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Electrical response of heterogeneous systems of nonlinear inclusions
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We present an analytical approach to the electrical response of microscopically inhomogeneous
systems consisting of inclusions with arbitrary structure and linear and nonlinear response, embed-
ded in a linear host medium. By introducing linear and nonlinear polarization coefBcients, which
describe the electrical response of a single inclusion, we are able to take into account the contri-
butions of all multipole moments of the inclusions and their images. We obtain the exact e8'ective
dielectric function for ordered systems to the first nonlinear order, in terms of the microscopic con-
6guration. Higher nonlinear terms can be obtained similarly with this approach. We also obtain
the mean-6eld result for disordered systems in terms of pair distributions. We find that the pair
distribution of the inclusions plays a crucial role: it determines precisely the contribution from each
order of the multipole moments. Particular results are provided for I = 0, 1 pair distributions; we

prove that for these distributions the multipole moments higher than dipoles do not contribute to
the e6'ective dielectric function. We 6nd that the mutual stimulation among the inclusions may
significantly afFect the effective dielectric function, especially the nonlinear part, depending on the
concentration and the distribution of the inclusions. We illustrate numerically this multi-inclusion
efFect for a system of nonlinear spherical inclusions.

I. INTRODUCTION

Interest in nonlinear electrical properties of compos-
ites has dramatically increased in recent years. For a
general perspective of the properties of macroscopically
inhomogeneous media, we refer the readers to the review
article by Bergman and Stroud. In this paper, we fo-
cus on microscopically inhomogeneous (macroscopically
homogeneous) systems formed by nonlinear inclusions
dispersed in a linear host medium. The electrical re-
sponse of such systems is much more complex than in
the corresponding linear cases, due to the complicated
interactions among the inclusions. Only approaches for
inclusions of particularly simple shapes have been devel-
oped so far, with one of the following approximations:
(1) single-particle approximation, which considers a sin-
gle inclusion immersed in a uniform external field and
a host medium;2 4 (2) efFective medium approximation,
which also considers a single inclusion immersed in a host
medium, but the host medium is replaced by an efFective
one;2 s (3) Clausius-Mossotti (or Maxwell-Garnett) ap-
proximation, which considers a single inclusion immersed
in a uniform Lorentz field, as in the cavity used in the
standard derivation of the Clausius-Mossotti relation. '

None of these theories considers microscopically the de-

tailed interactions among the inclusions. Computer sim-

ulations have also been carried out, which consider micro-
scopic interactions, but only limited to dipole moments.

We present a general rigorous approach to the electri-
cal response of microscopically inhomogeneous systems
of nonlinear inclusions based on a fully multipolar ex-

pansion method. By introducing linear and nonlinear
polarization coefficients, we are able to treat inclusions

with arbitrary shapes, structures, and response. Non-
linear systems require complete definiteness of the local
field acting on each inclusion. So, the system con6gura-
tion becomes crucial, and the one that we have consis-
tently adopted is quite valuable: that consists of a slab
sample placed between two parallel electrode plates with
an alternating potential. We take into account the exact
interactions among the inclusions by retaining all orders
of the multipole moments of the inclusions and their im-

ages induced by the electrodes. Then, we expand the
multipole moments as Taylor series in the applied field
and solve the exact equations consecutively to each or-
der of the derivatives of the multipole moments. The first
three derivatives yield the efFective dielectric function to
the first nonlinear order. For inclusions with stronger
nonlinearities, higher derivatives may be required, and
those can be obtained by the same procedure. Some of
the previous theories with the single-particle approxima-
tion have been carried out to nonlinear terms of higher
order. ' In Sec. II, we present the general results for
ordered systems in terms of the microscopic configura-
tion and the applied field. In Sec. III, we obtain the
mean-field results for disordered systems, in terms of the
pair distribution and the applied field. Vfe show that
it is the pair distribution of the inclusions that deter-
mines precisely the contribution &om each order of the
Inultipole moments. In Sec. IV, we provide the explicit
results for systems with L = 0, 1 pair distributions. We
show that for these distributions only the dipole moments
contribute to the efFective dielectric function. In Sec. V,
we apply the results of Sec. IV to a system of nonlin-
ear spherical inclusions and illustrate the eKect due to
the interactions among the inclusions with a numerical
computation.
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II. EXACT RESULTS FOR ORDERED SYSTEMS

We study a system containing inclusions with arbitrary
form of nonlinear response embedded in a linear homoge-
neous medium with dielectric function e . The system
fills the space between two parallel electrode plates to
which a low &equency alternating potential Vpe ~ is
applied. We consider a system with fixed nonoverlap-
ping inclusions, meaning that for each inclusion there is
a minimum circumscribing sphere which encloses all the
charges associated with the inclusion while excluding any
charge associated with other inclusions.

To describe the electrical response of such systems, we
need first a set of parameters describing completely the
electrical response of a single inclusion, in a local poten-

tial of the most general form. Let us consider a single
inclusion fixed at the origin, in an infinite linear medium
of dielectric function e, and subject to a local potential
of the form (we omit the e ~ ~ time dependence through-
out the paper)

4m
U]oca](r) = — —) E&,m, r ' Y), m, (r).

Lyme

Since the inclusions are nonoverlapping, Eq. (I) indeed
represents the most general local potential. The total in-
duced multipole moments qL on the inclusion, including
the contribution of the host medium, are in general func-
tions of all ELymy Expanding qlm as a Taylor series in
El y m y ) we obtain
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the zero- (linear), first-, and second-order polarization
coefficients. For inclusions formed of linear response ma-
terials, all the nonlinear polarization coefficients vanish.
We have already investigated the electrical response of
such systems. We now generalize the theory to inclu-
sions constituted of nonlinear materials. One can define
the polarization coefficients to any desired order: here
we retain up to vL' ' ' ' ' '. All polarization coeffi-
cients depend on the structure of the inclusion (shape
and material), on e, on w, and on the orientation of the
inclusion. Similar to the results of Appendix A in Ref. 8,
we have the rotational properties

m4 m$ me m7
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etc. For specific systems, the polarization coefficients
which represent the complete response of an isolated in-
clusion must be calculated by solving the corresponding
boundary value problem (an example will be presented in
Sec. V) or determined experimentally. In the following,
we will assume that they are given.

We first consider an ordered system in which the po-
sitions and orientations of all the inclusions are known.
Let r denote the position of the nth inclusion inside a
heterogeneous system: the local potential acting on the
nth inclusion is given by [cf. Eq. (6) of Ref. 8]
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where the coefficients Cl" '(r, —r„), defined in Eq. (la) of Ref. 9, result &om a reexpansion of the multipole
potentials around r [cf. Eq. (12) of Ref. 9]. According to Eq. (2), the induced multipole moments on the nth
inclusion are

gnlm = 10—~a„, Zo4~q"
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where (Cq)„l is an abbreviation for g l Cl" '(r„,—r )q, l, , The nonoverlapping condition for the inclusions
is required for a multipolar expansion, or the local potential may not have the form (1). So, systems with aggregate
topology, or systems with a nonlinear host medium, where the charges cannot be separated and contained within
circumscribing spheres, cannot be treated by this technique.

Now, Eq. (6) provides q l as functions of Eo. Expanding q„l in both sides of Eq. (6) as a Taylor series in Eo
and comparing the coefBcients of the same power, we obtain
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where the con6guration matrix is
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etc. Equation (7) has the solution
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as
We define the (longitudinal) effective dielectric function e, through the average displacement over the whole system
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where N is the average number density and (qip) is the average dipole moment of the inclusions. This definition is
the natural extension of that used for linear inclusions. Using (E) = Ep, which is evident in our configuration, we
obtain
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where V is the volume of the system. We assume the system has macroscopic reQection symmetry in z
leads to
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: —z, which

(e-(—Ep)) = (—1)'+ (e-(Ep)).
Thus, we dropped the even derivatives in Eq. (11). We show in the Appendix that this symmetry also leads to
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etc. Hence, an average polarization coefficient vanishes if its indices add up to an odd integer. The nonlinear response
is then characterized by
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Up to now, we have expressed all the results in terms
of the polarization coefficients of the inclusions, the sys-
tem configuration matrix G, and the applied potential at
the electrode plates. For example, these results can be
applied to periodic systems with inclusions on a lattice,
or used in computer simulations. These results are exact
to first order in the nonlinear response for ordered sys-
tems. For inclusions with strong nonlinearities, higher
terms in Eq. (2) may be required, and one can de-
fine similarly the higher polarization coefFicients. The
expressions for higher-order derivatives of the multipole
moments have the same form as in Eq. (10), with corre-
sponding H l (k) (k ) S) containing lower-order deriva-
tives.

III. MEAN-FIELD RESULTS FOR DISORDERED
SYSTEMS

mean-field approximation, which ignores Buctuation ef-
fects. We assume that the system has also macroscopic
azimuthal symmetry, hence (ql ) = 0 for m g 0, and

) Cf ff (r„, —r„)q,f, o = ——N (bf bf + Kf ) (tlf 0)

(16)

where Eq. (A17) of Ref. 9 has been used, and the coef-
ficients Ki' are defined in Eq. (21) of Ref. 8, in terms
of the pair distributions of the inclusions. Here, Kl ——0
for l+ lq ——odd integers, due to reBection symmetry. To
convert the results in the previous section to disordered
systems, we drop the index n, set m, mq, m2, . . . ——0, re-
place the polarization coefficients and multipole moments
for individual inclusions with the corresponding averages,
and let

In this section, we derive the mean-Geld results for dis-
ordered systems. First, we replace in Eq. (6) the in-
dividual multipole moments q, l, , of the surrounding
inclusions and all images by the ensemble average mul-
tipole moments (ql ). Then, we average the equations
over all the inclusions (i.e. , over n). This represents the
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(9Eo p) l

4~ f 8"q
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According to these rules, we have
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The macroscopic reflection symmetry requires [cf. Eq. (17)j
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and also ct" (qlo)/olE0 with odd l and k are decoupled from those with even l and k. To obtain the effective dielectric
function, we need only the former ones, which are given by
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Then g reduces to about half the size of G. The eaective dlelectrlc function now is given by
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and the applied field (in the z direction) excites only
the longitudinal component, due to the macroscopic az-
imuthal symmetry. We have thus expressed all the results
for disordered systems in terms of the averaged polariza-
tion coeKcients of the inclusions, the pair distribution
of the positions of the inclusions (Kt'), and the applied
field. As in the linear systems, it is the pair distri-
bution (KI') that determines precisely the contribution
&om each order of the multipole moments.

In general, the interactions among the inclusions, es-
pecially the contributions Rom the multipole moments
higher than dipoles, increase with the concentration of
the inclusions. This may produce significant corrections
to previous results based on single particle, Clausius-
Mossotti or dipole approximation. On the other hand,
as we have shown, these interactions strongly depend on
the form of the pair distribution. We will show in the
next section that some of these previous results remain
valid in the case of isotropic pair distributions, regardless
of the concentration, as long as mean-field theory and the
nonoverlapping condition are applicable.

IV. EXPLICIT RESULTS FOR L = 0, 1 PAIR
DISTRIBUTIONS

For an L = 1 pair distribution, only K1 is
nonvanishing. In this case, only the dipole moments
of the other inclusions and the images contribute. We
solve Eq. (1S) with l = 1, which corresponds to a one-
dimensional g matrix
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The linear part coincides with the Clausius-Mossotti re-
lation, as previously established. s

The linear part has already been obtained. The denom-
inators in Eq. (30) arise &om interactions among the in-
clusions, and depend on their concentration and distribu-
tion. It is clear &om Eq. (30) that the pair distribution
can significantly affect the effective dielectric function,
and especially the nonlinear part.

For I = 0 (isotropic) pair distributions, all K&' ——0.
Then,

&,
' = G,'= 1 —

I

—
I
m(1+ K,') (A,",).

& 3) V. NONLINEAR SPHERICAL INCLUSIONS
IN A LINEAR MEDIUM

Hence, we obtain

(Aio)
(27)

From Eq. (21c), considering Eqs. (14) and (22), we

obtain

We have so far obtained the general results for systems
with nonlinear inclusions in a linear host medium, and
particularly the explicit results for systems with L = 0, 1
pair distributions. In order to obtain the results for any
specific system, one needs only to find the polarization
coefficients (Aiioo) and (bio ). We consider as an ex-
ample a system containing nonlinear spherical inclusions
immersed in a linear medium with dielectric function e
For simplicity, we assume identical spheres with radius a
and a response

Hi(3) =

hence
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We now need to find the dipole moment induced on such
an inclusion by a local potential corresponding to a uni-
form field E10
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to the order of E10. This boundary value problem has
already been solved, whereby

Substituting Eqs. (27) and (29) into Eq. (25), we obtain
the effective dielectric function for L = 1 pair distribu-
tions

3 ( s 1 gp 4
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with

Then,
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where v = (4vr/3)Na3 is the volume fraction of the
spheres. Taking K11 = 0 in Eq. (37), we obtain the ef-
fective dielectric function for spherically symmetric pair
distributions:

g49P( @2 Oe (@4)
1 —vn (1 —vn)

(38)

This agrees with the result previously obtained using
the Clausius-Mossotti approximation [see, for example,
Eq. (16) of Ref. 6], which is expected: for L = 0 pair
distributions, the higher multipole moments do not con-
tribute to the effective dielectric function and the Lorentz
cavity model is confirmed as in the linear case. At low
concentrations, Eq. (38) can be expanded. Retaining
only the first order in v, we obtain

(1 + 3vn) + vip( (39)

np('
[1 —(1 + K11)vn]4 [1 —Fn]4 ' (40)

which represents the contribution to Ae, /Eo per inclu-
sion. For definiteness, we assume Drude model to de-
scribe the linear dielectric function for both the host
medium and the inclusions

This agrees with previous results obtained using the
single-particle approximation [cf. Eqs. (32) and (38) of
Ref. 4(b)].

To estimate the multi-inclusion effect for I = 1 or
L = 0 pair distributions, consider the quantity

FIG. 1. q/q„vs I' at u = 0 for crp/o = 1000.

tor E defined in Eq. (40). Rather than assuming a spe-
cific range for v, given K», or vice versa, we provide
here a simple estimate. The close-packed volume &ac-
tion for identical spheres is 0.74 and the range for K» is
between —1 and 2 for point particles. Considering the
simplest case of a spherically symmetric pair distribu-
tion (K1 = 0), the volume fraction must be somewhat
lower than that. So, we may take E = v = 0.6 as a
reasonable estimate. However, for anisotropic pair dis-
tributions, certain values for v and K» may not be al-
lowed even when the resulting E may be smaller than
0.6. We also need to point out that for relatively high
volume &actions the corrections due to Huctuation effects
become more significant. Nevertheless, such corrections
are at least one order higher (in the volume fraction) than
those obtained here.

We plot Q versus the parameter II' for the case
O.p/o = 1000 in Fig. 1, and for the case 0 /0„= 1000
in Fig. 2. In both cases, Q strongly depends on E. In
the first case Q increases with F, but its overall value
is small, while in the second case Q decreases with E,
and its overall value is large. This is easily understood.
For 0„))0. , each inclusion already has a large induced
dipole moment parallel to E0 due to the linear response

0.2

0 18
02

E = 1
~(u) + jp) ' (41) 0.1 6-

where 0 and p are the plasma &equency and the damping
constant, respectively. For u' , 0, Q is real, approach-
ing

„0.14-

0'
0.1 2-

0.1-

3~p ~m

[(1 —F)crp + (2 + F)a]4'.(42) 0.08-

where op ——0„ /(4vrpp ) are the dc conductivities
for the inclusions and the host medium.

Now, the nonoverlapping condition places certain lim-
its to the values of v and K» allowed, hence to the fac-

0.06
0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 2. Q/g„vs P at &ar = 0 for o /crp = 1000.

0.7



5788 I.IANQ FU

1.2
x107

1-

0.8-

„ 0.6

& 0.4-

~ 02-

both 1/(1 —En) and n have a relatively wide resonance
peak, the linear part of e, is still enhanced efFectively
when E increases. But both 1/(1 —En) and ( have a
much narrower resonance peak, hence the nonlinear part
of e, is actually reduced when E increases. However, this
result may not be general: in other systems the opposite
situation may occur and Q may increase with E.
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FIG. 3. Real part of Q/g„vs u/II„, for 0„= 8.65
x10 sec, pp: 0 010p, and e = 1.
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of the inclusion: this dipole moment tends to increase the
field inside other inclusions, hence the multi-inclusion ef-
fect is constructive; however, this large dipole moment
reduces significantly the field inside the inclusion itself,
hence the overall nonlinear response is small. The other
case is just the opposite. Another simple situation oc-
curs when both the medium and the inclusions are non-
conducting. The response of the inclusions becomes &e-
quency independent, and cr and az in Eq. (42) are
simply replaced by e and ez, respectively.

We also compute the spectrum of Q and plot it in Figs.
3 and 4, using sodium data for the linear response of the
inclusions (0„=8.65 x 10 sec and p„= 0.010„)and
assuming the host medium is the vacuum. We see for
this particular case that the interactions among the in-
clusions tend to reduce the nonlinear response of the sys-
tem. The reason is that the resonance peaks of the factors
1/(1 —En) and 1/(1 —En) increase with E, but also are
shifted away from the linear resonance (represented by n)
and the nonlinear resonance (represented by ( ) of an
isolated sphere (both n and ( have their resonance peak
at about 0.577m„), towards the low frequency end. Since

VI. CONCLUSIONS

We have obtained analytical results for the electrical
response of nonlinear inclusions in a linear medium. The
introduction of linear and nonlinear polarization coefIi-
cients of the inclusions enables us to retain the multipole
moments of the inclusions and their images to all orders,
making our results applicable to systems with inclusions
of arbitrary structure and response. The results for or-
dered systems (Sec. II) are exact to first order in the non-
linear response. For inclusions with stronger nonlinearity,
higher terms may be required and obtained similarly.

We have then obtained the mean-field results for disor-
dered systems. The pair distribution plays a crucial role,
determining how each order of the multipole moments
contribute. We have provided explicit results for L = 1
and L = 0 pair distributions, where only the dipole mo-
ments contribute. We have found significant eff'ects on
the nonlinear response, depending on the concentration
and distribution of the inclusions, due to the interactions
among the inclusions.
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APPENDIX

Ui, i(r) = Ui, )(r) =— —) Ei, ,r"Y(, , (r)
l1m1

Here, we prove Eq. (14). Let us imagine that there is
a set of inclusions, each of them with reHection symme-
try z ,'—z, but otherwise arbitrary (an easy way to
envision that is to consider an arbitrary inclusion and its
reHection image as a whole). We can further assume that
these inclusions yield exactly the same average polariza-
tion coefFicients as those in a real system with macro-
scopic reHection symmetry.

Apply the "mirror" potential of Eq. (1) to any given
inclusion (assumed at the origin)

-1
0.3 0.35 0.4 0.45 0.5 0.55 0.6

FIG. 4. Imaginary part of Q/g~ vs u/0„, D~ = 8.65
x 10 sec, pp = 0.010p, and e = l.
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p(r) = &(r) (A2)

where p(r) is the charge distribution for the same inclu-

where r = (x, y, —z) is the mirror image of r. Since
the inclusion has reQection symmetry, we have for the
induced charge distribution

sion under the local potential (1). Equation (A2) leads
to

@ =(—1)'+ I (A3)

Then, koln the definition of the polarization coefBcients,
we have

elm = ( ] )l»+m» pl»m» E ~ X ( yEl»+m»+l~+m~
l»m» lgm2

l» m» l»m» lyme

l» m» lqmq l3m3
(

1)ll+ml+ls+mg+ls+ma llmllamglsmsE glm l»m» l2m2 l3m3 + ' ' (A4)

Substituting Eq. (A3) into Eq. (A4) and comparing the result with Eq. (2), we obtain

( yEl+m+l»+m» $l»m»
l K j lm

l » m» l& m2 ( ~ E l+m+l» +m» +l2+m~ l» m» l 2 m2
~lm ) 7

l» m» l g mg l3m3 ( y E l+m+l» +m»+l2+mg+l3+m3 l» m» l2 mg l3m3
lm lm ) (As)

etc. Averaging these equations over all the inclusions, we obtain Eq. (14).
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