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Phonons in one-dimensional Peierls systems with internal degrees of freedom
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An extension of the frozen-phonon approach is presented that permits us to calculate phonon disper-
sion curves for a one-dimensional system subject to Peierls distortion in the whole Brillouin zone. A
number of systems with monomers possessing both lattice and internal degrees of freedom and with vari-
ous filling ratios are investigated. The nature of the soft mode common for all the systems studied is dis-
cussed putting emphasis on its difference from the soft mode in the well-studied Peierls systems with one
degree of freedom per monomer. It is found that the presence of internal degrees of freedom has consid-
erable impact on the soft modes and phonon dispersions. The behavior of the phonon dispersion curves
and the force constants resulting from the electron-phonon interaction are studied as a function of
electron-phonon coupling constants. A model system with two types of monomers, one of which
possesses an internal degree of freedom and with a filling ratio of 3/4, is used to explain experimental re-
sults on a recently synthesized quasi-one-dimensional compound Ca2 „Sr Cu03.

I. INTRODUCTION

In recent years, distortions of one-dimensional chains
due to the electron-phonon coupling, suggested by
Peierls, were intensively investigated. Starting with the
pioneering work by Su, Schrieffer, and Heeger, a detailed
study of nonlinear excitations, such as solitons, polarons,
etc. was performed, especially the influence of
electron-electron interaction on soliton formation was in-
vestigated. ' ' The ground state of the Peierls-
Hubbard Hamiltonian and the dependence of dimeriza-
tion amplitude on the Hubbard parameter U were also a
subject of intensive studies. " ' The last efforts are
aimed at two-band Peierls-Hubbard models, in
which a variety of phases, including incommensurate
ones, was found, as well as at systems with internal (to-
tally symmetric or Jahn-Teller-active) degrees of free-
dom, where an interesting interplay between lattice and
internal dimerization takes place.

One of the most intriguing problems, connected with
Peierls-distorted systems, is electron-lattice interaction
and phonon properties of these systems. Lattice vibra-
tions in the vicinity of solitons have been studied in a
number of papers. Since 1978, phonon-dispersion
curves were calculated for a number of model Hamiltoni-
an describing Peierls systems without solitons.
These investigations revealed a number of general pho-
non properties, such as softening of the optical phonon in
the vicinity of the wave vector q=0 and a positive quad-
ratic dispersion of that phonon at small q. In the earlier
papers, systems with filling ratio of 1/3 and 1/4, as well
as two-atomic systems, ' were considered. In the re-
cent work of Batistic and Bishop, a two-band, 3/4-filled
Hamiltonian describing a halogen-bridged transition-
metal chain was investigated, with a special emphasis on
the phonon properties in the presence of polarons. A
number of publications (see, e.g., A. Girlando, Painelli,
and Soos and references therein) have been devoted to
the investigation of optical spectra of polyacetylene and

its isotopic derivatives. Here, a modulation of the hop-
ping integral resulting from interaction with several vi-
brational modes was considered. However, the phonon
properties of systems with both internal vibrational de-
grees of freedom modulating on-site energies and lattice
degrees of freedom modulating the hopping integral were
not investigated so far.

As already mentioned, ground-state geometry and elec-
tronic structure of one-dimensional systems with internal
degrees of freedom have been intensively studied in the
last years. It was found that the competition between
electron-lattice and electron-internal couplings may lead
to an interesting phase diagram with a number of possible
ground-state geometries. For a half-filled system with
monomers possessing totally symmetric internal degrees
of freedom (on-site electron energy depends linearly on
the internal coordinate value), the ground state has either
a lattice distortion, or an internal Peierls distortion, or a
combination of both kinds of distortion, depending on
the values of the coupling constants. ' In other sys-
tems, such as quarter-filled alternating systems (i.e., sys-
tems with two types of monomers, one of which possesses
and the other does not possess internal degrees of free-
dom), both types of distortions always coexist. 6 Such an
interplay between lattice and internal degrees of freedom
should obviously reAect itself in phonon properties of
these systems. Of particular interest here is a behavior of
the soft mode in systems with more than one Peierls-
active coordinate. Thus, in the present work we are aim-
ing at a comprehensive study of phonon-dispersion
curves in systems where the Peierls distortion involves
lattice as well as internal degrees of freedom. We give an
extension of the frozen-phonon approach, which permits
us to calculate phonon-dispersion curves in the whole
Brillouin zone. This allows us to investigate phonon
properties of a number of systems with various filling ra-
tios and various types of distortions, as well as systems
with alternating monomers. We show that the presence
of internal degrees of freedom leads to unusual effects on
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phonon-dispersion curves, and analyze these effects in or-
der to explain recent experimental results on a quasi-
one-dimensional compound Ca2 Sr Cu03.

The paper is organized as follows. In Sec. II, the com-
putational method is presented. The comparison with
earlier results on systems with only lattice degrees of free-
dom and the new results for systems with both lattice and
internal Peierls-active coordinates, including an analysis
of Ca2 Sr„Cu03 experimental data, are collected in Sec.
III. A discussion of the results is given in Sec. IV. Final-
ly, Sec. V contains the concluding remarks and points out
the line of possible further investigations.

II. THEORY

Vibrational frequencies and corresponding vibrational
eigenvectors of a one-dimensional chain can be found
from eigenvalues of the following linear system of equa-
tions:

Fb,„d(0,&';I,j )e'~' . (4)

Note that it is more convenient to consider finite rather
than infinite chains, because in the case of infinite chains
the quantity E»„d is also infinite rthough the derivatives
in (4) are still finite]. Thus, let our system be a finite
chain consisting of L unit cells (numbered from 0 to
L —1) with periodic boundary conditions. Let us first in-
vestigate the case q =0. Then,

teractions can be represented by (harmonic) force con-
stants for bond stretches and angle bends; D ' can then be
easily found using standard lattice dynamics. The most
important part for the systems with electron-phonon in-
teraction is

oo B2E
D band( band iql

„Bx(O,i )Bx(i,j)

D(q )x=Mco x .

Here D(q ) is the X XN dynamical matrix (X is the num-
ber of degrees of freedom in the unit cell), q is the wave
vector, x the column vector representing the vibrational
amplitudes, M is an NXN matrix whose diagonal ele-
ments M„are masses (or reduced masses) m; of the ith
degree of freedom; for i Wj, M, =0. Thus, squares of the
frequencies are given by the eigenvalues of the matrix
D;J(q )/Qm;mj. The dynamical matrix can be expressed
in the following form:

BE iql

Due to translational invariance of the system,

BE,„BEb,„d 1 L — BEb.„d=—XB (xO, i ) B x(m, i ) L Bx(m, i )

and

L —1L —1 BEb
D, '" (q =0)=—gL o & o Bx(m, i)Bx(l,j)

Now, let us introduce new collective coordinates

(5)

F(O,i;l,j )e'~' . (2)

1 L —1

Xk(j)=—g e'"'x(l, j),L l=o

max

The summation is to be performed over all unit cells
(they are numbered by the index l). The jth coordinate
in the lth unit cell is denoted by x(l,j), it can be either
lattice or internal; E is the total energy of the system, its
second derivatives with respect to the lattice coordinates
(i.e., the force constants) are denoted by F(O,i;I,j ). It is
supposed that the derivatives in (2) are taken at the
ground-state geometry of the system (corresponding to
the minimum of the total energy). In (2), as well as
throughout the paper, we use a dimensionless representa-
tion of the wave vector. The first Brillouin zone corre-
sponds to the values of q in the region —m~ q (m. One
can also use the wave vector q' with the dimension of in-
verse length (q'—=q/a ), then the exponent in (2) will take
the form ex (piq'l )a, with —ir/a ~q'&m/a, a being the
size of the unit cell.

Now, let us divide the dynamical matrix and the total
energy into elastic and band (or, equivalently, into cr and
m. ) parts:

E=Ee1+Eband ~ ()
D el+a band

ij ij ij

The evaluation of D ' usually does not represent a major
problem, because in a good approximation the elastic in-

x(l,j)= g e '"'Xk(j),
k=0

where k can take the following values: k=2m(l/L),
1=0,1, . . . , L —1. Rewriting the above expressions in
terms of the derivatives with respect to Xk(j) one easily
arrives at the following result:

(9)

where Eb,„d=(1/L )Eb,„d is the band energy per unit cell.
The derivatives in (9) are to be obtained numerically. It
follows from (8) that Xo(i )%0 with all other collective
coordinates equal to zero corresponds to X(l,i )=Xo(i)
for all l, other lattice and internal coordinates being zero.
Thus, one has to calculate the second derivative of cb,„d
with respect to distortions of ith and jth degrees of free-
dom which are equal in all unit eel/s. The chain remains
translationally invariant, the size of the unit cell remains
the same and it is only necessary to calculate the band en-
ergy for geometries slightly different from the ground-
state geometry.

Turning now to the case q%0, let us consider the sys-
tem as consisting of L "large" unit cells, each "large"
unit cell being a sequence of M usual unit cells. Then, the
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L —1 M —1 BE
D band(q ) y y e iqm

Bx(O, i)Bx(lM+m, j)
In the following, one proceeds analogously to the case
q =0, with the difference that now the "large" unit cell is
considered as a usual unit cell. So, for the derivative with
respect to x (0, i ) one obtains

BEb.„d 1 L — BEb,.d=—XBx(O,i) L „Bx(nM,i)
The collective coordinates are introduced as follows:

L —1

Xk(m,j )=—g e'"'x(lM+m, j),I. I=o

(12)

max

x(IM+m, j)= g e '"'Xk(m, j),
k=0

with 0~m +M —1, k=2qr(l/L), l=0, . . . , L —1. The
derivatives with respect to x(nM, i ) and x(lM+mj) a, re
transformed into the derivatives with respect to collective
coordinates and after some algebra one obtains

M —1

Dband(q )
—y eiqm

m=0

B ~band

BXO(O, i )BXo(m,j )
(14)

Here, Eb,„d= ( 1/L )Eb,„d is the band energy per "large"
unit cell. The derivatives in (14) are to be calculated nu-
merically, the only difference from the case q =0 is that
now the distortions are equal in all "large" unit cells.
One now has to perform calculations for the translation-
ally invariant system with the period of a large unit cell.
The electronic Hamiltonian is an Mp XMp square matrix,
p being a number of electron levels in one usual unit cell.
Proceeding in such a way, one can get the dynamical ma-
trix and the vibrational frequencies for M values of the
wave vector: q=2qr(m/M), m =0, 1, . . . , M —1; in fact,
only the values of q ~ m are important, because
to(qr+q) =co(qr —q).

Finally, let us make two general remarks. First, if one
takes the number M of usual unit cells in the large one to
be very large, the comparison of (4) and (14) shows that
the value

2

4&(O, i; m, j )—:=
ax, (o, i)aX, (m, j)

tends to the band force constant Fb,„d(O, i;m, j). Thus,
'.he force constant resulting from the electron-phonon in-
teraction can be obtained as a limit of &b(Q, i;m, j) when
the size M of the large unit cell tends to infinity. Second,
the results presented in this section can be used even if

formula (4) can be rewritten as
L —1M —1

Dband( ) y y iq(IM +m)
V

I=O m=o

B'Eb.„,X . (10)
Bx (0,i )dx ( lM +m, j )

Now, note that for q =2qr(m/M), m =0, 1, . . . , M —1,
exp(iqlM)=1 and

the Hamiltonian of the system includes, in addition to
usual Peierls terms, the terms which take into account
the electron-electron interaction. All the formulas
(1)—(14) remain valid with the only difference that the
quantity E»„d is no more the band energy of the system
but the lowest eigenvalue of the total electronic Hamil-
tonian. The only approximation used in derivation of
(1)—(14) is the adiabatic approximation which permits us
to divide the total energy and the dynamical matrix into
elastic and electronic parts. With this approximation the
results presented are a complete scheme of phonon calcu-
lations in the whole Brillouin zone for systems with
electron-phonon interaction.

III. NUMERICAL RESULTS

The following computational procedure was used for
all the systems studied in this section. The second deriva-
tives of the band energy were computed by the finite
difFerences method. The step was about 10 times the
size of the unit cell; the results obtained were precise
enough everywhere except the cases when the dimeriza-
tion amplitude in the ground-state geometry was compa-
rable with this step. In the latter situation an appropri-
ately reduced step size has to be used. Usually, the pho-
non frequencies were calculated in 5 or 10 points in the
Brillouin zone to obtain the full dispersion curves; it was
found to be a suf5cient number, because the dispersion
curves are flat enough.

A. Systems without internal degrees of freedom

g u„+—g (u„+,—u„)
n n

—g t„(a„a„+, +H c ), . .

t„=to —y(u„+, —u„) (16)

were calculated. The phonon-dispersion curves of these
systems have been studied by Schulz using a Green's-
functions method. In our calculations, we used the fol-
lowing parameter values: K =7.57 eV/A, to = 1.67 eV,
M=16 a.m.u. For the comparison with Ref. 33, the
values of y were chosen so as to give 6=0.18' 5 being a
Peierls gap and 8'=4to the bandwidth in the absence of
the Peierls distortion: y=1.712 eV/A for the half-filled
and y =2. 147 eV/A for the quarter-filled system. The re-
sults are given in Fig. 1. They are in a very good qualita-
tive and quantitative agreement with corresponding re-
sults of Ref. 33. The most important peculiarities of both
systems are soft optical modes at q =0. In the half-filled
system, there is only one (amplitude) soft mode; in the
quarter-filled system, both amplitude and phase soft

As a check of the theory proposed, a comparison with
earlier results of Schulz and Rice and Mele ' was per-
formed. Firstly, vibrational frequencies of half- and
quarter-filled systems described by the usual Peierls Ham-
iltonian

II= g u„+H,)+Hb, „d
M
2 .
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modes are present, the last one has the smaller frequency.
Summarizing, we can conclude that for systems without
internal degrees of freedom our method provides equally
good results as the method used in Ref. 33. However, we
believe that our method is more convenient to apply to
more complicated systems with internal degrees of free-
dom.

En a review article of Mele, results of calculations of
phonon frequencies in the whole Brillouin zone are
presented for Hamiltonian (15) with parameters represen-
tative for (CH)~: E=68.6 eV/A, to =3 eV, y = 8 eV/A.
To obtain the dependence of the band energy on atomic
displacements for a given phonon wave vector q, a
second-order perturbation theory was used. The frequen-
cy of the q=0 optical phonon is 1492 cm ', which is
very close to our calculations co(q =0)= 1479 cm
However, at the end of the Brillouin zone there is no
splitting between the two phonon branches in strong
disagreement with the results of Schulz and with our re-
sults. Our calculations predict for q =m vibrational fre-
quencies of 1539 and 1673 cm '. The vibration with the
lowest frequency corresponds to in-phase movement of
doubly bonded neighboring monomers, while in the

H =—M~ g u; + —M~ g yj +H, )+Hba d
=1 . 22; ' 2

H,&= —g (y;+, —u;) +—g (uj+, —yj)
l J

(17)

(18)

Hband 2
~E X +I'o I'o X bjabjo

l CT JO

—g t; (a;t b; +, +H. c. )
l C7

—g t (b aj+, +Hc ),
JCT

(19)

high-frequency vibration there is an out-of-phase move-
ment of such monomers. It is obvious that the frequen-
cies of these vibrations must be different for any nonzero
value of the dimerization amplitude and the absence of
the corresponding gap in the phonon spectrum given in
Ref. 36 is a consequence of the approximations used
there.

A slightly more complicated system is a diatomic poly-
mer ( AB ) studied in Ref. 35, which is described by the
following Hamiltonian:

(a} 700—

500
LLI

Z 400
LLI

Cf
300

200

100

0
0

WAVE VECTOR

500

400
LLI

C3'
300

LL

200

100

WAVE VECTOR

FIG. 1. Phonon-dispersion curves of half- (a) and quarter- (b)
filled Peierls-distorted systems (full lines). For comparison,
phonon-dispersion curves without electron-lattice interaction
are also shown (dashed lines). The frequencies are in cm
The parameters of the Hamiltonian (15) and (16) used are given
in the text.

where Mz, M~ are masses of atomic constituents
3,B,hc. =c„—c,& is a difference of on-site energies. Dis-
placements of atoms A and B along the chain are denoted
by u; and y, respectively; a; and b are the correspond-
ing electron creation operators. The authors of Ref. 35
used parameters representative for (CH)„(see above) in
their model of (CH=N)„. The results for various values
of Ac are given in Fig. 2 of Ref. 35. The common feature
is the lowering of frequency of the optical vibration at
q =0 with respect to the case of elastic interaction only,
and the appearance of a gap between acoustical and opti-
cal vibrations at the end of the Brillouin zone. With in-

creasing Ac. , the dimerization decreases and becomes 0
for kc kp Ap being the gap in the electronic spectrum
for hc. =O. The frequency of the optical vibration also
decreases with increasing Ac, and tends to 0 when the di-

merization disappears. At the same time, the optical vi-

brational frequency at the end of the Brillouin zone does
not depend on hc. , according to Ref. 35, as is also the case
for the whole acoustical branch. The magnitude of the

gap between optical and acoustical vibrational frequen-
cies at the end of the Brillouin zone does not depend on
Ac, and is about 300 cm '. Our calculations confirm the
softening of the optical vibration at q=0 and the de-
crease of coo~,(q =0) with increasing b, E, as well as the ex-

istence of the gap at q =m. However, the actual values of
frequencies are different from those in Ref. 35. For ex-
ample, for b, e =0 we obtained co, ,(q =0)= 1453 cm
the result of Rice and Mele being 1412 cm '. In the
whole Brillouin zone, both optical and acoustical
branches have higher frequencies in our calculations than
in Ref. 35. The value of the gap at q=~ is about 144
cm ' in our calculations, compared with about 300 cm
obtained by Rice and Mele. The strongest disagreement
between our results and that of Ref. 35 is the decrease of
the gap at q =~ with increasing Ac and decreasing dimer-
ization. When the dimerization approaches 0, the gap in
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our calculation is about 58 crn ' and the ratio
co,~,(q =m. )/co„o„st(q =m. ) becomes equal to
(MN/McH)' =1.038. It is obvious that in the absence
of dimerization the vibrations at q =m are either move-
ment of N atoms only or that of CH species only and that
both vibrations cause equal change of the band energy.
Consequently, the ratio of their frequencies must indeed
be equal to (MN/MCH)' . The fact that the results for
the phonon-dispersion curves presented in Refs. 35 and
36 are particularly poor at the end of the Brillouin zone
shows that the second-order perturbation theory ap-
proach cannot give qualitatively good results for the
whole phonon spectrum unless the system is in a weak-
coupling limit (y—=y /%to «1; for the parameters used
in Refs. 35 and 36, y =0.31 and the electron-phonon cou-
pling cannot be treated as weak). We can conclude that
our approach provides better qualitative and quantitative
values than the perturbation theory used in Refs. 35 and
36.

B. Half-filled homogeneous system
with internal degrees of freedom

The ground-state geometry and the band structure of
this system have been investigated by Fischer, Koppel,
and Cederbaum. Each monomer possesses two de-
grees of freedom: a monomer distortion coordinate along
the chain u„and an internal, totally symmetric coordi-
nate U„. The Hamiltonian of the system looks as follows:

( a) 600 I I I I I I I
I

I
[

500 =

&00—
bJ

bJ 300—
C3
LLI
CL 200—

100

0
0

WAVE VECTOR

600 I I I I
I

I I I I
I

I I I I
I

500 =

4-00—
LLI

300—
C3
LLI

200

100

0= g u„+—g (u„—u„+, )
n n

—g t„(c„c„+,+H. c. )

na

0
0

WAVE VECTOR

+ g U„+—g U„+g e„c„c„ ( C) coo I I I I
[

I I I I
[

I I i I [

Here, the first three terms describe a usual Peierls system;
the last three terms are responsible for the internal coor-
dinate U of the monomer. The reduced mass of the inter-
nal degree of freedom is denoted p, the corresponding
force constant is F. The last term is an on-site energy of
the monomers, which, analogously to the hopping term
of the Hamiltonian is supposed to depend linearly on the
internal coordinate:

500 =

~00—
LLI

LLI 300—
C3
LJJ

200—

c„=eo+&U (21) 100

It was found ' that the ground-state geometry of the
system is determined by two dimensionless electron-
phonon coupling constants:

y=y /%to,
(22)

~=K /Fto
At large ~, the doubling of the unit cell takes place due to
internal distortions of the monomers; at large y, only lat-
tice distortions take place; in a small region of (~, y)-
parameter space, both types of distortions coexist. In or-
der to study the behavior of the phonon modes in the vi-

cinity of transitions between these regions, we have calcu-
lated phonon-dispersion curves for three close-lying sets
of coupling constants corresponding to these three re-
gions (Fig. 2). The following parameters were used:

0
0

WAVE VECTOR

FIG. 2. Phonon-dispersion curves of half-filled homogeneous
system with internal degrees of freedom. The frequencies are in
cm '. The ground-state geometries of the system are the fol-
lowing: internal distortions only (a), ~=1.45, y=0. 55; lattice
distortions only {b),~= 1.30, y =0.55; coexistence of lattice and
internal distortions (c), x = 1.35, y =0.55. For other parameters
of the Harniltonian, see text. Dashed lines show the phonon
dispersions without electron-phonon interaction taken into ac-
count. Note that in the ground states with purely internal or
lattice distortions, vibrational modes are also purely internal or
lattice. It makes the crossing of two low-lying phonon branches
at (b) possible.
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to =1.67 eV, %=7.57 eV/A, F=7.99 eV/A, M=32
a.m.u. p=8 a.m.u. Dashed lines are the phonon disper-
sions without electron-phonon interaction taken into ac-
count. The upper dashed line corresponds to internal vi-
bration and is doubly degenerate (due to the folding of
the Brillouin zone), the two low-lying dashed lines are the
lattice optical and acoustical phonons. The common
feature of all the three figures is the presence of a low-
lying optical mode showing a positive curvature at q =0
(i.e., 8 co/Bq ~ 0). At the values of parameters, at which
a transition from one ground-state geometry to another
takes place, the frequency of this mode becomes equal to
0. This is illustrated by Fig. 3, where three q =0 optical
vibrational frequencies of the system are shown as func-
tions of the internal coupling constant ~. While the fre-
quencies in the region 300—600 cm only slightly de-
pend on ~, the soft mode goes to 0 when the transitions
lattice dimerization —lattice and internal dimerization
(s = 1.338) and lattice and internal dimerization —internal
dimerization (v=1.368) take place. The existence of a
soft mode is a general situation for all Peierls-distorted
systems and an indication of the fact that the system is in
the vicinity of a phase transition. However, in the
present case, unlike in Peierls systems with only lattice
degrees of freedom, the low-frequency vibration mainly
consists of those degrees of freedom which are not dimer-
ized for the given (v, y) values. In Fig. 2(a), the low-
frequency optical branch is an out-of-phase lattice vibra-
tion, while in Fig. 2(b) it is an out-of-phase internal vibra-
tion. The soft mode in Fig. 2(c) is a superposition of
internal and lattice vibrations.

One can easily anticipate which vibration should be the
soft mode. As the electron-lattice coupling constant y in-
creases and the system transforms from the ground state
with only internal distortions to the ground state with
both types of distortions, the ground-state value of the
lattice distortion changes from 0 to a finite value. In this
parameter region the dependence of the ground-state en-
ergy of the system on the lattice Peierls coordinate has a
usual form characteristic for a system undergoing the

600

500—

400—

W 300—
C2
LLI

200—

phase transition, i.e., it should be a lattice distortion
coordinate which takes part in the soft-mode vibration.
Analogously, in the (sc, y) region in the vicinity of the
transition from the ground state with only lattice distor-
tions to the ground state with a combined lattice-internal
distortion, the soft mode is an out-of-phase vibration of
the internal coordinate. For values of (a, y) parameters,
for which both lattice and internal degrees of freedom are
dimerized, the situation is slightly more complicated. If
the lattice dimerization is very small (the system is in the
vicinity of the transition into the phase with pure internal
dimerization), the corresponding soft mode consists
mainly of lattice vibration with small admixture of the
internal one. The opposite case takes place if the lattice
dimerization dominates over the internal one. Thus, in
both cases the soft-mode vibration is orthogonal to the
actual Peierls distortion. One can conclude that if the
system is in the vicinity of transition between two
ground-state geometries, the soft-mode vibration indi-
cates the minimal energy path between them. Obviously,
the soft mode does not coincide with the actual Peierls
distortion.

Now, let us mention that at very small y or ~ the sys-
tern should be very close to a usual Peierls system with
one degree of freedom, and hence the softening of the dis-
torted mode must also take place. Indeed, we can see
from Fig. 2(a) that one of internal vibrations is also
slightly softened (third phonon branch) although we are
in the parameter region where only internal distortions
take place. An analogous finding holds for one of the lat-
tice vibrations in Fig. 2(b), which describes a system
which has only lattice distortions in its ground state. The
situation in this system is, in some respect, similar to the
case of quarter-filled system without internal degrees of
freedom, where, as we mentioned above, there are ampli-
tude and phase soft modes, the last one having the lower
frequency. The amplitude mode is a vibration of the am-
plitude of the Peierls distortion, while the phase mode
represents a vibration, which tends to shift the distortion
to the neighboring monomers. In Figs. 2(a) and 2(b)
there is also a slightly softened amplitude mode and a
much stronger softened "ground-state" vibration, which
tends to move the system to a new ground-state geometry
with another Peierls-distortion structure. Such an in-
teresting similarity between the half-filled homogeneous
system and the quarter-filled system without internal de-
grees of freedom deserves more attention and may be a
subject for further investigations.

C. Quarter (3/4)-filled alternating system
with internal degrees of freedom

100—

0 I i I i I i I

1.32 1.33 1.34 1.35 1.36 1.37 1.3H 1.39 1.40

INTERNAL COUPLING CONSTANT (v)

FICx. 3. Frequencies (in cm ') of optical vibrations of half-

filled homogeneous system with internal degrees of freedom at
q=0 as functions of the internal coupling constant x. The pa-
rameters of the Hamiltonian are given in the text, y =O.55.

This system represents an example of a system with
internal degrees of freedom, in which the coexistence of
internal and lattice distortions takes place at any values
of coupling constants. The system now is an alternating
chain:. . .-A-M-A-M-. . . where A denotes an "atom-
like" monomer (without those internal degrees of free-
dom, which could infiuence the electronic structure), and
M is a "moleculelike" monomer with internal degrees of
freedom. The Hamiltonian has the following form:
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H =—g m„u„+—g P, U„+H, &
+Hb, „d,

H,(=—g (u„—u„+, ) +—g U„,
n n

band Xr Encnocnu g rn(cnecn+1cr+H. c. )

ncaa
(23)

The on-site energy c„depends on the internal coordinate
now only for each second monomer:

Ac
2

+RU„, n EM,

Ac.
n nEA

(24)

here hc, takes into account the difference of on-site ener-
gies between A and M moieties. Analogously, the terms
in H, &, which are responsible for the internal motion, are
present only for n&M; m„=m~ or m~ for nEA or
n EM, respectively.

It was shown in Ref. 26 that the system with filling ra-
tio of 3/4 can be mapped onto the quarter-filled system
by the substitution he~ —hc.. In the same paper, the
ground state of the system was determined and it was
found that the internal and lattice distortions are always
coupled, independently of the values of k and y. The
internal distortions lead to different equilibrium values of
U on neighboring M monomers, while the lattice distor-
tions cause a shift of 3 monomers. The atoms move to-
wards the molecule with large or small value of U, de-
pending on the sign of k. Note that the M monomers are
not subject to lattice distortions; thus, internal and lattice
distortions are taking place on different types of mono-
mers.

In the distorted system, the unit cell consists of four
monomers, two of which possess both lattice and internal
degrees of freedom. Accordingly, there are now six
branches in the phonon spectrum. In the undistorted sys-
tem, two of them (those which correspond to internal vi-
brations of M) are degenerate and their frequencies do
not depend on the value of q. The other four branches
are usual phonon-dispersion curves of a two-atom linear
chain (doubled due to the folding of the unit cell). The
electron-phonon interaction removes the degeneracy of
internal vibrations and causes a softening of all phonon
frequencies.

Recently, Raman experiments on the Cu-O chain com-
pound Ca& „Sr„Cu03 were performed, ' in which, in
addition to two all@wed peaks at 306 and 530 cm ', at
least three Raman-forbidden peaks at 440, 500, and 690
cm ' were found. In Refs. 41 and 42, a simple one-
dimensional model was proposed, which explains the ap-
pearance of the forbidden peaks as a consequence of a su-
perstructure resulting from electron-phonon coupling.
The Hamiltonian (23) was used as a model Hamiltonian
describing Cu03 chains. Within a simple tight-binding
approach the chains were modeled by a two-band Hamil-
tonian using the antibonding orbitals of the Cu02 "mole-
cules" (M monomers) and the p orbital of the bridging
oxygen ( A monomers). The strong interaction (hybridi-

I I I I
I

I 1 l I
I

I 1 I I
I

S00-
LLI

400'-
Ltj
CC
U

200—

0
0

WAVE VECTOR

FIG. 4. Phonon-dispersion curves of quarter-filled alternat-
ing system with internal degrees of freedom. The frequencies
are in cm '. Values of force constants and couplings are chosen
so as to fit experimental data on Raman and infrared scattering
in Ca2Cu03 (see text). Dashed lines show the phonon disper-
sions without electron-phonon interaction taken into account.

zation) between Cu02 molecules and chain oxygens is ful-

ly taken into account diagonalizing the electronic part of
the Hamiltonian. The Raman-active totally symmetric
bond-stretching vibration of the CuOz unit can be regard-
ed as an internal mode strongly coupled to the chain elec-
trons. Using suitable values of spring constants and cou-
plings, a good quantitative description of Raman- and
infrared-active vibrations was obtained. '" In particular,
the existence of forbidden vibrational modes was ex-
plained as a consequence of the doubling of the unit cell
due to the Peierls distortion. The parameters used are as
follows: De=1.23 eV, tp=1.4 eV, y=—y /Ktp=0. 8,
a= X /. F—to =0.4,K =18 eV/A, F=8.5 eV/A . With
these parameters, one obtains the amplitude of internal
distortion Up=0. 15 A and that of the lattice distortion
of bridging oxygens up =0.14 A. The dispersion curves
of this system calculated in the present work are shown
in Fig. 4. Here, as usual, the dashed lines are the bare
dispersions (i.e., the dispersions in the absence of the
electron-phonon coupling). The doubly degenerate inter-
nal vibration has a frequency of 538 cm ' and is placed
in a gap between high- and low-frequency translational
branches (corresponding to vibrations of light 0 atoms
and heavy CuOz molecules, respectively). The change of
the ground-state geometry due to the electron-phonon
coupling results in a mixing of internal and lattice vibra-
tional modes. The degeneracies of the phonon modes at
the end of the Brillouin zone are removed. All the pho-
non frequencies are now softened, with the most pro-
nounced effect for the q=0 lattice vibration of CuOz
units, whose frequency decreases from 319 to 135 cm
(see Fig. 4). We suppose that this vibration is, as for the
system studied in Sec. III 8, an analog of the phase mode
in systems without internal degrees of freedom. Strong
softening of this mode indicates an existence of another
ground-state geometry, which becomes the true energy
minimum for a system with a slightly changed Hamil-
tonian (see the Discussion).
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IV. DISCUSSIQN

hc
+R2U„, n EM2,

(25)

instead of (24). It is easily seen that if @2~0, the present
system transforms itself into the alternating system stud-
ied in Sec. III C, i.e., only the M& monomers are subject
to the internal distortion. Now, starting from the point
in the (K„Rz) space where ii, ))K2 and moving our system
toward the point with R, &(R2, we will finally arrive at
the situation where only the M2 monomers will be dis-
torted. In the limit k& —+0, we will again arrive at the sys-

Phonon frequencies are a suitable tool for studying
Peierls systems, because the onset of instability manifests
itself in that one of the optical-phonon frequencies goes
to 0. For systems with only one degree of freedom, such
an instability takes place at a finite temperature Tz, lead-
ing to the appearance of the Peierls superstructure and
reduction of the first Brillouin zone (see, e.g., Ref. 33).
For T(T~, the optical frequencies remain finite at any
values of the coupling constant and the Peierls instability
results in a softening of the corresponding vibrational
mode and in a positive sign of its second derivative with
respect to the wave vector: 8 co/Bq ~0. This effect in-
creases with decreasing electron-phonon coupling con-
stant, and in the limit y —+0, the frequency of the q =0
optical phonon also goes to 0. ' For systems with both
internal and lattice degrees of freedom the situation is
quite different, however. There the Peierls transition can
take place at finite values of the coupling constants and at
T=O, being thus a transition between various possible
ways of dimerization. An example of such a system is the
half-filled homogeneous system (Sec. III 8). We have
seen that when the system continuously changes from one
region in the (~, y)-phase diagram to another, one of its
phonon frequencies goes to 0. If the phonon frequencies
were calculated for a wrong ground-state geometry, at
least one of the vibrations would have an imaginary fre-
quency, pointing out at instability of the system. Thus,
the method presented in the paper can be used for a
search of a true ground-state geom. etry of a Peierls system
with many degrees of freedom.

Another point to be noticed is the fact that in systems
with both internal and lattice degrees of freedom those
vibrational modes are mostly softened which are not in-
volved in the Peierls distortion. Examples are the sys-
tems presented in Secs. III B and III C. As already point-
ed out in Sec. IIIB, the softening of the phonon mode
which is not dimerized shows that this mode can be
dimerized by a relatively small change of the coupling
constants. An analogous situation is encountered, in fact,
for the alternating system of Sec. III C. To check this, let
us turn for a moment to a slightly more complicated sys-
tem consisting of two different monomers, each of which
possesses internal degrees of freedom (moleculelike
monomers). Denoting the monomers M, and M2, their
on-site energies are now given by

bc.c„= +R U„, n EM&,n

tern studied in III C, with atom- and moleculelike mono-
mers changing their places. Thus, somewhere in the
(R„ic2)-parameter space there is a phase transition be-
tween two ground-state geometries in which either M~ or
M2 monomers are distorted. The lattice distortions in
these ground-state geometries are taking place either at
Mz or at M& monomers, respectively. Under these cir-
cumstances, one should await that in the phase where the
M

&
monomers are internally distorted and the M2 mono-

mers are subject to the lattice distortions, the vibrational
mode consisting of lattice vibrations of M& monomers
and internal vibrations of M2 monomers would be strong-
ly softened, indicating a possibility of the phase transi-
tion. In the system studied in III C, we have exactly this
case, with the only difference that the Mz monomers do
not possess internal degrees of freedom (K2=0), so that
the soft mode is the lattice vibration of M& monomers
(Cu02 units) only. Like in the case of half-filled homo-
geneous system, relatively small softening of phonon
modes involved in the actual Peierls distortion also takes
place.

Finally, let us turn to the problem of approximation of
the phonon frequencies by force-constant models. In
such models, one usually supposes a rapidly decreasing
dependence of the force constants on the intermonomer
distance, so that one takes into account an interaction be-
tween nearest and next-nearest neighbors only, neglecting
the force constants for more than two intermonomer dis-
tances. Besides, a monotonous dependence of the force
constants on distance is supposed. It is easy to check
that it is not the case for Peierls-distorted systems. Al-
ready in Ref. 36 it was mentioned that there is an oscillat-
ing behavior of the force constants between the mono-
mers as a function of distance. We have shown in Sec. II
that the force constants resulting from the electron-
phonon interaction (band force constants) can be ob-
tained in a calculation with large enough unit cell. In or-
der to investigate the dependence of the force constants
on the distance between monomers and on the electron-
lattice coupling constant, we performed the correspond-
ing calculations for the half-filled system without internal
degrees of freedom (15) and (16). The parameters of the
Hamiltonian were those used by Su, Schrieffer, and
Heeler in their model of (CH)„: t0=2 5eV, %=2.1

eV/A . For the coupling constant y=4. 1 eV/A, the
equilibrium distortion is 0.08 A. In Fig. 5, the calculated
values of the band force constants for a number of cou-
pling constants y are presented. Note that the total force
constants are a sum of band and elastic force constants,
so that the band force constants alone do not provide sta-
bility of the chain. The constants with negative values
are those between the first monomer in the 0th unit cell
and the first monomer in the Ith unit cell: Fb,„d(0, 1;I,1),
the number l is given at the abscissa. The force constants
Eb,„d(0, 1;l,2), i.e., the constants between the monomers
distorted in opposite directions, have positive values.
One can note the oscillating behavior of the force con-
stants, in agreement with Ref. 36. Though the absolute
value of Eb,„d(0, 1;l,i) decreases with increasing l, it is
clear that only with the force constants between the
nearest neighbors one cannot satisfactorily describe the
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V. CONCLUSIONS

I—

I—
U)z
C3

FIG. 5. Band force constants E&,„d(0, 1;1,j) (arbitrary units)
for the half-filled system without internal degrees of freedom.
At the abscissa, the number 1 of the unit cell is given. The con-
stants with negative and positive values are those for j= 1 and
j=2, respectively. The values of the electron-lattice coupling
constants are as follows: y=4. 92 eV/A (+), 4.1 eV/A ( ),
3.28 eV/A (0 ), 2.46 eV/A ( X ). Other parameters of the Ham-
iltonian are given in the text.

phonon spectrum except for large values of y. With de-
creasing y, the band force constants decrease with dis-
tance more and more slowly, until in the limit y~0,
which corresponds, for the system under consideration,
to a point of Peierls transition, the force constants do not
depend on the distance between the monomers. In order
to check how realistic is the force-constant model for the
present system, we calculated vibrational frequencies in
the q =0 and q =m points, using only the elastic and band
force constants between the nearest neighbors. The re-
sults are compared with the exact results in Table I. At
q =m, where the electron-phonon interaction only slight-
ly influences the phonon frequencies [see Fig. 1(a)], the
difference is small and almost does not depend on y.
However, for the soft mode at q =0 the difference in-
creases drastically with decreasing y and dimerization
amplitude. Thus, we can conclude that the force-constant
models can be app1ied to the systems with electron-
phonon interaction only if these systems are far enough
from the Peierls transition.

y, eV/A d, A
COopt~ g —0
1 2

~acoust &
9'

1 2
coopt~ q m

1 2

2.46
3.28
4.10
4.92

0.0016 508 1188 920
0.0243 676 1099 895
0.0793 829 1052 848
0.1489 951 1059 789

865
806
745
701

921
918
926
934

866
831
833
861

TABLE I. Vibrational frequencies (in cm ) of the half-filled
system without internal degrees of freedom: a comparison of
exact results (1) and results obtained when only elastic and band
force constants between the nearest neighbors are taken into ac-
count (2). For each value of the electron-lattice coupling con-
stant y, an equilibrium dimerization amplitude d is given.

The approach to the phonon properties of Peierls-
distorted systems with internal degrees of freedom
developed in the present paper is based on a calculation
of the total energy of a system for a number of distorted
geometries. Then, one obtains the second derivatives of
energy with respect to distortions and the dynamical ma-
trix. Such an approach may be considered as an exten-
sion of the frozen-phonon method. The latter was al-
ready used for investigation of a number of materials, in-
cluding high-temperature superconductors (see, e.g., the
review ). However, only selected vibrational modes
were studied, as a rule, for the wave vector q=0. We
have presented a complete scheme for calculation of
dynamical matrix, force constants, phonon eigenfrequen-
cies, and eigenvectors in the whole Brillouin zone for sys-
tems with arbitrarily strong electron-phonon interaction.
The method may be also used for Hamiltonians with
electron-electron interaction taken into account; besides,
the method is not restricted to model Hamiltonians and
may be applied to realistic systems if their total energy
can be calculated with suKcient precision. In the present
paper, we restricted ourselves to a comprehensive treat-
ment of a number of systems with pure Peierls Hamil-
tonian, in which both internal and lattice distortions in-
teract with the electrons. It was shown that an interplay
between internal and lattice coupling constants which re-
sults for the half-filled homogeneous system in a number
of ground-state geometries reflects itself also in the pho-
non properties of the system. The soft mode is a lattice
or internal vibration, or a mixing of both types, depend-
ing on the values of the coupling constants. The frequen-
cy of the soft mode becomes 0 at the point where the
transition between different ground-state geometries
takes place. This is in contrast to we11 studied Peierls sys-
tems with only one degree of freedom, in which the soft
mode goes to 0 only in the limit of infinitely sma11 cou-
pling constant.

For both homogeneous and alternating systems it was
found that the most strongly softened mode is that one
which is not involved in the Peierls transition. The ex-
istence of such a mode indicates a possible change in the
ground-state geometry of the system if the coupling con-
stants are changed (see the Discussion). For all the sys-
tems and all the values of coupling constants studied, the
softening of the actually distorted mode was substantially
lower than that of the nondistorted mode. Certainly, the
interrelation between the softenings should be an object
of further investigations.

The method presented, being a general one, can be ap-
plied to systems with various numbers of monomers in
the unit cell and various types of monomers, various
filling ratios, etc. Of particular interest here is a possibili-
ty to investigate nonlinear excitations in one-dimensional
systems, such as solitons and polarons. As mentioned in
Sec. IV, the phonon frequencies can be used for a search
of the true ground state of a system. Then, vibrations in
the vicinity of an excitation can be investigated. For ex-
ample, a polaron can be simulated as an extra charge, i.e.,
as a system with a filling ratio slightly more (or less) than
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1/2. Obviously, the size of the unit cell must be taken
large enough to make the interaction between neighbor-
ing defects as small as possible.

Finally, let us note that further investigations should
be directed not only towards new systems or new types of
elementary excitations, but also towards a deeper under-
standing of relatively simple systems and an improvement
of the method. In that way, it is necessary to take into
account in the Hamiltonian terms describing electron-

electron interactions as well as possible nonadiabatic
effects.
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