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Generalized measures for physical properties of nonperiodic chains
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The physical properties associated with nonperiodic deterministic sequences (such as the Fibonacci se-

quence) are studied by means of an information-theoretic measure, which is a generalization of one pre-
viously defined to measure the disorder of such sequences. In application to electronic or optical
transmission, the measure allows the definition of an efFective transmission coefficient, which is computa-
tionally more efficient to calculate, while still exhibiting the same structure (e.g. , self-similarity), as the
exact transmission coefficient.

I. INTRODUCTION

Recently' we introduced a measure of disorder in non-
periodic sequences. Such sequences can be generated
with substitution rules, an example of which is
A~A B", B~A. For m=n=1, this rule produces
the well-known Fibonacci sequence
ABAABABAABAAB. . . . These sequences find their
application as one-dimensional analogs of quasicrystals or
of quasiperiodic superlattices. The purpose of this paper
is to generalize this measure to a. measure for physical
properties associated with such a chain.

In particular, we will be considering the property of
transmission. There has been much recent interest in opti-
cal and electronic transmission, and especially
with how the transmission coefFicient varies with energy.
This variation can be analyzed to measure the resistance
or conductance through the chain and to find approxi-
mate band structures. For quasicrystals, the band struc-
tures often show self-similar features and typical calcula-
tions to illustrate this require a large number of atoms or
layers. In this paper, we study a measure leading to an
effective transmission coefBcient, using smaller numbers
of atoms or layers, which produces qualitatively similar
results.

In Sec. II, we discuss the general concepts underlying
the measurement of properties of nonperiodic sequences,
with relation to our previous work. In Sec. III, we exam-
ine the measurement of electronic transmission, in the
context of three popular models (Kronig-Penney,
Kronig-Penney 5 function, and tight-binding), and in Sec.
IV, we proceed to the measurement of optical transmis-
sion. The work is summarized in Sec. V. Atomic units
(A'= m, = 1) are used throughout.

II. GENERAL MEASURES

Consider a chain of letters AB. . . , where each letter
represents an atom or a group of atoms. For each letter
(or string of letters) i in the chain, we suppose we have p;,
a real positive quantity, representing a physical property

N

Ptv HP (2)

Note that if p; is zero for any letter of the chain, then the
measure is infinite. Note also that the base of logarithms,
in (1) and elsewhere, is arbitrary, although it proves to be
most convenient to have it equal to the number of
different letters, so we take it to be 2 here.

We will now consider the measure as N~ ~, and ob-
tain a probabilistic expectation value for the physical
property over the infinite chain. Putting (2) into (1) leads
to

N
hz= ——glog2p; .

i=1

We can rewrite (3) as

(3)

X & log2Pk
k

(4)

where the sum is now over the distinct members of the
chain, and nk is the number of occurrences of the kth
member in a chain of length N. Now, as N —+ ~, we have
that nk /N ~Pk, where Pk is the probability of that
member. Thus,

h = lim hN= —QPklog~k .
Pf~ oo k

By "distinct members, " we may mean either the set
of possible m strings (for example, t A, B I,
or I A A, AB, BA,BB I ) or the Ith substitution of
such a set [for example, ISt(A), St(B)I or

of the ith member. The particular properties which we
will be concerned with in this paper are the transmission
coeKcients, but in principle, the theory may be applied to
any such p, . Given such a chain of length X, we define
the measure of the physical property as

"w logo@

where
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IS&( A A ),SI( AB), S&(BA), S&(BB)J ]. As a specific exam-
ple for the Fibonacci sequence, if we used
IS3(A},S3(B)], then we would have two members
S3(A)= ABA AB and S3(B)=ABA, so that we could re-
gard the chain as being made up of AB A AB and AB A,
as opposed to the usual A and B. As a second example,
we can. consider a completely periodic sequence
AB AB AB AB. . . to be generated by the substitution rule
A ~AB A, B~BAB, and thus to be made up of the two
strings ABA and BAB, both of probability 0.5. Conse-
quently, we could work with ABA and BAB as the
members, rather than the one-letter strings A and B.

We will consider two special cases. For the first case,
we take the distinct members to be strings of fixed length
m and

pk (xm lxix2 xm —1) ~ (6)

is the conditional entropy associated with the string
x, x,. The quantity h in (7) is the information-
theoretic entropy that we have used previously' as a mea-
sure of disorder in such strings. This is similar in struc-
ture to the entropy used in thermodynamics, but here we
use it in a different context. We note that the minimum
value of the entropy (7) is 0, which corresponds to com-
plete order.

For the second case, we take pk = tk, the transmission
coefficient through the kth member, so that, from (5),

h = —QPklog2tk,
k

(9)

where the summation is over distinct members, and of
course,

Pk=1 . (10)

Each quantity tk is the transmission through a substring
(a "member") of the chain, so that h represents a measure
of transmission through the chain, which depends on the

the conditional probability of x given the string
x ix& x~ i (i.e., the probability that the string
xix2 x, is followed immediately by x ). Here
each x; belongs to the set of letters (the "alphabet" )

comprising the chain. Substituting (6) into (5) gives

h = — g P(x, x )log2P(x lx, x, )
m strings

P(x, .x, )P(x lx, . x, )
m strings

Xlog2P(x lx, .x, )

P(x, . x —,)H(Xlx, . . .x,), (7)
(m —1) strings

where

H(Xlx, x,)= —QP(x lx, x, )

m

X log2P(x lx i x i ),
(8)

P(xy) =P(S,(xy) ), (12)

where x,y E ( A, B ], and these probabilities have been
calculated in Ref. 1 as P ( AB }=P (BA ) =0.381 966 and
P(AA}=0.236068. As a check on the convergence of
these calculations, the values of t, were compared with
the exact transmission coefficients for very long chains,
and were found to be in good agreement, but the approxi-
mation t, proved to be much quicker computationally.

It is important to emphasize that the tk's of Eq. (9),
which are combined to form t, in (11), are obtained from
full quantum-mechanical calculations for model chains.
In the next section, we discuss the models used to calcu-
late the transmission coefficients for the three representa-
tive chains considered. In practice the size of the chains
in any application will be large and the exact size will al-
most certainly be unknown so that, in principle, the cal-
culations involving our smaller representative chains
form just as valid a model as the large chains involving
several hundred atoms. Since the calculations are in
agreement with those for longer chains we believe that we

order of the members of the chain. For the calculations
of the next section, each Pk will be for a moderately long,
but finite, chain C (N). In order to calculate these proba-
bilities, the chain can be approximated by an infinite
chain C( 00 ). For the latter chain, the appropriate substi-
tution rule can be used to facilitate the calculation of the
probabilities of the strings, since C( ~ )~C( oo ). As an
example, suppose we were to use the particular choice of
members (in the Fibonacci sequence) mentioned earlier.
We would have two possible values of tk, viz. t, and t2,
one for each of the strings ABA AB and ABA, and we
would need to calculate Pk for each of these. Using the
substitution rule three times, when A ~ AB A AB and
B~ ABA, we still preserve C( ao )~C( ~ ). Since the
chain was originally composed of strings of A's and B's,
this analysis shows that it can also be regarded as a chain
composed of AB A AB's and AB A' s, so that, ignoring the
small effects from approximating a large finite chain by
an infinite chain, we have P, +P2=1. For comparative
purposes, it is useful to define an effective transmission
coefficient t, as

t=2 ".
e

In the following sections we will consider (9) and (11)
in reference to electronic and optical transmission
through one-dimensional chains. To illustrate this idea,
we take the Fibonacci golden-mean sequence, which is
generated by the substitution A ~AB, B~A. To model
the chain, we use as distinct members the set
IS7(AB),S7(BA),S7(AA)], omitting S7(BB), since BB
does not occur. The reason for the choice of this set is
that, in order to get reasonable convergence from a set of
SI (m strings), it is necessary to have fairly long chains.
These can be obtained using large m and small l, which
produces a large number of members, or small m and
moderate l, which produces a small number of members.
We find the latter case preferable, and for the particular
choice made above, we have three members whose chain
lengths are 55, 55, and 68, respectively. We note that
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have found a more effective measure for the transmission
through the system. Of course if we increase the size of
the representative chains, then for sufficiently long
chains, the transmission coefficients will be virtually the
same. However, for the size of chains used here, this is
not the case but, nevertheless, the measure leads to the
same qualitative band structures as that obtained with
more precise numerical calculations. In particular, the
self-similarity features, which are typically found for
these band structures, are found (approximately) in most
of the models used here. On the other hand, if very short
subchains (of length 2, say) were to be used, then one
would not expect the resulting band structure to reAect
the actual band structure realistically. However, the
efficiency can only be assessed by numerical comparisons.
For the nonperiodic sequences considered in this paper,
the results indicate that good qualitative band structures
can be obtained from intermediate-length subchains.

III. ELECTRONIC TRANSMISSION

and

f ~)= A ~)coshk ~,x+B ~,smhk/~, x,
with

k)~)=[2(V ~) E)] ~ E( VJ~)

In region j+2, we take the origin at XJ.+2 and

Q~ ~p= Ai ~pcoskx +BJ.~zslnkx

(16)

(17)

M(j)=
k cosO sinO coshy sinhy.
—k sinO. cosO k + &sinhy k. + &coshy.

The continuity conditions at the boundaries lead to the
recursive relationship

AJ gP A.
=M( j)

J

where

We here consider electronic transmission through a
one-dimensional chain of length X, using three different
models: Kronig-Penney (KP), Kronig-Penney 5 function
(KP5), and tight-binding (TB).

A. Kronig-Penney model

1/k 0
X 0 1/k~ ~)

O =ka +2 and k +,d +,=y .. Note that

detM(j)=1 .

(19)

(20)

g = A.coskx+B sinkx,

where

(13)

The KP model is a one-dimensional array of rectangu-
lar barriers of height V. +& and width d +&, bounded by
zero-potential regions of width aj and a~. +2. (The index j
is taken to be odd). The regions of nonzero potential
start at X and end at X +, (see Fig. 1). The Schrodinger
equation is solved in each region and the wave functions
and their derivatives are matched at each point X . In
regions j and j+1, we take X, to be the origin, and the
forms of the wave functions are

Thus, we can build up an expression of the form

~ 2N+1

~2N+ 1

=M 8) (21)

where

N
M= gM(21 —1) . (22)

Since we are considering a plane wave in incident re-
gion 1 and moving towards the right, it is more con-
venient to consider the wave functions in regions 1 and
2N + 1 in the forms

k=(2E)' ', E)0, (14) =e '~x+ Ce1 (23)

Vj+1

and

ikx
02m+ i =De (24)

where
~

C
~

denotes the reAection coefficient and
~
D

~

the
transmission coeKcient. Comparing (23) and (24) with
(13), it is clear that we have

A, =1+C, B,=(1 C)t, 22~—~, =D, B2~~, iD . —

(25)

From (21) and (25) we obtain

X}+i iD
1+C

(1—C)i (26)

dj+1 BJ+2
and we can calculate the transmission coefficient for the
kth member to be

FIG. 1. Kronig-Penney model of a rectangular potential bar-
rier. &g

= lD I'=4/(M' +M' +M' +M' +2), (27)
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1.0

0.8—

0.6—

shows a main central structure and two side structures,
each of which is further split into substructures. Calcula-
tions made varying Vz and Vz give very much the same
results as those obtained by varying dz and dz. This is
an expected result, since the transmission tends to vary
with the area Vd under the barriers.

B. Kronig-Penney 5-function model

0.4—

0,2—

The KP5 model is a modification of the KP model, dis-
cussed in the previous subsection, such that V +&

—+00,
d +,—+0, where V.+,d +,—+C a finite nonzero quantity.
Essentially, this scheme changes the barriers to 6-
function potentials. From these assumed limits, we can
deduce that y ~0 and k + &yj

=k. + &d. + &

—+C.. We can
now write the last two factors of (19) in the form

0.0
0.2 0.4 0.6 0.8 1.2 (coshy )/k (sinhy~)/kj+i

(k +,sinhy~ )/k coshy

1/k 0
Cyk &

(28)

FIG. 2. Effective coefficient of electronic transmission t,
versus energy E for the KP model, with d~ =0.8, d&=0. 5,
a ~ =a~ = 1.0, and V~ = V~ = 1.0.

M(j)=
k COSL9J slnO~

—k sin8 cosg.

Consequently, (19) reduces to

1/k 0
C/k 1

(29)

where M; are the elements of M.
In Figs. 2 and 3, we present calculations of the effective

transmission coefficient t, versus energy E, for the case of
the barriers arranged in a Fibonacci sequence. To show
the qualitative structure, model parameters have been
used, varying (i) dz and dpi (Fig. 2), and (ii) az and aii
(Fig. 3). Both graphs exhibit a band structure, and in-
clude isolated peaks of high transmission. There are
clearly several main bands, with a division of each one
into subbands, and we can see indications of the self-
similarity typically observed in such calculations. For ex-
ample, in Fig. 2, the band in the energy region (0.65, 1.0)

and the calculation of the transmission coefficient tk is
identical to that of the previous section, apart from the
change in the definition of M( j).

Calculations for the KP5 model are presented, which
were obtained by varying simultaneously both sets of pa-
rameters C~, C~ and a~, az. The results are given in
Fig. 4, and similar results were obtained by varying only
one of the sets of parameters. There are actually several
bands, but the energy range of Fig. 4 has been chosen to
show only one of them. Qualitatively, the structure is the
same as that observed in Figs. 2 and 3 for the KP model.
The band edges are clearly defined as the transition

1.0

0.8—

0.2 0.2—

0.0
0.0 0.2

I, I
'I, !II

0.4 0.6 0.8
)

1.0
0.0

0.4 0.5 0.7

FIG. 3. Effective coefficient of electronic transmission t,
versus energy E for the KP model, with d& =dz =0.8, a& =2.0,
ag = 1.0, and Vg = V~ = 1.0.

FIG. 4. Effective coefficient of electronic transmission t,
versus energy E for the KP5 model, with a& =3.0, a&=5.0,
Vg =0.6, and Vg=1.0.
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points between regions of zero and nonzero transmission.
Again there is subdivision of the band, with a self-similar
structure. Note that the structure is not precisely sym-
metric about the band center, due to the fact that we
have calculated an effective transmission coefficient by an
averaging process, whereas a graph of the exact transmis-
sion coefficient would exhibit such symmetry.

C. Tight-binding model

Here we consider a linear chain of N atoms, at points
X1 . ~ ~ XN bounded by conducting regions with Xp and

XN+, as reference points in these regions. Within the
chain of N atoms, we use the TB model, where the wave
function is assumed to have the form

N
P= g c„P„,

n=1

with P„being the atomic orbital centered at X„.This
leads to the usual system of difference equations

(a„—E)c„—P„c„+,—P„,c„,=0, n =1,2, . . . ,N,
(31)

where a„is the Coulomb integral at site X„,and P„is the
resonance integral between sites X„andX„+1.We can
write (31) in the matrix form

Similarly, in the conducting region to the right, we have

D& ikx (39)

=S
CN iD (40)

Inserting (37) and (40) into (34) gives

D 1+C=S MS ~ (1 C) (41)

which is the same form as (26) for the KP model, except
that the transfer matrix is now T=S 'MS. We note that
the choice Po=Piv ensures that detT=1, and we can cal-
culate the transmission coefficient in the same way as for
the KP model.

Calculations are presented varying (i) a„and az (Fig.
5) and (ii) Pz„andP„z(Fig. 6) for the two possible sites.
In each case, we take Po= 1 for the conducting regions.
Once again, band structure and subdivision within the
bands is observable, as is a self-similarity in the structure
[see especially Fig. 6(b)]. It is reassuring that all three
models of this section produce the same qualitative
features, illustrating that they are "physical, " and not an
artifact of some particular model.

and taking the origin to be at Xiv, with ~XivX&+&~ =1,
gives

CN+1

Cn+1

where

so that

Cn

=M(n)
Cn —1

(a„E)/P„—P—„,/P„

(32)

(33)

IV. OPTICAL TRANSMISSION

In this section, we consider optical transmission
through a one-dimensional system, made up of two types
of layers, 3 and B, with X; denoting the interface points.
Here we take the layers to be arranged in a Fibonacci se-
quence, although the theory can be applied to any ar-
rangement of the layers.

CN+1 C1

where

=M
CN CO

(34)
0.8—

N
M= +M(n) .

n=1
(35) 0.6—

We assume identical conducting regions on each side
of the chain of atoms, so that we may take Po=Piv. In
the conducting region to the left of the chain, we have
(analogously to the KP model)

(36)

Choosing Xo as origin in this region, with ~XoX, ~
=1, the

fact that co =g(0) and c, =P(1) leads to

e 0.4—

0.2—

C1

Cp

where

1+C
i (1—C)

(37) 0.0
—3 —2 0

E

cosk sink

1 0 (38)
FIG. 5. Effective coefficient of electronic transmission t,

versus energy E for the TB model, with a& =0.6, a&= —0.6,
and P» ——P» ——1.0.
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The electric Geld for each layer has the form

E~ =E'exp[i(k' x . c—ot )]

+E exp[i(k x. —cot )]p
p= A, B,

where thehe first term represents the transmitte
the second represents the reQs e re ected wave. Writing

E+=Ei 2+E, E =(E' E—)I'
p p p l

(42)

(43)

then for an me
'

y edium between points X d
have

e s; an X+„we

where

(45)
1 0

S =
0 n cosL9

The introduction of the matrix S is re uired t

media, since between tw
er ace of the

en wo i erent media we have

=S~ 'S~ (46)

E+
TSP P E

E,+=S E x.
p i+1

(44)

where

S~ S~ —
0

-1 0
lLBcos~B Itt g cosOg

(47)

(g) l.o—

0.8—

0,6—

(48)T sin5 cos6p p

where 5 =n kd cos8, k is the wave uu
e t ic ness of the la er. '

have
yer. Thus, from (44) we

Here n is th e refractive index for medium
the angle between th

r me iump, and 0 is

~ ~

een e normal to the interfa

matrix for medium p
arization. The matrix T is theis e transfer

'
mp, an isgivenby

cos5 —sin5

0,4—

0.2—

0.0
—3 0

E+
p

E x.

where

'E+ '

=S 'T SP P P E x,.

E+
p=M E x. '
p i

(49)

detM = I .

(b) 0,8—

0.8—

0.6—

0.2—
0.4—

0.2—

0.0
0.2 0.4 0.6

0.0
0.25 0.30

1

0.35

FIG. 6. a( ) Effective coefficient of electr
versus energ E f

o e ectronic transmission t

P„„=0.5, d P„=1.0. (b) A FIC7 ~ 7. Eff~ . ffective coefficient of optical tran
E n„=. , n&=3.0, d~ =3.0, and d&=2.0.
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For a chain of N such media, bounded by Xo and X&, we
have

E+

where

E+
=M

Xo

(5 l)

N
M= +M~ (52)

From these results, we can calculate the transmission
coefficient as'

tk = ~D~ =4I(M)(+Mtq+M~(+Mqq+2), (53)

where M;. are the matrix elements of M. We note that
(53) is identical in form to (27), obtained for the transmis-
sion coefficient for electronic transmission.

We have calculated t, as a function of energy, by ar-
ranging both the refractive indices (n„,n~) and layer
thicknesses (d„,dtt ) according to the Fibonacci sequence,
and taking the light to travel normal to the interfaces so
that 0~ =0~ =0. The results are given in Fig. 7, showing
a "close-up" of one particular region of nonzero
transmission. Qualitatively, the figure is much like those

of the previous section for electronic transmission, and
specifically, a degree of self-similarity is again in evi-
dence, as may be expected for such chains.

V. CONCLUSIONS

In this paper, we have defined a measure of transmis-
sion (or, more generally, any physical property) through
nonperiodic sequences, such as a Fibonacci chain. We
have looked specifically at electronic and optical
transmission, and in the former case, we have utilized
three commonly studied models and have seen that they
all give qualitatively similar behavior. In all of the calcu-
lations performed, we have obtained subdivided band
structures, which show self-similarity. These are qualita-
tively the same as calculations done with a large number
of atoms or layers, but the computational effort is small-
er. We note that it is trivial to calculate an effective resis-
tivity ( l —t, )/t, in the same way.
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