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0
In microporous media characterized by a pore size in the range 5—15 A, mass transport of He atoms

at low temperatures is quantum mechanical in nature. By solving the one-particle Schrodinger equation,
we investigate the effective mass m /m of He atoms (bare mass m) moving inside one-dimensional tubu-

lar channels consisting of cylindrical cages connected by necks of different diameters and lengths. We
6nd that m/m * is a highly nonlinear function of the geometrical parameters characterizing these chan-
nels. In certain cases, m /m changes rapidly from 1 to zero indicating the possibility of transition from
delocalized to localized state. We also find that in the presence of attractive potential produced by posi-
tive ions located on the channel wall, the atoms are trapped near the wall, resulting in a drastic reduc-
tion in m/m*.

I. INTRODUCTION

It is known that the physical properties of helium
atoms ( He, He), when moving is restricted geometry,
differ dramatically from those in the bulk, particularly at
low temperatures, due to the influence of the topology of
the confining medium and the adsorption potentials ex-
erted by the medium on the He atoms. Typical examples
are helium adsorbed on graphite' and alkali-metal '

substrates, inside porous glass such as vycor ' or micro-
porous media such as zeolites. ' In fact, recent sorp-
tion measurements' of helium in fullerite crystals and
films suggest that helium atoms might be mobile within
the microporous space of these crystals, thus opening up
the possibility of realizing a new type of three-
dimensional quantum Auid.

One of the fundamental quantities that not only con-
trols the mobility (transport), but also other physical
properties such as heat capacity and magnetic suscepti-
bility (through density of states and interaction eff'ects) in
a confining geometry is the effective mass (m */m) of He
atoms. Depending upon the strength of the substrate po-
tential and the nature of the microporous geometry,
m /m can vary enormously. In particular, if the
effective mass is large, any small perturbation such as
coupling to the vibrational degrees of freedom of the
confining medium, interparticle interaction or static dis-
order will tend to localize the particles, thus strongly
affecting their transport and thermodynamic properties.
Therefore, before one attempts to understand the effects
of disorder (both structural and thermal) and interparti-
cle interaction, one must understand the effect of periodic
geometry on the motion of a single helium atom.

In this paper, we address the question of the effective
mass of a single helium atom moving in one-dimensional
microporous channels found in K-L zeolite, ' ' immogol-
ite, ' etc. We study these systems primarily for two
reasons. First, one-dimensional systems are relatively
simple and second, extensive studies of low-T thermo-
dynamic properties of He and He atoms in K-L zeolite

have been made' which we can address theoretically.
K-L zeolite consists of one-dimensional channels of about

0
10 A diameter modulated by constrictions (necks) of
about 7 A in diameter. Other one-dimensional zeolites in
which helium adsorption studies have also been made are
ZSM-23, ' ' whose diameter is -5.5 A. In principle,
transport measurements can be made in these systems to
directly probe the effective mass, but none appears to
have been reported so far.

Physical systems for which our calculations of m /m ~

are also relevant are electrons moving inside the narrow
channels of electrides' where the channels are formed in
the space between large organic cagelike molecules en-
capsulating positive alkali ions. Electrides are an exciting
new class of systems which exhibit a wide variety of elec-
tronic properties. Also recently, energy-band structures
have been obtained by Lent and Leng' for electrons
moving inside periodically modulated channels, but these
authors have not focused on the question of the effective
mass which is of major interest here.

Figure 1(a) gives a schematic picture of K-L zeolite,
whose channels consist of cages connected by neck re-
gions. The boundary walls are formed by Si-0-Si net-
works. In K-L zeolite, some of the Si + ions are replaced
by Al + ions and in addition there are charge compensat-
ing K+ ions. Some of these K+ ions are attached to the
interior walls of the cage and the rest are embedded in
the silicate framework. The K+ ions on the wall provide
an attractive potential on the helium atoms. Thus in ad-
dition to the geometrical confinement effects, the attrac-
tive potential produced by the K+ ions can also affect
m /m * dramatically, particularly when the neck becomes
narrow.

The arrangement of this paper is as follows. In Sec. II,
we discuss in detail the parameters of the model system
and briefiy discuss the method of calculation of m /m *.
In Sec. III, we discuss our results on (a) size dependence
of the ground-state energy, (b) m/m* as a function of
different geometrical parameters, and (c) the effect of at-
tractive K+ potential on m/m*. Finally, in Sec. IV, we
qiv~ a brief summary.
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corresponds to the propagation of a free particle along
the z axis. Thus, if m/m =1, the particle can move
freely along the channel axis and if m/m*(1, the
effective mass of the particle becomes large, i.e., the parti-
cle becomes heavier so that it is harder to move along the
channel. As m/m* —+0, the particle has a tendency to
get localized. In addition to mlm, we give the wave
function densities (u ) for k =0 to show what happens to
the unit-cell wave functions as m /m ' ~0. Finally, to see
the effect of the K+ ions, we have compared the
difFerence between mlm for two cases, i.e., with and
without the attractive potential produced by the K+ ions.

III. RESULTS AND DISCUSSION

A. Effect of geometry on the energy spectrum and m /m

(b)

FIG. 1. (a) Schematic picture of a one-dimensional K-L zeol-
ite tube; (b) Geometrical parameters describing the one-
dimensional channel system.

II. SYSTEM AND METHOD

Figure 1(b) describes the geometrical parameters used
in our one-dimensional (1D) model of the channel in K-L
zeolite, it is periodic along the z axis with periodicity a.
The channel consists of cages (chambers) of diameter b
and length 0+c ~a, connected by necks of diameter d
and length a —c. The channel has cylindrical symmetry
with the z axis as the symmetry axis. The transport prop-
erties of a quantum particle in such a channel is
influenced both by the geometry and the potential. To
examine exclusively the dependence of the transport
properties (through m/m ') on the geometry, we assume
that the potential inside the channel is zero and the
boundary is a hard wall where the wave function van-
ishes.

We solve the single-particle Schrodinger equation by
setting the eigenfunctions as Bloch functions,

k(r, P,z)=u„k(r, P,z)e'"' We then sol. ve the equa-
tion for the cell periodic part u„k and eigenvalues
E„(k). The numerical method used is the optimized
iterative method for eigenvalue problems for the simple
1D case, i.e., P(r, P,z)~g(z), with appropriate generali-
zation to our problem. Using this method we can get ei-
genvalues and eigenvectors for the ground state and
several 1ow-lying excited states. To probe the effect of
the dimensionality of the lateral (perpendicular to the
tube axis) confinement, we have also studied the 2D case
where f(x,y, x)=f(x,z).

In this paper, we discuss only the lowest energy band
for a fixed overall size of the channel [i.e., fixed a, b,
shown in Fig. 1(b), but with different cage size c and neck
diameter d]. Using this band structure and the effective-
mass concept, i.e., assuming that E=R k /(2m ')
=(mlm*)k (iri /2m) near the bottom of the energy
band, we have calculated m /m *. The unit of energy is
A' /(2m A ). For the one-dimensional channel, one can
easily see that m /m *= 1 when c =0 and/or d =b which

We will first present our results for fixed values of a
and b and different values of cage length (c) and neck di-
ameter (d). For simplicity, in this paper we choose a =b
and a = 10 A, we do not expect much qualitative change
from our present results when we take aXb. Before dis-
cussing the geometry dependence of the effective mass,
we would like to briefIy discuss the size dependence of the
energy itself, particularly the ground-state energy Eo.
We have calculated Eo by changing the overall length
scale (a) but keeping all the ratios bla, cia, dla same
and we find that Eo scales as inverse square of a, as ex-
pected from elementary quantum mechanics.

In contrast to the ground-state energy, effective mass
has a much more complex geometry dependence. In Fig.
2 we give the c dependence of m/m' for three diff'erent
values of d(=3. 5 A, 5.0 A, and 6.5 A) for the 2D case,
and in Fig. 3 similar results are given for the tubular
channel for two different values of d( =3.66, 5. 12 A). In
all these calculations we have fixed a=b=10 A. The
general trend is as follows: For small c, m /m *—1. It de-
creases with increasing c and attains a minimum for
c-d. Then it increases with increasing c. The decrease
is quite sharp for the tubular channel when d is small. In
this case, there is a large region of c for which
m/m'&&0 when d is small. Finally, when c=a and
d (10 A, m /m' is less than 1 because in this limit the
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FIG. 2. The c dependence of m /m * for three different neck
diameters in the 2D case.
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FIG. 3. The e dependence of m/m* for two difFerent neck
diameters in the 3D, i.e., tubular channel case.

particle still feels the e8'ect of geometry even if the neck
length ~0. In fact m/m ~1 only when d +b =10—A,
in which case the particle moves freely inside a tube of
uniform cross section.

To understand the physical origin of the sharp drop in
m /m ', i.e., enhanced tendency to localize as we increase
the cage length c, we plot in Fig. 4 (c =2 A) and Fig. 5
(c =6 A) the square of the ground-state wave function
(k=0) for the neck size d=3. 5 A for the 2D case. For
c =2 A & d, m /m = I' and the probability of the particle
inside the neck region is quite high, whereas for
c =6 A) d, most of the probability is in the cage with al-
most vanishing probability in the neck. In the latter case
when we make kAO, the k dependence of the energy
comes from the small intercage tunneling process. This
leads to a rather low value for m /m ' which for these pa-
rameter values is =0.19.

FIG. 5. Square of the wave function (u ) of a particle moving
in a channel for k =0, corresponding to the 2D case. The chan-

0 0 0

nel parameters are a =b =10 A, c =6.0 A, and d =3.5 A. For
these parameters, cage length is larger than the neck diameter
and m/m*=0. 19«1.

One can also study the above tendency to localize by
changing d for 6xed values of the cage length c. In Fig.
6, we give m/m* as a function of d for three difFerent
values of c(=2.5, 5.0, 7.5 A) for the tubular channel.
For small values of d, m/m' —+0 but as we increase d,
there is a rapid increase in m /m to 1. The sharpness of
this increase depends on c, the increase being sharpest for
small c. The value of d at which m/m'=0. 5, initially
increases with c but then tends to saturate at about 6 A.

B. Analytical Sts to m /m

In order to express the geometry dependence of m /m *

in a simple analytical form, we have attempted to express
(qualitatively ) m/m' as a function of scaled variables
b/a, c/a, d/a. In our calculation, we have fixed
b/a=1 and changed 0(c/a, d/a (1. When d/a is
small and c/a is large, one knows that m/m*~0 ex-
ponentially as d/a ~0 due to tunneling between the cage
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FIG. 4. Square of the wave function (u ) of a particle moving
in a channel for k =0 corresponding to the 2D case. The chan-

0 0 0
nel parameters are a =b = 10 A, c =2.0 A, and d =3.5 A. For
these parameters, cage length is smaller than the neck diameter
and m/m* for this case =0.83=1.
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FIG. 6. m/m* as a function of neck diameter d for three
specific values of the cage length e.
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The nature of the attractive potential produced by the
positive ions on the channel wall depends sensitivity on
the location and number of positive ions inside the zeolite
cage. As an example, let us discuss the case of K-L zeol-
ite. Depending on the number of K+ ions, there will be
several minima as one goes around the wall of the cage.
To represent the general features of this ion-induced at-
tractive potential, we add a potential of the form
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c/a
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FIG. 7. Comparison between the two-parameter function
[Eq. (1)] for m/m and the calculated m/m as a function of
c/a for different values of d/a; varying parameter a and fixing
n.

—Vo sin (pP), 0&z &c
V(r, y, z)=

0, otherwise . (2)

states. But to capture the d/a, c/a dependence over a
broad parameter space, we have used a different function-
al form. In fact, a two-parameter function that fits
m/m' data reasonably well is given by

p7z
['

1 —d ~~(
m (1)

m * 1+[(n /2)Zc ]"
where e =c/a, d =d/a and the two parameters are a
and n.

In Fig. 7 we compare the results of Eq. (1) with the nu-
tnerically calculated values of m/m ' as a function of c
for two different values of d(=0. 366, 0.512). We see
that the parameter a controls the sharpness of the rapid
decrease in m/m' as c increases from 0. For large
values of c, m/m is relatively insensitive to a. In Fig.
8, we give similar results but fix a and vary n. Clearly the
m /m ' values depend sensitively on n as c~ 1 and there
is hardly any n dependence for c &0.4. The parameters
which fit our calculated results well are a=18 and n =4.
One can obviously fit the data better by increasing the
number of parameters but one does not necessarily gain
any additional insight.
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[Eq. (1)] for m/m and the calculated m/m as a function of
c/a for din'erent values of d/a; varying parameter n and fixing
Q.

FIG. 9. Square of the wave function (u ) at k=0. The chan-
0 0 0

nel parameters are a =b =10 A, c =6.0 A, and d=5.0 A; (a)
without the additional attractive potential ( Vp =0) (b) with at-
tractive potential, Vp =2.Oep, (c) with attractive potential,

0 2
Vp =5.0ep. Here ep =g /(2m A ),
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In the above r is the radial distance of the He atom from
the axis of the tube, Vo and p characterize, respectively,
the strength and the angular periodicity of the attractive
potential. Here we have assumed, for simplicity, that the
K+ ions do not affect the helium atoms when they are in-
side the neck region. In a more realistic model, one may
have to relax this simplifying approximation.

To understand the effect of K+ ions, we have chosen as
before a=b=10 A. We fix c=6 A, d=5 A, and take
p=2 in Eq. (2). When Vo=0, m/m*=0. 19, when
Vo=2eo(co=A' /2m A ), m/m'=0. 06 and when

Vo =5.Oeo, m /m *=0.03. Thus, an attractive potential
produced by the cations located on the cage wall tends to
increase the effective mass. The underlying physics is
quite simple. When Vo=0, m/m*(1 indicating that
intercage tunneling rate is small. As we turn on Vo, the
particles get attached towards the wall thus decreasing
their intercage tunneling probability and hence decreas-
ing m /m '. As Vo becomes sufficiently strong, the parti-
cles get trapped near the cage wall and do not contribute
to the mass transport along the tube axis. However,
these trapped particles can dominate the low-T thermo-
dynamic properties, particularly at low He concentra-
tions.

The square of wave function u for k =0 is plotted in
Fig. 9 for the three above values of Vp. When VO=0, the
cage size is large enough such that the particles spend
most of the time inside the cage (m /m =0.19). Howev-
er, u is reasonably large near the tube axis indicating an
appreciable intercage tunneling probability. As we in-

crease Vo, u near the cage axis tends to decrease and for
VO=5. 0eo, the particle spends most of the time away
from the tube axis, i.e., they are trapped near the cage
walls. In this cage, intercage tunneling is practically
zero. The excitations of these particles then come from
tunneling around the cage wall, an intracage process.

IV. SUMMARY

In summary, we have investigated the effects of geome-
trical confinement on the effective mass m'/nt of quan-
tum particles moving along tubular channels. We find
that m'/m is a highly nonlinear function of the geome-
trical parameters such as cage size cia and/or neck di-
ameter d/a. There are large regions of parameter values
where the m /trt is quite large. Consequently any small
perturbations like defects, thermal vibration of the wall,
or interparticle interaction will have strong effect on mass
transport along the channel axis. The effect of positive
ions embedded in the channel walls can also .be very
significant. In particular, in the low helium atom concen-
tration regime, helium atoms will be trapped in states
near the wall with an extremely low probability of inter-
cage motion. These states will not contribute to mass
transport but will show up in low-temperature thermal
excitations.
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