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Two-stage melting in two dimensions in a system with dipole interactions
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Two-stage melting is observed in a two-dimensional colloidal suspension with dipolar interactions.
Micrometer-sized polystyrene spheres dispersed in water are confined to two dimensions between glass
cover slides. Application of an ac electric field normal to the layer leads to "n interparticle interaction
that is to good approximation a repulsive dipole interaction. The array solidifies at large applied fields.
Translational and bond-orientational correlation functions and critical exponents for the algebraic decay
of these correlation functions are consistent with the dislocation-mediated melting theory of Kosterlitz,
Thouless, Halperin, Nelson, and Young. The defects observed are those predicted for the crystal, hexat-
ic, and Auid phases. The one-component plasma parameter, I, is found to equal 61+3 at melting in

agreement with computer simulations. Grain boundaries are not observed in the intermediate, hexatic
phase. The bond-orientational correlation function shows a clear hexatic-to-Auid transition. The poten-
tial energy varies smoothly through the transitions between phases.

I. INTRODUCTION

Aside from surface melting, melting of a three-
dimensional solid is not understood. Two-dimensional
(2D) systems are more experimentally accessible for prob-
ing the phenomena of melting, and computer simulations
of 2D systems are far more practical. Further, a number
of theories of melting in two dimensions have been
developed. One of these, the Kosterlitz- Thouless-
Halperin-Nelson-Young' (KTHNY) theory of melting
driven by the dissociation of dislocation pairs predicts
continuous-order melting that occurs in two stages.
Translational order is destroyed at the first transition and
bond-orientational order at the second. The intermediate
state is a hexatic phase. Thus, it is of interest to find ei-
ther naturally occurring or model, 2D arrays for the
study of melting and of the hexatic phase.

A. Theories of t~o-dimensional melting

Long-wavelength phonons destroy long-range transla-
tional order in 2D crystals. Translational correlations
decay algebraically, i.e., quasi-long-range order exists.
However, bond-orientational order remains. Kosterlitz
and Thouless' developed a theory in which dislocation
pairs, which exist in small concentrations in the lattice,
unbind and become uncorrelated at the melting tempera-
ture. This transition occurs when the free energy for a
single free dislocation in the system goes to zero. This
condition leads to the Kosterlitz- Thouless criterion
which gives a relation between the transition tempera-
ture, TET, and the renormalized Lame coefficients A. and

p (the shear modulus). It is

a p(p, +A, )

4mks (2@+A, )

where a is the lattice spacing. Halperin and Nelson
pointed out that although such a transition would destroy
quasi-long-range translational order, bond-orientational
order would persist. Above TzT a hexatic phase exists in
which the bond-orientational correlations decay algebrai-
cally. At a higher temperature, T;, dislocations, which
are closely bound disclination pairs, unbind into free dis-
clinations to form the Quid phase in which both transla-
tional and bond-orientational order are short range. The
KTHNY theory described above makes many predictions
which can be tested experimentally. It predicts a set of
defects, dislocation pairs, free dislocations, and free dis-
clinations, which are characteristic, respectively, of the
crystal, hexatic, and Quid phases. It also predicts the
form of the translational and bond-orientational correla-
tion functions, the exponents for the respective algebraic
decays, and the temperature dependence of the correla-
tion lengths for the exponential decay of the correlations
functions. The transitions are predicted to be continu-
ous. A broad maximum is predicted in the specific heat
just above the melting temperature caused by the gradual
dissociation of dislocation pairs. A discontinuity in the
dc shear modulus, rounded at finite frequencies, to a
value of zero is predicted.

Chui developed a theory in which dislocation pairs
would form grain boundaries and melt the solid before
the dislocation-unbinding transition. The competition
between random dislocations and dislocations aligned on
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CG(r)= JpG(r' —r)pG(r')dr (1.2)

where p(Cr) —=exp(iCx. r), and Cs is a principal reciprocal-
lattice vector. The bond-orientational correlation func-
tion is defined as

C6(r) =I4'6(r' —r)%'6(r')dr (1.3)

where 4'6(r) =g .. ,exp[i8 (r)]/ANN. Here ANN is the
number of nearest neighbors of a particle at r, and 0. is
the angle that the jth nearest-neighbor bond makes with
an external direction.

The translational correlation function decays algebrai-
cally in the crystal phase, CG(r) =r ', and decays ex-
ponentially, CG(r) =exp( r/gG), in t—he hexatic and
Quid phases. The bond-orientational correlation function
decays to a finite value in the crystal phase, decays to
zero algebraically with an exponent g6( T) in the hexatic
phase and exponentially in the Quid with a correlation
length g6. The predicted values of the algebraic ex-
ponents at the crystal-to-hexatic and hexatic-to-Quid
transitions are, respectively, gG =—,

' and g6= 4.

B. Computer simulations

Nearly all computer simulations of 2D melting indicat-
ed a first-order transition. " Specifically, for dipole in-
teractions of interest here, Kalia and Vashishta, ' and
Bedanov, Gadiyak, and Lozovik' ' found a first-order
transition. It is of significance that the latter group found
two-stage melting consistent with the KTHNY theory for
a Coulomb interaction and first-order melting for dipole
and Lennard-Jones interactions. These simulations gave
an entropy discontinuity' of 0.3k~ at a value of the plas-
ma parameter I"=V(r, )/kiiT =62+3 Here V(r, ) is the
interaction potential at the Wigner-Seitz radius. Using
density-functional techniques Ramakrishnan also found
an entropy discontinuity of 0.32k~ at the melting transi-
tion.

C. Experimental tests of two-dimensional melting

A number of systems with different potentials have
been probed. Extensive reviews of these systems have
been given by Strandburg" and Murray. ' The simplest
system of 2D particles consists of a layer of electrons sup-
ported by a liquid-helium surface. In this system Deville
et al. ' measured a sharp decrease in the finite-frequency
shear modulus at melting, and Glattli, Andrei, and Willi-

grain boundaries depends on the density of dislocations.
Chui found a weak first-order transition for low disloca-
tion densities, E, /kiiT, &2.84, and a strong first-order
transition for a smaller dislocation core energy, E, .
Grain-boundary melting circumvents the hexatic state.
Other first-order theories have been proposed. Glaser
and Clark' have presented a thorough review of 2D
melting theories.

Specific forms for the correlation functions are given
for the hexatic phase by the KTHNY theory. The
translational correlation function is defined by

ams' determined an upper limit of 0.2k& for the latent
heat of melting. Jiang and Dahm' studied melting of
electron crystals on helium films where the shear
modulus is weakened due to screening by a dielectric sub-
strate. Melting followed the Kosterlitz- Thouless cri-
terion through a wide range of shear moduli. These ob-
servations provide strong support for dislocation-
mediated melting. Stan and Dahm measured a smooth
variation of the electron effective mass through the tran-
sition and a sharp peak in the electron-ripplon scattering
crosssection near the transition. They interpreted these
results in terms of the dislocation unbinding model.

Murray and co-workers ' have carried out an exten-
sive study of a model system comprised of mono-
dispersed, charged, polystyrene spheres in water interact-
ing via a screened Coulomb potential. The spheres were
confined between two glass plates in a wedge geometry.
The system was studied with video microscopy as a func-
tion of density which increased with the spacing of the
plates. They observed two-stage melting consistent with
the KTHNY theory. Armstrong, Mockler, and
O' Sullivan examined two systems of polystyrene spheres
at the air-water interface. An array of 2.88-pm spheres
showed evidence of defect-mediated melting and a hexat-
ic state, while a sample of 1.01-pm spheres showed no
hexatic state. Its melting evolved with a different defect
structure. Tang et al. studied the free expansion of
1.01-pm polystyrene sphere dispersed in water and
confined between glass plates. While a two-stage process
was observed, the defect structure was more consistent
with a first-order transition since dislocations clearly ag-
gregated into strings in the transition region. It is un-
clear whether the differences in the observed melting pro-
cesses among the colloidal systems result from different
interparticle potentials or equilibration problems in the
systems with larger spheres. Finally a number of
Lennard-Jones systems of adsorbed atoms have been
probed. " In these systems the substrate imposes a
periodic potential on the particles. While some of the
data have been interpreted in terms of a KTHNY transi-
tion, a specific-heat jump at the transition has been ob-
served in some of these systems.

Three other artificial systems have been studied. Skjel-
torp probed 1.9-pm polystyrene spheres dispersed in a
ferroAuid between two glass plates with a magnetic field
applied normal to the layer. These "voids" in the
ferroAuid interacted with a magnetic dipole interaction.
The system melted as the field strength was reduced at a
value of I consistent with the molecular-dynamics simu-
lation of Kalia and Vashishta. In this experiment and
another by Helgesen and Skjeltorp on an array of rotat-
ing pairs of polystyrene spheres, disorder in the lattice
grew in from grain boundaries which were present in the
initial crystal.

Seshadri and Westervelt studied a magnetic bubble
array in a thin film of magnetic garnet. These magnetic
domains interacted via a dipole potential. Thermal
motion was simulated by agitating the bubbles with an ac
magnetic field. Their system formed a hexatic glass at
large I values due to pinning of the domains. A continu-
ous transition to the Quid state was observed.



5748 R. E. KUSNER, J. A. MANN, AND A. J. DAHM

We present here a study of melting in a 2D array of
monodispersed colloidal particles interacting via a dipole
potential. It is the electrical analog of Skjeltorp's system.
A shorter summary of our work has been presented else-
where. '

II. EXPERIMENTAL SYSTEMS AND ANALYSIS

A. The colloidal monolayer cell

In this experiment we study ordering of electrically po-
larized, monodispersed, micrometer-sized colloids
confined to a plane. The colloid is a spherical, mono-
dispersed, polystyrene latex with sulfonate (SO4 ) surface
groups. These colloids, obtained commercially, are
dispersed in water at a —10% volume fraction. Data
from 1.6- and 2.0-pm particles are presented below. The
standard deviations of the particle sizes did not exceed
2% of the particles diameters. Both batches had a con-
centration of sulfonate groups of about 2 X 10' cm on
each particle.

Shown schematically in Fig. 1, the colloid is confined
between two 150-pm-thick microscope coverslips (Corn-
ing glass 0211), each of which is laminated to a sapphire
window for support and thermal conduction. An EPDM
0 ring hermetically seals the colloid between the two
windows. This assembly is placed in the center of an
aluminum jig with three differential micrometers posi-
tioned at 120' from each other with respect to the center.
The micrometers compress the 0 ring, sealing the cell
and aligning the coverslip surfaces parallel to a separa-
tion of about 1 —,

' particle diameters.
A 200-A thick film of Au between the sapphire and

coverslip serves as the transparent electrode for the elec-
tric field which polarizes the colloid and induces a dipole
interparticle potential. An electric field at a frequency of
3.75 MHz is applied by these electrodes to prevent
screening by ions in the water. The electrodes are not
placed in contact with the colloid to prevent the colloid
from sticking to the confining surfaces. The confining
glass surfaces repel the colloid due to OH-groups found
on their surface in water and due to like image charges

from the glass-water interface. This stabilizes the parti-
cles between these surfaces. Field gradients at the edges
of the transparent electrodes confine the particles radial-
ly.

Cleanliness is of paramount importance in the assem-
bly of the cell, as any impurities may cause the colloid to
Aocculate or stick to the glass surfaces. All glass and sap-
phire components are heated in a sulfuric/nitric acid
mixture (3:1) to oxidize any organic residue on the sur-
face to remove it. Polymer and metal components (the 0
ring, and the hypodermic needle used to inject the col-
loid) are heated in a detergent and then repeatedly rinsed
with distilled water. They ar= then ultrasonically agitat-
ed in methanol to remove organic residue. Next, all com-
ponents are repeatedly rinsed and heated in filtered,
deionized water (18 MQ cm, 72 dynes/cm) from a Milli-
pore system. Just before assembly, the coverslips and the
sapphire are held over steam and then blown free of any
condensate. After assembly, the confining surfaces of
glass and sapphire are exposed to short-wave UV light
(185 and 254 nm) to remove any remaining organic resi-
due. Finally, the surfaces are exposed to steam, blown
dry, and sealed with an 0 ring. The entire process de-
scribed above is performed in a class 100 clean room.

As received, the colloid has a slight tendency to aggre-
gate and stick to glass surfaces. Using a technique
developed at the University of Colorado, the colloidal
particles are washed repeatedly in methanol and then
redispersed in water. This is accomplished by spinning
the particles out of suspension with a centrifuge, decant-
ing the supernatant, refilling the sample tube with fresh
solvent, and then redispersing the particles with ultrason-
ic agitation. After resuspending the particles about ten
times in HPLC grade methanol and then four times in
the filtered, deionized water, the problem of aggregation
and sticking is mostly alleviated.

B. Calculation of the sphere-sphere interaction

A dielectric sphere embedded in a medium of higher
permittivity will produce a dipole field, centered about
the sphere, in response to a uniform electric field applied
far away. The associated dipole opposes the applied field
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FIG. l. Schematic cross section of colloidal
monolayer cell.
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with strength C. Data analysis

(Ef —e, )
Ps ef (2 + )

0 f (2.1)

I. Image digitization
and particle coordinate extraction

where the subscript f refers to the medium, a Quid in this
experiment, s to the sphere, and ro refers to the radius of
the sphere. This induced dipole feels no force from the
uniform field; however, it will be stressed by other di-
poles. Ignoring as small the fact that the two polarized
spheres will induce dipoles and multipoles in each other,
the potential energy associated with the interaction be-
tween two spheres can be derived from that of two di-
poles in a dielectric medium. Analogous to the Coulomb
energy in a dielectric medium, the dipole energy is

1 P1 P2 Pl (rl r2)P2 (rl r2)
V(r, —r2) = —3

~r, —r, '
/r, —r2/'

(2.2)

Applying the results of (2.1), assuming the dipoles lie in
the same plane, normal to the dipole direction, the
dipole-dipole energy becomes

2 2

I mn P 2 Im —in —jkij
l= —2 1=—2

(2.4)

The imaging of the colloidal monolayer is straightfor-
ward. Transmitted light microscopy, using a 32 X, extra
long working distance objective, produces a clear image
of the monolayer. After further magnification by a vari-
able zoom (5 —12 X) the image is projected on a CCD
camera. The outgoing video signal is then recorded on
videotape for subsequent evaluation.

The videotaped images are analyzed by digitizing each
to a 640X480 pixels array with a 256-level gray scale
resolution. The spatial resolution of the digitized image
ranges from 0.25 to 0.65 pm per pixel for the
magnifications stated above. The resolving power of the
optics is about 1.5 pm. This is sufficient to discriminate
the 30-some particles across the field of view.

From this digitized image, 1000—2000 particle coordi-
nates are extracted as follows. Since the intensity profile
centered around a single particle is convex, the digitized
image is convolved with a parabolic kernel to find where
the image is locally convex. Specifically, the convolution
is

(ef —E, ) r0
V(r) =Ef

(2ef +a,, )

3

+3
2 (2.3)

where I
„

is the intensity of the original image at pixel
(m, n), and I'

„

is the convolved image. The parabolic
kernel k, is given by

It is assumed that this potential produces the dominant
force between particles; the screened Coulomb, and van
der Waals forces are negligible for the given particle
configurations when a sufficiently strong electric field is
applied. This assumption is supported by the observation
of particle configurations after the electric field is turned
oK Then the particles approach each other and fall into
the secondary potential minimum at about 1000 A creat-
ed by the competition between the repulsive screened
Coulomb potential and the attractive van der Waals in-
teraction. At the potential minimum, the van der Waals
contribution to the potential is estimated to be no more
than 10k~T. The absolute magnitude of the screened
Coulomb potential is roughly the same or smaller (the net
force is zero). Consequently, at the nominal particle sep-
aration of three particle diameters, we estimate magni-
tude of the screened Coulomb potential to be less than
k~ T and that of the van der Waals interaction to be less
than 0.05 k~ T compared to 60 k~ T for the dipole interac-
tion at melting.

One complication in calculating the interparticle po-
tential is screening from ions in the water. While we
have insufficient knowledge of the electrochemistry to ac-
curately determine the extent of this screening, it is as-
sumed that these affects are linear. Consequently, the in-
duced potential between particles remains dipole, al-
though with a somewhat smaller magnitude than given
by (2.3), and the magnitude should scale as the square of
the applied field.

2. Triangular and defect identification

To analyze defects in the particle ensembles, a Delau-
ney triangulation of the points is constructed. This
consists of a set of nonintersecting lines connecting
nearest neighbors. For a lattice without defects each par-
ticle is connected to six nearest neighbors. A disclination
results in a single five- or sevenfold-coordinated point at
the core of the disclination, surrounded by sixfold ver-
tices. The core of the dislocation consists of a
five —sevenfold disclination pair. Thus, the Delaunay tri-
angulation produces a one-to-one correlation between
non-sixfold-coordinated points and defects, making de-
fect identification easy.

3. Calculation of the bond orientational-
and translational order field

The bond angles with respect to a reference axis are
computed from the triangulation. From this, one can
compute a complex value at each particle given by

1 i60(r —r . }
%6(r) = g e

NN j&NN
(2.6)

kl j=l +J 4 (2.5)

The resultant image I'
„

is searched for local maxima,
which are assumed to be the particle centers. After visu-
ally inspecting and editing for obvious errors, the array of
the particle coordinates is saved for further analysis.
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where 0(r —r ) is the bond angle of the nearest-neighbor
pair with respect to the reference axis, NNN is the num-
ber of nearest neighbors, and the sum is over the nearest
neighbors. This function is defined only at discrete points
in the plane. To create a continuum function, the values
of the points within a triangle of the triangulation are
linearly interpolated from the values at the triangulation
vertices, where (2.6) is defined. The real and imaginary
components are interpolated separately. The result is the
continuum bond-orientational field, from which its auto-
correlation function can be computed.

The data used suffer from a density gradient across the
field of view. To calculate the correlation of the displace-
ment field due to thermal excitations, the displacement
due to the density gradient must be subtracted out. An
approximate expression for the displacement field of the
density gradient is derived from the local values of the
nearest-neighbor area, A(x, y). This is calculated for
each particle by summing the areas of the triangles
defined by the particle's nearest neighbors. These data
are then fit to the following linear model:

A(x,y)=Ho+ax+by . (2.7)

Since the trace of the strain tensor is equal to the frac-
tional change in local area, the following identification is
made:

ax +by"+
Bx By A o

(2.8)

where u(r) is defined as the displacement field due to the
density gradient. From Eq. (2.8) the displacement field is
determined, less two constants of integration. With the
inclusion of two constraints, first that the displacement
does not shear the lattice,

BQ Bpy

By B

and second that the area expansion is isotropic,

Bl7 BQy

Bx By

(2.9)

(2.10)

an approximation for the displacement field is found,

u„(x,y ) =—x +—xy ——y,a 2 b a
4 2 4

(2.1 1)

and

u (x,y)= ——x + —xy+ —y
b p a b

4 2 4
(2.12)

To calculate the translational order field we define a set of
values at the particle positions r,

&
—iG(r —u(r))p&~r~ —e (2.13)

The primary reciprocal-lattice vector, 0, is found from
the maxima of the structure factor of the set of particle
coordinates computed by fast Fourier transform (FFT).
After the discrete values of Eq. (2.13) are calculated, the
values are interpolated to fill a 512X512 complex array.
This complex array is assumed to be a representation of
the translational order field.

4. Calculation of correlation functions

The calculation of correlation functions from the digi-
tized images is complicated by the fact that the images
are finite in size, about 30—50 times larger than the inter-
particle distance. We are interested in the correlation
functions of fields of infinite extent. To address this prob-
lem, the calculated autocorrelation functions, with proto-
type

M

Cf(x,y)= g g f'(i, j)f(i —x,j —y), (2.14)

must be normalized at every separation to account for the
area over which the sum is performed to produce a repre-
sentation of the infinite space correlation function,

1
Cf (x,y ) = Cf (x,y) . (2.15)

Here M and N are, respectively, the width and height of
the digitized image in pixels.

Application of the fact that the autocorrelation of a
function f(r) is equal to the Fourier transform of its
structure factor, increases the speed of the calculation by
employing the optimal FFT method. The process is
given below. First the structure factor is calculated,

S(k)= ~F[f(r)]~ (2.16)

where F[ ] is the fast Fourier transform. Then the corre-
lation function is calculated from the inverse transform
of S(k),

Cf(r) =F '[S(k)] . (2.17)

p(M —x )(N y), — (2.18)

where p is the density of the image, M is the width of the
image in the x direction, x is the x component of the vec-
tor, N is the height of the image in the y direction, and y
is the y component of the vector. The density is calculat-
ed from the reciprocal of the average nearest-neighbor
area, the constant term in Eq. (2.7). This provides a truer
measure of density than simply counting the number of
particles in an image.

5. Calculation of the potential energy

For a pair-wise additive potential, the potential energy
can be calculated from the pair density distribution func-

To prevent wraparound, the FFT must be calculated over
a space twice as wide as the width of the defined field.
The field is extended by padding it with zeros. This
correlation function, equivalent to (2.14), must be nor-
malized as described in Eq. (2.15).

The density-correlation function is calculated most
quickly by directly counting the number of particles
separated by a given vector, i.e., creating a histogram of
pairs with respect to the vector of separation. To pro-
duce the infinite space correlation function, this is then
normalized at each separation vector by the number of
pairs expected for that vector in a uniform distribution of
points in the same finite area. Specifically this normaliza-
tion denominator is given by



51 TWO-STAGE MELTING IN TWO DIMENSIONS IN A SYSTEM. . . 5751

tion g(r) as follows:

Uex

1V 2
=+J V(r)g(r)d r, (2.19)

gas. This should be a fair approximation even in the solid
phase due to the algebraic decay of the translational or-
der field.

where p is the number density, N is the number of parti-
cles in the system and V(r) is the pair potential. For this
system, the pair potential is approximately an inverse
cube potential. Since the magnitude of this potential is
not known due to uncertainty about the physical parame-
ters determining the strength of the induced dipole mo-
ment, the magnitude of the potential energy cannot be
calculated. However, the ratio of the potential energy
per particle to the pair potential energy at the Wigner-
Seitz radius,

(2.20)

can be determined since the magnitude of the pair poten-
tial is canceled out, with the result

Uex

NV(r, )

1 g r
2&~'p

(2.21)

This cancellation is a consequence of a simple power-law
potential. If the interparticle potential were more com-
plicated, like the screened Coulomb or Lennard-Jones po-
tentials, this cancellation would not occur. It should be
noted that for particles in a perfect triangular lattice this
has the approximate limiting value 0.7985.

One complication arising from the calculation of the
potential energy is that the density-correlation function is
not known past the width of the image, about twenty lat-
tice spacings. Here we assume that the correlation has a
constant value of one, the density correlation for an ideal

III. EXPERIMENTAL RESULTS

The melting of two difFerent colloidal monolayer sam-
ples is presented below. The first sample consisted of
1.6-pm polystyrene spheres dispersed in water. The ini-
tial interparticle separation of the monolayer was three
particle diameters. An 800-V potential at 3.75 MHz was
applied across the sample for the duration of the melt.
Neglecting screening by ions in the water, this corre-
sponds to a field of 1900 V/cm. The initial state of the
sample was an ordered solid. Due to the unbalanced in-
trinsic pressure from the induced interparticle potential,
the particles slowly drifted apart at a rate of 7.5 A/sec,
weakening the interparticle potential, and ultimately
causing the monolayer to melt into an isotropic liquid.
This motion also caused the particles to drift across the
field of view at three lattice spacings per minute. This
process, from the initial signs of melting in the solid to
the formation of the isotropic liquid, spanned 45 min.

Figure 2, images A —F, shows Delauney triangulations
of the 1.6-pm monolayer at various stages in the melting
process. The phase of each image is determined by the
correlations shown in Figs. 3 and 4. Image A shows the
monolayer in the 2D solid state. Several dislocations,
marked by moderately shaded triangles, are present in
the image. The majority of these are paired with an op-
posing dislocation nearby. Those unpaired dislocations
are near the edge, and probably paired with dislocations
just outside the field of view. Image 8 shows the mono-

FICx. 2. Triangulations for the 1.6-pm sample at various values of I *: A I *=1.0; 8 I *=0.96; C I *=0.91; D I =0.87; E
I =0.81; F I *=0.55. Defects are labeled as heavily shaded areas, disclinations; medium shaded areas, dislocations; lightly shaded
areas, paired dislocations at zero separation.
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0. 'I

r/a
10

FIG. 3. Translation correlation functions. Curves are let-
tered to correspond to those in Fig. 2. The dashed line has a
slope of —3.

0. 1

r/a

FIG. 4. Bond-orientational correlation functions. Curves are
lettered to correspond to those in Fig. 2. The dashed line has a
slope of ——'.

layer with defects consistent with the hexatic phase. An
increase in the density of aggregated and isolated disloca-
tions is observed. The dark shaded region is a disclina-
tion pair. The lightly shaded region to the right of the
dark region marks the formation of a virtual dislocation
pair which is simply eliminated by redrawing two pairs of
nearest neighbors. Image C shows the monolayer well
into the hexatic phase. Dislocations, dislocation loops,
disclination pairs, and virtual dislocations are present.
Image D is that of the monolayer right before the
hexatic-to-isotropic transition. It differs from C only in
that the defect density is higher; the same types of defects
are present. Image E shows the monolayer just into the
isotropic liquid. Disclination pairs are separating from
each other leading to the loss of orientational order. Im-

age F shows the monolayer well into the isotropic liquid
state. The density of dislocations has increased
significantly so that defects percolate through the sample.

Figure 3 shows the translational correlation function
for images A —F in Fig, 2. The correlations are displayed
on a log-log graph so that an algebraic decay,
C(r) ~ IrI ", is displayed as a straight line. The correla-
tion function for each image is labeled with the appropri-
ate letter. The dashed line is r ', the limiting form of
algebraic decay for the translational correlation function
at the solid-to-hexatic transition. Only correlation func-
tion A is above and approximately asymptotic to it. The
other correlation functions diverge from this line at large
r indicating a exponential loss of translational order.

Figure 4 shows the bond-orientational correlation
functions for the images in Fig. 2. The dashed line in this
graph is r ', the limiting form of algebraic decay at the
hexatic-to-isotropic Quid transition. Correlations for im-
ages A —D decay slower than this limit, indicating the
presence of a bond orientationally ordered system.
Correlations for images E and F decay faster than the
limiting form for orientational order and, in fact, diverge
from it, indicating exponential decay of this order and
the existence of an isotropic Quid.

A collection of bond-orientational correlation func-
tions from many images was presented in Fig. 3 of Ref.
31 for the sample analyzed above. This figure showed a
clear break in the form of the correlation functions with
an algebraic decay for g) —

—,
' and an exponential decay

just below the correlation functions that appear asymp-
totic to this limiting form, r

The calculated reduced potential energy of the system
versus the effective temperature is shown in Fig. 5. The
reduced potential energy, E*, is given by Eq. (2.21).
Since the real temperature of the experiment is fixed, the
effective temperature is derived from the reciprocal of the
one component plasma parameter I . This effective tem-
perature is then normalized so that T*=1.0 corresponds
to the loss of translational order, as determined by the
correlations shown in Fig. 3. The loss of bond-
orientational order occurs approximately at T*=1.15.
The region in the vicinity of T = 1 is expanded in the in-
set. The energy rises sharply in this hexatic region be-
tween T' = 1.0 to 1.15, and no obvious discontinuity is
present. The dashed line is the reduced energy versus
temperature data from a molecular-dynamics calculation
of 2D dipoles by Kalia and Vashishta. ' The arrows in
this figure indicate the presence of hysteresis in the simu-
lation from heating (the up arrow) and cooling (the down
arrow) the system.

The defect density versus effective temperature and the
reduced potential energy versus defect density are shown
in Figs. 6 and 7, respectively. The defect density is
defined as the fraction of non-sixfold-coordinated parti-
cles. Figure 7 shows a change in slope at a defect density
of about 5 /o, above which the potential energy increases
more slowly with increasing defect density. At a defect
density of 20% a change in behavior is noted in both
figures. After this, the defect density changes more slow-
ly with increasing temperature, and the potential energy
increases faster with increasing defect density. This
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occurs somewhere between images E and F in Fig. 2,
where dislocations finally percolate throughout the array.

Images from a monolayer of 2.0-pm polystyrene
spheres dispersed in water were also collected as they
melted. The initial state of this monolayer had a particle
spacing of 3.5 particle diameters. Initially a voltage of
800 V at 3.75 MHz was applied across the monolayer.
This was reduced seven times by 50 V until the mono-
layer melted to an isotropic liquid. The monolayer also
spread during this period which contributed to a reduc-
tion of the interparticle potential. This spreading aver-
aged 3 A/sec over the 30 min melting interval starting
with the loss of translational order and ending with the
loss of bond-orientational order. During this period the
monolayer drifted across the field of view at a rate of
three lattice spacings per minute.

Figure 8 shows six triangulations of the monolayer at
various stages of melting. The shading scheme is the
same as in Fig. 2: dark shaded regions are disclinations,
medium shaded regions are dislocations, and lightly shad-
ed regions are virtual dislocation pairs. Image A shows
the monolayer in the translationally ordered state. The
cluster of dislocations near the center of the image is a
dislocation triplet, three dislocations whose Burger s vec-
tors sum to zero. The cluster to its right also forms a
triplet. Images B and C are of the monolayer in a bond
orientationally ordered, yet translationally disordered
state. Images D, E, and F show the monolayer with de-
creasing bond-orientational order in the isotropic state.
The translational and bond-orientational correlation
functions for these images are shown in Figs. 9 and 10,
respectively. The dashed lines, as in Figs. 3 and 4, are the
limiting forms for algebraic decay for the respective
correlation functions. Finally, Fig. 11 shows the poten-
tial energy versus effective temperature for this mono-
layer.
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FIG. 8. Triangulations for the 2.0-pm sample at various values of I:A I *=1.34; 8 I *=1.05; C I *=0.80; D I *=0.76; E
I *=0.59; F I =0.56. Defects are labeled as heavily shaded areas, disclinations; medium shaded areas, dislocations; lightly shaded
areas, paired dislocations at zero separation.

IV. DISCUSSION

The most effective technique for observing the melting
of the 2D dipole system was to set the voltage, and hence
the dipole strength, at a fixed value and allow the mono-
layer to relax to its equilibrium density distribution. This
equilibrium configuration consisted of a rarified center
surrounded by a dense ring of particles at the edges of the
transparent electrode, where the gradients in the fringing
fields confined the particles. Since the density gradients
were large near the edges of this region it was necessary
to observe the system near the center where density gra-
dients were smallest, about 0.1% per lattice spacing.
Since the system always rarefied over time in this region,

it made no sense to change the field to redu"e interparti-
cle forces; the slow but steady increase in particle separa-
tion would do this, allowing an almost continuous study
of the melting process. Unfortunately, this technique was
not applied to the 2.0-pm sample, an earlier attempt at
this experiment. Consequently, there are some conspicu-
ous gaps in the melting process for this run.

The major criterion for determining the state of the
system from the image was the form of the two correla-
tion functions. It should be noted that each correlation
function is calculated from a single image rather than an
ensemble of images. While this certainly will introduce
error into the calculated correlations, they clearly show a
trend. This is especially the case for the bond-

0. 1

r/a

0. 1

r/a

FIG. 9. Translation correlation functions. Curves are let-
tered to correspond to those in Fig. 8. The dashed line has a
slope of —3.

FICx. 10. Bond-orientational correlation functions. Curves
are lettered to correspond to those in Fig. 8. The dashed line
has a slope of ——'.
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orientational correlations shown in Fig. 3 of Ref. 31
which clearly shows a change in behavior from algebraic
to exponential decay at r ', the predicted form of the
correlation at the limit of stability for the bond-ordered
phase.

The solid-to-hexatic transition is not as clearly defined
by the correlation functions. Although the bond-
orientational correlations appear to decay little, it is im-
possible to discern the transition from long-range order
to quasi-long-range order on this distance scale. No clear
change in the translational correlation function, such as
that in Fig. 3 of Ref. 31, is seen, probably due to density
gradients caused by the expansion destroying translation-
al order and the lack of data for a well ordered solid.
Also, it is questionable whether the monolayer was in
equilibrium in the initial state.

The correlation functions provide evidence of the ex-
istence of the hexatic phase for this system. In both sam-
ples there are images which show a strong decay of
translational order, yet only a weak algebraic decay of
bond-orientation order. Since both samples evolved from
a state with some translational order, very near that for a
crystal at the limit of stability, it is apparent that they
have lost translational order, presumably due to the for-
mation of dislocations, as these are the only defects
present in these images. It is also apparent, even from
the triangulations, that bond-angle order is not lost. The
existence of bond-orientational order with translational
disorder is evidence of a hexatic phase. The width of the
hexatic phase was 15% of T for the 1.6-pm sample and
-25~o for the 2.0-pm sample.

The images support the conclusion, drawn from the
correlation functions, that there is an intermediate phase
between the crystal and isotropic liquid. Images of the
sample in the solid phase, Figs. 2 and 8, image A, show

few dislocations, and most of those present are paired
with a nearby dislocation of opposite direction. A few
unpaired dislocations exist near the edges, but these are
quite possibly paired with dislocations just outside the

field of view. These defects are consistent with a high-
temperature crystal; a few dislocations exist, but are
paired over relatively short distances. Images in the hex-
atic phase, Fig. 2, images B—D and Fig. 8, images B and
C, show the presence of more dislocations scattered more
or less uniformly throughout the images and a few closely
bound disclination pairs. No large aggregates of disloca-
tions exist as predicted by Klienert's theory. No obvious
grain boundaries have formed either as anticipated by
Chui. It is plausible that small-angle grain boundaries
are forming from widely separated dislocations, but this
has been stated to be equivalent to dislocation unbind-
ing. Moreover, this hexaticlike behavior occurs over a
large range of particle densities. One would expect a
more significant change in defect structures if a first-
order phase transition had occurred. The images in the
Auid phase show a breakup of the previously tightly
bound disclination pairs and the formation of aggregates
of dislocations. The existence of a hexatic phase and the
defect structures from both samples offer evidence of
KTHNY melting.

The potential energy provides further insight into the
melting process. In Fig. 5, the potential energy shows a
fast, but apparently continuous, rise right after the solid-
to-hexatic transition. This is expected from work done
on the specific heat of the X-F model which shows that
the specific heat peaks above the transition. A discon-
tinuity in the calculated energy cannot be ruled out by
the precision of the data, estimated to be +0.001 in the
vicinity of the transition. This error was determined by
the spread of the calculated energy at a given reduced
temperature. These data are compared with data from
the molecular-dynamics calculation with a r interac-
tion of Kalia and Vashishta' shown by a dashed line.
Since they had calculated the total energy of the system,
we subtracted one k~ T from their results to obtain the
potential energy. Both our data and theirs indicate a
transition from the solid at E*=0.815. While their
potential-energy data jurnp discontinuously by 0.005,
ours apparently spanned this energy continuously over a
temperature range of 5% of T . They interpret this
discontinuous change to be a sign of a first order transi-
tion; we interpret the apparent continuous change in our
data to be the sign of a continuous transition. Well above
T our data are consistently higher than theirs, which
varies as one k&T. While our data appear to increase as
one k&T above T*=1.4 we cannot explain the 0.5%
difference in energy. We speculate that it is either an ar-
tifact of our calculation procedure or an artifact of the
simulated system. A computational error, however, can-
not explain the broad increase in potential energy just
after melting.

The potential energy versus T* also provides a means
of calculating I, I" at melting, without knowing the ab-
solute magnitude of the dipole interaction. This is deter-
mined from the value of E* at the solid-to-hexatic transi-
tion, 0.815+0.001, and the assumption of a constant
specific heat of kz for the potential energy from T=O to
T=T . The value of E* at T=O is 0.7985. Since the
difference in potential energy from its zero-temperature
value to its melting value is
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E(T=T )
—E(T=O)=k~T (4.1)

I can be calculated simply by dividing this equation by
the pair potential at the Wigner-Seitz radius and then
taking the reciprocal,

I = V(r, )/k~T = V(r, )/[E(T ) —E(0)]
=1/[E'(T ) —E'(0)] . (4 2)

This yields 1 =1/(0. 8150—0.7985) or 61+3. Kalia
and Vashishta' report a value of 59—65 for their 2D di-
pole simulation. In Appendix A we find a value of 40 at
the Kosterlitz-Thouless stability limit, Eq. (1.1). This cal-
culation does not include renormalization of the elastic
constant. Renormalization will increase the calculated
value of I

The slope of the data away from the transition also in-
dicates the value of I . From the equipartition theorem,
the potential-energy contribution to total energy of a har-
monic system in two dimensions is one k&T. In Figs. 5
and 11, where temperature is normalized to the melting
temperature, the slope of one k~ is equal to 1/I . The
dashed lines on both graphs show a slope of k~ for
I =61. That the data for the 1.6-pm system at high
temperature (above T*= 1.4) apparently follow this slope
is another indication that I is about 61.

The E* vs T* data in Fig. 11 from the 2.0-pm particles
are complicated by the discrete changes in applied volt-
age throughout the experiment. The data do not evolve
continuously, but rather are clumped together. However
a trend in the data is evident. Before and after the transi-
tion, where the energy increases by 0.005, the data in-
crease with a slope of less than kz. The slope below T
probably indicates that the system was not quite in equi-
librium. Defects frozen into the crystal fix E* at almost
a constant value. Above T, the low slope indicates that
the interparticle potential scales as less than the square of
the applied field. This means that the interparticle poten-
tial at high temperature, or low field, is actually higher
than calculated and should be shifted to the left on Fig.
11. Since the field is fixed for the 1.6-pm spheres, they
are not affected by this.

This problem of reduced interaction at high fields is
also manifested by the raw calculation of I at the
hexatic-to-Auid transition. Assuming there is no screen-
ing of the applied field from ions in the water, I can be
calculated using Eq. (2.3). For a fixed volume fraction,
the field required to reach a given I should scale inverse-
ly as the particle radius to the —, power, requiring higher
fields for smaller particles. The raw values of I for 1.6-,
2.0-, and 2.2-pm spheres at the hexatic-to-isotropic tran-
sition are 180, 80, and 50, respectively. ' Fart of this in-
crease for small particles can be attributed to the higher
ion concentration in the water due to the higher surface-
to-volume ratios in the small sphere systems (with fixed
volume fraction). We believe part of the increase is also a
sign of the nonlinearity of the induced dipole moment in
colloidal systems.

For the 1.6-pm sample the potential energy increases
rapidly just above the melting point as free dislocations
enter the lattice and dislocation pairs proliferate. The de-

fects weaken the lattice constants causing the energy per
defect (non-sixfold-coordinated particles) to decrease at a
defect density of -5%. The potential energy then rises
much less rapidly with effective temperature. As the de-
fects become more dense in the fiuid phase, at a density of
-20%, the energy per defect again increases, possibly re-
sulting from the fact that addition of more defects re-
quires a rearrangement of existing defects, and the defect
density increases more slowly with T . Above this tem-
perature, T*—1.4, the potential energy increases by one
k~ per degree.

From Fig. 6 we observe that the dislocation pair densi-
ty, with four defects per pair, in the lattice phase is in the
range of 0.3 —0.9%. We give a crude estimate of the
dislocation core energy from these data. Fisher, Halpe-
rin, and Morf calculated the density of dislocation pairs
with separations larger than r;„=3aoas

—2E /T
nd =Z(K)e (4.3)

Here ao is a lattice spacings, Z(K)-(r;„) is the inter-
nal partition function of a dislocation pair, and I7(T) is
the renormalized coupling constant which is equal to 16m
at TKT. Most of the pairs which we observe in the crys-
tal phase are separated by at least two lattice spacings.
We adapt the expression for Z(E) from Ref. 40 for
r;„=2ao,which gives Z =45 at TKT. This gives a core
energy of 4.5+2TKT. This estimate is an approximation
in part because our sample was in quasiequilibrium in the
crystal phase. The ratio E, /TKT is larger than the value
of 2.84 at which Chui found a transition from a strong
(E, /TKT &2.84) to a weak first-order transition. Saito~2

also found a continuous transition in an ensemble of
dislocation vectors with high core energies. Our value of
E, /TKT is comparable to the values deduced by Murray
and co-workers ' and Tang et al. Our estimates may
involve different values of Z(I7).

The equilibration time for this system must be con-
sidered to judge the validity of these data in exploring the
melting transition in two dimensions. In both experi-
ments, the monolayer initially was confined by glass
coverslips separated by a few (2—3) particle diameters.
With this setup, the monolayer formed a close-packed
multicrystalline solid (with —1.1 particle diameter lattice
spacing) consisting of crystallites about 30 lattice spac-
ings in extent. The monolayer was allowed to sit in this
state for about an hour before the coverslip spacing was
closed down to 1.5 particle diameters. The monolayer re-
tained its order, but expanded to a lattice spacing of
about two particle diameters. It was from this state that
the field was applied, causing the crystal to expand and
ultimately melt.

Equilibrium in the solid phase near melting is attained
when a dislocation climbs the mean distance between
pairs. Dislocation glide occurs on a much shorter time
scale. Climb occurs when the length of a half row of
atoms is altered and is usually assumed to require the
creation or annihilation of vacancies or inter stitials.
Another mechanism to attain climb equilibration is via
the diffusion of dislocation pairs from the edge of the
sample. These pairs can enter with a distribution of
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D =coA, fcrp, (4.4)

where cu is the dislocation glide attempt frequency, A. is
the average value of ~cj'~, which we estimate to be three,
f= ,' enters because —only pairs with climb vectors aligned
along the same axis can collide, o. is the cross section
given in rows, estimated to be about the average climb
separation of a pair, and p is the probability that an ex-
change or annihilation event occurs in a collision. Given
the density of dislocation pairs of about 0.005, the climb
diffusion constant becomes —SaD /h, and the time to
climb a correlation length is greater than 20 h. In both
samples the crystal phase existed for only about 1 h be-
fore it melted. These rough estimates show that the de-
fects in the solid phase are approximately frozen into the
position determined by the initial state. However, after
melting, when the density of defects increases by about an
order of magnitude, this equilibration time should drop
about two orders of magnitude to about 10 min due to
the reduction in the average separation between disloca-
tions and the availability of defects to promote disloca-
tion climb. We feel that these estimates support our posi-
tion that although the solid phase was not in equilibrium,
as soon as defect concentrations increased to about 5%,
the time scale of our experiment was sufficient to allow
for equilibrium. We contend that the later stages of the
hexatic phase and all of the liquid phase are in equilibri-
um.

Finally, we make one additional comment on the need
of crystal boundaries for equilibration. It should be not-
ed that dislocation climb involving only pair collisions,
vacancies and interstitials imposes an additional con-
strain on the system. The sum of the climb vectors along

climb separations. We propose that the distribution of
climb separations can also be altered in collisions between
dislocation pairs. Collisions result either in the exchange
of partners or in the annihilation of two dislocations with
the remaining dislocations forming new pairs.

In the solid phase, only one interstitial and no vacan-
cies have been seen for both samples with a total of about
20000 particles examined. Seshadri and Westervelt
also note the scarcity of vacancies in their 2D dipole sys-
tem. Thus, vacancies and interstitials may not play a role
in equilibrating the solid phase in a dipole system. An
upper limit for the equilibration time is determined by
the diffusion of pairs from the boundary of the crystal.
Assuming a dislocation diffusion constant of one square
lattice spacing each 10 sec, 0.1 a~/sec, a dislocation
would take about 9 h to glide across our sample. We also
give an estimate of the time for dislocation climb by
dislocation collisions which neglects dislocation interac-
tions. We define a climb separation vector along the ith
crystal axis as c'=c i, where c' is the number of atoms
which must be added (cj )0) or eliminated (c~' (0) to an-
nihilate dislocation pair j when partners are not separat-
ed in the glide direction, and i is a unit vector which is
directed along one of the three crystalline axes. The
climb separation vector is perpendicular to the Burgers
vectors of the pair. The climb diffusion constant is given
by

a single axis is equal to an integer c'; pc~'=c'. In the in-
terior of the crystal dislocation pairs are created with
c~ =0, and creation and annihilation events do not con-
tribute to the sum. The value of the integers, c', can be
altered by the absorption or emission of vacancies and in-
terstitials. If defects are not created and annihilated at
crystal boundaries, the following constraint is imposed on
the sample:

3

g c'+Nv N~ =—k (4.5)

where N& and X~ are, respectively, the total number of
vacancies and interstitials, and k is a constant. Crystal
boundaries are essential in obtaining true equilibrium.

V. CONCLUSIONS
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The melting of a lattice of colloidal spheres with dipole
interactions which could be controlled externally was re-
ported. Melting occurred in two stages with an inter-
mediate hexatic phase. Long equilibration times in the
crystal phase limited this phase to a quasiequilibrium
state. Lack of equilibrium could possibly be a cause of
the apparent continuous nature of the first melting transi-
tion. While we cannot rule out a weak first-order transi-
tion from the solid to the hexatic phase, we observe clear
evidence of a continuous transition to the fiuid phase.
The defect structures for the three phases were consistent
with predictions of the KTHNY theory of melting. The
melting point at I =61+3 matched the value from simu-
lations of heating a lattice with dipole interactions. The
width in temperature of the hexatic phase was 15%%uo of
T . Melting occurred when the algebraic decay ex-
ponent for the translational correlation function was near
the predicted value of —

—,
' although a precise value was

difficult to obtain due to quasiequilibrium conditions.
The second transition occurred when the algebraic ex-
ponent for the bond-orientational correlation function
reached the predicted value of —

—,
' where the function

abruptly changed from algebraic to exponential decay.
The first measurements of potential energy and defect

density versus effective temperature were presented. The
potential energy as determined from the experimental
data varied smoothly through both the transitions with a
rapid rise in energy just above the melting point. The
variation of defect density was smooth, but the reduced
energy per defect was nonmonotonic. Our results are
similar to the beautiful experiments by Murray and co-
workers and Tang et al. on colloidal spheres with a
screened Coulomb interaction.
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APPENDIX: CALCULATION OF ELASTIC CONSTANTS
FOR A TRIANGULAR LATTICE

Below, we present the calculation of the elastic con-
stants for a 2D lattice in a compressed state. The usual
presentation assumes a relaxed state for the solid. We al-
low for an intrinsic spreading pressure. The result
specific to a 2D dipole lattice is given.

Following the work of Born and Huang the pair po-
tential is expanded in a Taylor series about the square of
the pair separation. To quadratic order, the energy den-
sity is given by

U= g u;j+guk;ukj g'[P'(r )r;r ]
=1

ij k r

1
G = gu;k u&& 2g'[P" (r )r, r~ rk r& ]

a ijkl r

v P(~ij~kl ~~k~jl+~ Ibjk ) (A6)

g'[r P"(r )]——g'[r P'(r )],4 ~ 2 1 z ~ (A7)

and

where p is the hydrostatic pressure, which in two dimen-
sions, is equal to half the trace of (A3), the intrinsic stress
tensor. The above energy can be symmetrized to form
the familiar elastic free energy with elastic constants

+Qu, kuj, g'[f"(r )x(xkx, x, ]
ijk1 r

y'[r'y" (r') ]+—y'[r'y'(r') ] .4 ir 2 i 2

r
(AS)

(A 1)

ll,~
=BU; /Bx'j (A2)

Here the prime indicates that the summation does not in-
clude the origin, v, is the atomic volume, P(r ) is the in-
terparticle potential, presented above with first and
second derivatives taken with respect to r, and the dis-
placements tensor, u;, is the gradient of the displacement
vector,

The above results are applied to an inverse cube poten-
tial. Assuming a potential of the form

y(r2)p2/(r2)3/2 (A9)

alld

27 p ~Q
16v, a „p. (A 10)

the expressions for the two elastic constants given above
become

The term in equation (Al) linear in u; describes the
effects of intrinsic stress on the system. In the event that
its coefficient,

3 p Q
(A 1 1)

p,"= g'P'(r )r;r
1

r
(A3)

in zero, only the final term of (Al) remains. This final
term can be symmetrized to produce that elastic free en-
ergy written in terms of the strain tensor.

If the intrinsic stress is not zero, the system is only
stable if there is an external, equalizing stress. A
simplification occurs if these stresses are isotropic and
homogeneous. In this case the equilibrium is determined
by the Gibbs free energy,

I =P(1/mn)/k~ T. , (A12)

and where n is the 2D number density of the lattice,
yields the following expressions for the elastic constants
in a 2D triangular lattice with a dipole potential:

A, =2. 6951 k~ T /v, , (A13)

where a is some length such as the lattice spacing. If a is
the lattice constant, the sum has the value 11.033 for a
triangular lattice. Parametrizing the results in terms of
k~ TI, in which I is defined as

G =F+pV=Go+pAV .

The change of volume is equal to

av= v, ~sj+uj~ —v, ,

(A4) and

(A14)p=0. 2994I k T/v, .

(A5) Applying these results to the Kosterlitz-Thouless stability
criterion yields an unrenormalized value for I at melting:

(A15)r =400.
where 5, is the identity tensor and u, . is the displacement
tensor, given by (A2). Applying the result to (Al) yields
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