nearly zero. This favors a nonanalytic dependence on J',
i.e., b, (J') ~e ' with a some numerical constant, as
known for Kondo lattices. " Clearly we cannot rule out
other dependences on J' or the presence of a critical
value of J' below which the system is gapless. For largest
values of J'( &0.7), the gap is not much difFerent from
Es"(J'). This means that around each impurity a local
singlet is well developed, and that it is broken up when an
excited state is generated. This process requires an ener-

gy of order E~"(J').
Breaking up a local singlet to create excited states be-

comes apparent in the strong-coupling limit whenJ'~ (x). In that case, each impurity spin forms a perfect
singlet with the nearest spin in the chain. The low-lying
excited states consist of a triplet excitation at a particular
site with the other sites remaining within the singlet
state. They are 3N-fold degenerate, having energy J'.
The first-order correction to order 1/J' lifts the
degeneracy. Let ~T"(j)) be the state of the triplet to
which site j is excited with the magnetic quantum
number p( =+1,0). Then the state ~f"(k ) )
=( I/N)' g e'"~~~T"(j)) is an eigensta. te with an exci-
tation energy Ek =J'+ —,'cosk. ' Note that Ek has a
minimum at k=+, which is consistent with the present
numerical results for weak and intermediate couplings.

FIG. 10. Correlation function —(Sof S» ) between a pair of
impurity spins on nearest-neighbor sites, for impurity lattices.
Solid lines correspond to even numbers of N, from N=4 (up-
most line) to N=14 (lowest line). Dashed lines correspond to
odd numbers N. The extrapolated values are shown by open
circles with error bars as indicated.
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FIG. 11. Energy gap 5(J',N) for impurity lattices. Solid
lines correspond to even numbers of N, from N =4 (upmost line)
to N=14 {lowest line). Dashed lines correspond to odd num-

bers of N, from N=3 (upmost line) to N= 13 (lowest line). The
extrapolated values are shown by open circles with error bars as
indicated. The broken line represents J' —2, which is the value

of 6{J') valid for J'))1.

FIG. 12. Binding energy per impurity spin Ez"(J',N) with
J'&0 for impurity lattices. Solid and dashed lines correspond
to even and odd numbers of N, in the same way as Fig. 8. The

1curve for N=3 is identical to the broken line —
I
J'~, i.e., the e-

ergy of the perfect triplet. The extrapolated values are shown
by open circles with error bars as indicated.

Finally, we discuss briefly the changes which occur
when the coupling is ferromagnetic J'&0. The ground
state is again a singlet. Figure 12 shows the binding ener-
gies per impurity spin when the impurity number
changes. Just like in the case of J'&0, results fa11 into
two groups corresponding to even and odd values of M

If each impurity spin forms a perfect triplet with the
nearest spin of the chain, the energy due to Hf, is —, ',

The extrapolated values are again smaller than 4'
~
J'~, but

the reduction ratio is less than for J' & 0, as is noticed by
comparison with Fig. 8.

Figure 13 shows the correlation function ( Sof So, ) be-
tween one impurity spin and the nearest spin in the chain
as J' varies. The values first increase rapidly and then
move gradually toward 0.25, which is the one of a perfect
triplet. By comparison with Fig. 9, the local triplet char-
acter seems to be established rapidly. Similarly as in Fig.
9, it is difticult to extrapolate the value for N ~~.

The lowest excited states are found to be triplets with
momentum k =~. Figure 14 shows the energy gap
b, (J',N) between these states. The extrapolated values
are very small; for —J'&0.2, the gap is nearly zero.
They increase very slowly with increasing values of —J'.
The gap is much smaller than E~'(J') given in Fig. 12,
indicating that the lowest excited states can be formed
without destroying the local triplets. In the limit
J' —+ —~, each impurity spin forms a perfect triplet with
the nearest spin in the chain. Therefore we can regard
each site as being occupied by a spin S= 1 with effective
exchange-coupling constant J,z= —„'. For such a system
it is known that the lowest excited state has momentum

k =m, and a gap which is given according to Haldane by
b,(J')=0.411J,&=0.103. ' Although for J' ——1.0 the
sys emtern is to good approximation locally in a triplet state,

1-the gap is found to be still much smaller than the Ha-
dane gap.

I I I I I

0.20

CO

C0

V

0.10

0.00
I I I

0.5 1.0

FICx. 13. Correlation function (Spf Sp ) between one of the
impurity spins of the lattice and the nearest spin in the chain,
with J' &0. Solid and dashed lines correspond to even and odd
numbers of N, in the same way as in Fig. 8.
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FIG. 14. Energy gap h(J', N)) with J'(0 for impurity lat-
tices. Solid and dashed lines correspond to even and odd num-
bers of 2V, in the same way as in Fig. 11. The extrapolated
values are shown by open circles with error bars as indicated.
The broken line represents the Haldane gap for S= 1.

that the state which an impurity is forming with its sur-
roundings remains unaffected by the presence of other
impurities, which indicates its local character. The bind-
ing energy is mostly determined by this local character.
Following the RKKY interaction, we may express the in-
direct interaction between impurities at sites i and j as
H;„d =J' y(i, j)S,f S.f, where

g(i, j)= i f— (, [S',(t),S;; ] )e 'dt
0

with 5~0+. This interaction was estimated to be small
here. Although the interaction energy is small, the spin
correlations &SfSjf ) 'are considerable for small values
of J'. They decrease though with increasing values of J'.
For large J' each impurity spin is forming a singlet with
the nearest spin of the chain.

Clarke, Giamarchi, and Shraiman have recently stud-
ied impurity-spin models by transforming them with the
help of the bosonization technique to the two-channel
Kondo model. They have found an anomalous tempera-
ture dependence for the susceptibility. Numerical studies
of such a finite-temperature behavior are left for the fu-
ture.
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III. CONCLUDING REMARKS

We have studied systems of magnetic impurities cou-
pled to a spin- —, antiferromagnetic Heisenberg chain. We
have calculated the binding energy per impurity spin and
the correlation function between an impurity spin and the
nearest spin in the chain for systems with a single impuri-
ty, with two impurities, and with impurities forming a
lattice. We have shown that the local singlet character
increases with increasing antiferromagnetic coupling.

In the conventional Kondo problem, the binding ener-

gy may be written as bE& —-(3 ln2t)(pJ') t +4te '~~~ for
weak couplings, with 4t is the band width and
p=(2~t) ' is the density of states of the conduction elec-
trons at the Fermi energy. The first term is the normal
part, and the second term is the anomalous part corre-
sponding to the Kondo temperature. For t =1 eV and
J'=0.2 eV, we obtain hE& -—0.002 eV +4e ' eV, i.e.,
the anomalous part is extremely small. On the other
hand, in the present Heisenberg chain model, the ex-
change interaction between conduction electrons may be
estimated as J( =4t IU) = 1 eV when U =4 eV and t = 1

eV, where U is the Coulomb interaction between conduc-
tion electrons. For J'=0.2 eV, we have J' jJ=0.2, and
from Fig. 2 we estimate the binding energy as
hE, =0.025 eV. This value is at least by one order of
magnitude larger than that for the conventional Kondo
problem. This enhancement results from the fact that the
disturbance in the chain due to the presence of the im-

purity is much more local for finite U than for U=O.
We have found that the binding energy per impurity

spin as well as various spin correlation functions are
nearly independent of the impurity density. This implies
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APPENDIX

We analyze the case that an impurity is coupled to an
anisotropic Heisenberg model by using the spin-wave ex-
pansion. For an Ising-like anisotropy [a( 1 in Eq. (1.2)],
the ground state is Neel ordered, and the system is divid-
ed into A (up spins) and 8 (down spins) sublattices. In
the following, the impurity spin is assumed to be antifer-
romagnetically coupled to a spin in sublattice A, thus
pointing downward. We treat the deviation from the
classical directions by using the Holstein-Primakoff trans-
formation:

S;;=S—a, a, , S,,+=(S,, )t=&2Sa;,

Sf, = —S+bjbj, Sf+, (Sf, ) =&2Sbt-,

Sof = S+c c Sof =(Sof ) —+2Sc

(A 1)

(A2)

(A3)

Here a; and b~ are boson annihilation operators for spins
on sublattices A and B, respectively, and c is a boson an-
nihilation operator for the impurity spin. Substituting
Eqs. (Al) —(A3) into Eq. (1.2) and (1.3), we have

H, = —JS X+JS g [a, a, +btb +a(a;b +a, b )], .

&ji&

(A4)

Hf, = —J'S +J'S(aoao+c c+aoc+aoct) .



5822 J. IGARASHI, T. TONEGAWA, M. KABURAGI, AND P. FULDE 51

Hereafter we measure energies in units of J.
Since the Hamiltonian is composed only of the terms

quadratic in the boson operators, we can solve the prob-
lem by using a Green's-function formalism. ' We con-
sider the following functions:

G(i, i '; t ) = i—( T(a;(t)a; (0) ) ),

(A6)

D (t) = i—( T(c (t)c(0) ) ),
F(i; t) = i (—T(a;(t)c(0)) ),

D co
co+J'S —i5

where

Ek=2$(1 —a cos k)'

lk

co —Ek +

m
(A8)

co+Ek l 5

(A9)

(A10)

F(i;t)= i(—T(c (t)a; (0))) .

,(A7)
2S+Ek

mk=
2Ek

2S —Ek

2Ek
(A 1 1)

Here T is the time-ordering operator. We take
H, —J'S +J'S, c as the unperturbed Hamiltonian, and
J'S(aoao+aoc+aoc ) as a perturbation. Then the tem-
poral Fourier transform of the unperturbed Green's func-
tions leads to

with n/2&—k &n/2 The . excitation energy Ek has a

gap.
Summing up the diagrams to in6nite order, the ones of

lowest order shown in Fig. 15, we obtain

D(co)=D (co)+D (co)(J'S)

F(i;co)=G (i, O;co)

G(i, i', co)=G (i,i', co)+G (i, O;co) o G (O, i';co),vr(co)

1 —G (0,0;co)m.(co)
0G (0,0;co)

(J,S ) o(
1 —G (0,0;co)m(co)

(J'S)D'(co),
1 —G (0,0;co)m(co)

F(i;co)=D (co)J'S
o G (O, i;co)

1

1 —G (0,0;co)~(co)

(A12)

(A13)

(A14)

(A15)

where

m(co)—:J'S+(J'S) D (co) . (A16)

The energy of the bound state Ez is determined by the re-
lation

G(i, i,', cu):
i 0 i'

+
0 0

+
1 —G (0,0;E~)~(E~)=0 . (A17)

(So ) = —S+i lim D(co)e
—i~t de)

Of 2' ' (A18)

For J' (2, one of the bound states is positioned in the re-
gion —2SV1 —ct &Ez &0, and another has in 2S &Ez.
Using the Green's functions, we obtain the averages of
spin operators from the relations,

D(~):
0 0

+ 0 0 0 0

(S', ) =S—i lim G(0, 0;co)e
—imt dc'

C+ 2'

(S;;)=S i lim f —G(i, i;co)e

(A19)

(A20)
F(& ~): . = ~-&--- + . = X = X-&---

2 i p p

Here C+ (C ) indicates that the integration path for dco
is taken along the half circle in the upper (lower) plane
for complex ~.

Figure 16 shows the calculated averages of the spin
moments for J'=0.5, S=—,'. The sublattice magnetiza-
tion (S;, ) (for i far from the impurity site) decreases with
increasing values of o., due to the increase of the quantum

+ = X& Y, = X&
0 o 0

FIG. 15. Diagrams for the Green's functions. Solid lines
represent 6 {i,i';co), and broken lines represent D (co). Crosses
represent the interaction J'S at site i =0.
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FIG. 16. Average of the impurity spin —(Sof ), of the spin
in the chain closest to it (So, ), and of a spin in the chain far
away from it (S;",), as a function of a with J'=0.5.
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FIG. 17. Transverse spin-correlation function (SofSO, ) as a
function of a with J'=0.5.

fluctuation (curve c). The spin-wave expansion fails for a
close to 1; for a~0.98, (S;;) becomes negative. The
average of the spin in the chain closest to the impurity
site also decreases with increasing values of a (curve b)
The values are smaller than the sublattice magnetization,
since the coupling to the impurity spin adds to fluctua-
tions. The absolute value of the average of the impurity
spin ~ (Sof ) ~

is reduced from the classical value 0.5, due
to transverse spin fluctuations caused by the coupling to
spins in the chain. They change rather slowly with

changing a, except when a = 1.
The transverse spin correlation between the impurity

spin and the nearest spin in the chain are calculated from

(SofSL ) =i lim— [F(0;cu)+F(0;co)]e.S
t~o + 2&

(A21)

Figure 17 shows the values for J'=0.5, S=—,'. They are
close to the minimum —0.25 when a = 1.
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