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Localization, antilocalization, and delocalization in one-dimensional disordered lattices
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We study analytically the eigenstates of a weakly disordered semi-infinite single-band tight-binding
lattice in contact with an ordered parent lattice. We consider successively three simple types of correlat-
ed, continuously distributed site energies: a random dimer model, a random trimer model, and a random
monomer-dimer model. In the dimer model the disordered chain lattice is partitioned into a collection
of pairs of nearest-neighbor sites, where the two sites of a given pair are assigned a common independent
random energy. The trimer model is similarly made up of triplets of nearest-neighbor sites having the
same site energy taken as an independent random variable. Finally, the monomer-dimer model is defined
as an alternate sequence of independent dimers and monomers with identically distributed site energies.
The site energy randomness is described by Gaussian white noise and we restrict to energies of the pure
system's energy band. We find that the averaged rates of exponential variation of site wave functions at
finite distances X)&1 from the edge site of the disordered chain are anomalous at the band center
(E =0), at the band edges, and at energies E =2cosam. , with a= —' for the dimer model and a=

6 3 3,
and 6 for the trimer and monomer-dimer models. These results are relevant for transport behavior of
finite disordered samples in the quasimetallic regime. On the other hand, we study the inverse localiza-
tion lengths for the states whose energies are intermediate to the above special values. In the dimer
model all the states in this energy range are localized, with an enhanced localization length. In the tri-
mer and monomer-dimer models we obtain six delocalized states at fixed intermediate energies. The en-

ergies of the delocalized states separate domains where all states are localized from domains where all
states are antilocalized. The antilocalized states discussed in this paper have the usual Bloch form up to
the edge site of the ordered lattice, beyond which they decrease exponentially into the disordered lattice.
We also study the effect of disorder on the phase of site wave functions.

I. INTRODUCTION

In a recent paper' (hereafter referred to as I} we have
studied analytically the rates of exponential variation of
site wave functions as a function of the distance from the
edge in a semi-infinite disordered chain lattice in contact
with a semi-infinite nondisordered lattice. In the usual
single-band tight-binding approximation the system con-
sists of a semi-infinite disordered chain with sites
n = 1,2, 3, . . . having random site energies, which is adja-
cent to a semi-infinite nondisordered chain with sites
n =0, —1, —2, . . . whose energy level is placed at the
zero of energy. Taking the constant hopping rate be-
tween nearest neighbors to be the same for the two
chains, the Schrodinger equation for site wave functions
of energy E (in units of the hopping rate) is

4.+i+4. i+e.f.=El.
n =0,+1,+2, . . . ; e„=0 for n =0, —1, . . . .

In I we focused on the study for weak disorder of the
modification of a tight-binding plane wave when
penetrating the disordered region.

The site energies at n = 1,2, 3, . . . were assumed to be
identically distributed, uncorrelated Gaussian variables
with zero mean, i.e.,

At the sites of the semi-infinite nondisordered chain the
solutions of (1) are of the form

P„=e'~", n =0, —1, —2, . . . ,

which correspond to the usual Bloch spectrum

E =2cosq

and define the boundary conditions

0
——1, yi=e'&

(4)

&y&= lim N '&1 g~n& .
pf» oo

for the site wave functions at energies within the band (4)
in the disordered region, which are obtained by iterating
(1}starting from the edge site n =1.

The random complex rate of exponential variation of
the amplitude gz, N —1-N steps away from the edge
site in the disordered lattice is defined by

y =N 'in/~ .

In the asymptotic limit 1(&N—+ &x), y& is self-averaging
(Fiirstenberg s theorem) and independent of N, i.e., it has
a well-defined stationary central value which is equal to
the disorder average

&e„&=0, &e„e &=e025 (2) Its real part (the Lyapounov exponent), which is found to
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be positive for uncorrelated site energies, defines the in-
verse localization length

' =Re( y ) = lim N '( lngz ) .
&~ oo

The imaginary part of (6) corresponds to oscillations of
the wave functions about exponentially growing (or de-
creasing) amplitudes, which are not directly related to the
density of states for the ordered lattice-disordered lattice
junction described by (1), unlike the corresponding quan-
tity in the case of a finite disordered chain placed in vacu-
um.

In I we obtained the site wave functions in the disor-
dered lattice for weak disorder, using an expansion in
terms of contributions of successively higher orders in the
site energies. For energies suKciently far from the band
center and the band edges the expansion converges for all
distances X, thus allowing a straightforward determina-
tion of the inverse localization length in this case. In par-
ticular, to lowest order in the correlation parameter eo,
the localization length reduces to the well-known result
for these intermediate energies. On the other hand, it
was shown in I that near the band center and near the
band edges, the validity of the weak disorder expansion is
restricted to scales X which are somewhat less than the
localization length and, furthermore, that the averaged
exponential rates (y)v) take on anomalous forms. The
length dependence of the site wave functions P)) at these
scales is relevant for the study of quasimetallic transport
in finite samples of lengths N ((g. We also note that the
averages Re(y)i ) and Im(y)q) properly reflect the sta-
tistical behavior of y& since it was shown in I that yz
remains self-averaging for finite Xprovided X )&1.

An important recent development in the theory of
disordered tight-binding lattices has been the explicit
demonstration of the existence of delocalized states in
models involving a specific type of correlation of the ran-
dom site energies known as random dimer models. This
was first shown by Dunlap, Kundu, and Phillips and by
Dunlap, Wu, and Phillips and subsequently by many
others. ' In the random dimer model of Dunlap
et ah. ' the sites of a chain of 2X sites are arbitrarily
grouped into N pairs of nearest-neighbor sites (dimers)
and are assigned at random one of two values of site ener-
gies (e~ or ei) ) with the restriction that the two members
of any dimer are assigned the same energy. This con-
trasts with the model of I where the energy of every site
of the disordered chain is taken to be an independent,
continuous random variable described by (2). Dunla~
et al. , found that the random dimer model has 2VN
delocalized states. Since these states constitute a subset
of measure zero the familiar theorem about localization
in one-dimensional disordered systems is preserved in the
presence of the dimer correlation. The model of Dunlap
et al. ' has been generalized in studies of delocalized
states for cases where the sites of a disordered chain are
grouped into n-mer units ' comprising n sites in succes-
sion, all of which are assigned a common random site en-
ergy.

The previous studies of delocalized states in one-
dimensional disordered systems are restricted essentially

to discrete distributions of site energies, namely the
double-valued distribution used by Dunlap et al. ' The
purpose of this paper is to generalize the analytical study
of localization in the ordered-disordered lattice system
above' in the presence of various multimer correlations
with continuously distributed site energies. More pre-
cisely, the common site energy for the sites of a multirner
will be taken to be an independent random variable de-
scribed by a Gaussian white-noise correlation of the form
(2) for different multimers units. We shall consider suc-
cessively three distinct random models: a dimer model, a
trirner model, and a mixed model of alternating dimers
and monomers (single-site units).

In Sec. II, after recalling some general results leading
to the weak disorder expansion of the rates of exponential
variation of site wave functions for finite N, we derive the
detailed analytical form of (y)v ) to linear order in eo for
arbitrary energies (4), successively for the three random
rnultirner models above. In Sec. III„we study the expli-
cit results for the anomalous forms of the site-wave-
function rates ( y)q ) at finite distances N, at special ener-
gies defined in Sec. II, together with the localization
lengths of the states of energies intermediate to these spe-
cial values. Some concluding remarks are presented in
Sec. IV.

II. WEAK DISORDER EXPANSION
OF WAVE FUNCTIONS

A. General expressions

are given by a two-point recursion relation which follows
from (1).' For weak disorder the g„are defined in terms
of contributions of successive orders in the site energies
&n~

p=1,2, 3, . . .
g(P) g(P) —f(P) f (P)

where the pth order contribution, g„'~', is given by a re-
cursion relation obtained by equating the terms of pth or-
der on both sides of the expansion of the equation for g„
in terms of successively higher contributions in the e„.
The explicit solutions of the recursion relations for g„"'
and g„' ', using the boundary conditions (5), are'

n —1
(i) b y &

n —m —i

m=1
n —1

g(2) y I n —m —i

rn =1

(12)

We first recall some general results of I for the site
wave functions in the disordered region before defining
multirner correlations of site energies as mentioned in
Sec. I. For energies E within the pure system's band (4)
the wave functions in the disordered lattice are written in
the form'

iqn +if„„=e
where the local exponent increments,
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where

a=e iq (14)

and

2

From (6) and (9) we then have yz =iq +iN 'f&, and by
iterating (10), starting from the values

fi=gi=o
[Eq. (5)] we get

(16)

l N

y )v=iq+
N g gg„' '= iq—+yIv'+yIv'+. . . , (17)

n=1 p

where, from (2), (yI('+") =0. In I it was shown that y)v
is self-averaging for all N »1, when the energies at all
the sites are uncorrelated. We expect this also to be the

I

case for the various multimer models discussed below.
Therefore we shall restrict ourselves in the following to
the study of the mean (yN ), keeping in mind that the re-
sults will be significant only for N»1. Expressions
(12)—(15) allow us to study the complex mean (y)v) to
lowest order in the disorder, i.e., (y)v) =iq + (yIv'). In
particular, the study of ( y)v ) will enable us to find the lo-
calization length for intermediate band energies alluded
to earlier.

B. Random dimer model

We now arrange the sites n =1,2, 3, . . . in the disor-
dered region into pairs (1,2), (3,4), (5,6), . . . of neighbor-
ing sites and we choose the site energies of the two
members of a pair to be equal, that is we put e, =@2—=e&,

e3 =e4 —=e3, . . . , where the site energies on different pairs
are uncorrelated Gaussian variables defined by (2). For
this random dimer model Eq. (12) becomes

k —1

"'=iba ' g e2), +1(a ' +"+a ' +")(5m 2k+1+5~ 2(k+)))+em ia +'5m 2(k+1)
p=0

(18)

where the different forms of g'" for even and odd labeled sites m are shown explicitly. It thus follows that I also has
different forms for even and odd m and that furthermore the form of ( yIv) ) depends on whether the length N corre-
sponds to an integer number of dimers in succession or not. With this in mind, we obtain from (13), (15), (18), and (2)

&y(')) =iq+1 ' + ' +' y (1+a)&r„,) (
2M 2M+1 I

l —2

+( 1+ —1) 21 y ( ( r )
—(2k+1)+ ( r )

—2(k+1))
k=0

2M M —1

1'M 5~2M —y (&r,„+,)a ' "+"+(r2(k+1))a '"+"),
k=0

(19)

where

l E'()a(I ) = [1+a(3+a)5 2(„+,)+(1+a)'(a —1) '(1 —a ")a '(5 2k+1+5,2(k+1))] (20)

The summation of the various geometric series involved in (18) and (19) yields, after some calculations and reductions of
terms,

E'Oa ~N, 2M + 1', (1+a) 5„, +
2(a —1)2 ' 1+(2M)

+ia [a (1+a) SM' —2(1+3a)SM'] ' +

N, 2M5
2M

(a 1)2(1+4 +a2)S(2)+ (1+ 2 2M —2M+2)(a +1)2a2M

1+a
(21)

where

a kM

SM
1 —ak (22)

denotes a geometric sum, which is finite for any a, for

I

finite M.
Equation (21) leads to the identification of various

domains within the energy band (4) where distinct
behavior is to be expected for (yIv)). Indeed, consider
the set of special energies at which the sum SM"' with the
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highest index k, namely SM', increases linearly with M.
These energies are de6ned by the roots a =+1 and a =+i
of

a'=1,
1.e.,

E=O q=—
2

E =+2 (q =0,~), (23)

77 3mE=k&2 q= —,4' 4

which corresponds to the band center, the band edges,
and the energies at the rational values q/rr= ,' and —,',—re-
spectively. At all other energies of the band SM' and SM'
are finite for all M and the curly bracket in (21) reduces
to just the term independent of M for M~ ~. However,
at the special energies above, the M-dependent terms in
(21) may lead to contributions of the same order as the
terms which are independent of M, as a result of the
linear variation of SM' with M.

This shows that the detailed forms of ( y Iv' ) at the
various characteristic energies above will generally be
diferent. This is the case, in particular, at the band edges
(where both SM' and SM' grow linearly with M) and at
the energies E =+V'2 (where only SM' varies linearly),
respectively. In fact, the special energies above (E =+2,
E =+—v 2, E =0) define energy domains (the neighbor-
hood of the band edges, of the band center, and of ener-
gies +&2) where (yIv)) takes special (anomalous) forms
as compared to its form at intermediate energies, i.e., en-
ergies sufBciently far removed from these special values.
Furthermore, among the domains of anomalous behavior
for (yIv)) the neighborhood of the band edges plays a
distinct role. Indeed, the anomalies are expected to be
enhanced near the band edges because of the double pole

I

at a =1 appearing in the overall factor of (21). Due to
the fact that for finite N ( yI),

) ) is, however, a finite quan-
tity, this second-order pole must be cancelled by a corre-
sponding double root in the curly bracket. This feature
renders ( yI(I) ) strongly N dependent near the band edges,
unlike at the other special energies.

On the other hand, at the above special energies the
weak disorder expansion, of which (21) is the lowest term,
is expected to converge only for N less than a threshold
value of the order or smaller than the localization length.
This has been shown in our earlier study' of the tight-
binding model, where the site energies at a11 the sites are
uncorrelated (monomer model), by analyzing the detailed
form of the next-to-leading contribution to the rate of
variation of the wave functions.

The anomalies of ( yIv) ) for finite N at the special ener-
gies are the analog of the well-known Kappus-Wegner
and Derrida-Gardner anomalies of the inverse localiza-
tion length in the stationary (N~) limit. ' ' Their
detailed discussion for the dimer model, from Eq. (21), is
given in Sec. III. For intermediate energies where the
weak disorder expansion for ( ylv ) converges we shall ob-
tain the localization length from the stationary limit of
(21) for N~ ~.

C. Random trimer model

Here the sites n =1,2, 3, . . . in the disordered region
are grouped into triplets (1,2,3), (4,5,6), (7,8,9), . . . of
neighboring sites in succession, with the three members
of a triplet having the same site energy in any realization.
Again the site energies on distinct triplets are assumed to
be identically (continuously) distributed independent ran-
dom variables described by correlation (2).

At present one has to distinguish between three cases
in determining g"' and the inhomogeneous term I in
the recursion relation for g' ': the case where m is an in-
teger multiple (k +1) of 3, and the cases m =3k +2 and
m =3k+1. By decomposing the summation in (13) in
terms of these three types of terms one obtains for the
average of yI(,

) in (17), e.g., for N =3M + 1,

M 1 —1

( ~(2) ) —
I (3M + 1)

—1 y a3I y (( I )a —(3k+1)+ ( I )
—(3k+2)+ ( I )

—3(k+1))
1=0 k =0

M
a3!—1 ( I )a —(3l —1)+ ( I )a

—(3!—2)

1=1

1 —2

(( P )a —(3k+1)+ ( P )
—(3k+2)+ ( I )

—3(k+1))
k=0

M
a 3l —2 ( I )a —(3I —2)

1=1
1 —2

( ( I )a —(3k+1)+ ( I )
—(3k+2)

k=0

+(r3(k+1) &a '"+") (24a)
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By separating out the term k =l —1 in the summand of the first double sum in the curly bracket of (24a) the expressions
for &y3~), &y33r, ) may be conveniently written as

M —1

&y(" )=[1+(3M) ']&) ( ' ) i—(3M) 'a g (&I' „,)a "k+"+&I,„,) ""+"+&I )a "'+")
k=0

(24b)

and

&y',",) =[1—(3M)-']-'&y'," )

i—(3M —1) '
& I 3M —i)+a & I'3~

M —2
+a 3M —1 y ( & I )a

—(3k+1)+
& I )a —(3k+2)+

& I )a —3(k+1))
k=0

(24c)

Here the explicit expression of I M obtained from (15), (12), and (2) is

1+a (a +3)5m 3k+3+a (a + l)(a +2a +3)5~ 3(k+i)

(1+a)(1+a+a ) p 6/,+ , 3k+ 1 +~,3k+2+ ~,3(k +1))
a(a —1)

(25)

By inserting (25) in (24a) and performing the geometric sums we obtain, after various rearrangements and reductions
of terms,

2

&y(333'r+, ) = — ~ M[2+a+a +(1+a)(1+6a+3a +a )]2(3M+1)

+ (1+4a+9a +4a +a )(SM() —M)
a 1

a 1+a +a+ ' '
', [aS") —(a +1)S")+M]

(a —1)
(26a)

From a discussion analogous to that presented for the dimer model one concludes from (26a) that distinct types of
anomalous behavior for & yIv') exist near the following band energies:

77E =0 q =—,E =+2 (q =O, m), E =+v'3 Sm
q = (27)

and

m 2mE=+1 q =—,3' 3

which correspond to the solutions of

a =(a —1)(a +a+1)(a —a+1)=l,
at which S~' in (26a) grows linearly with M. Again the expressions for & @3M+ i ) at these energies discussed in Sec. III
are valid in the metallic domain while the corresponding expression for intermediate energies remains valid up to
N~ ~, thus defining the localization length. Note that in arriving at (26a) we have exactly cancelled a denominator,
1 —a+a (with zeros at E =+~3), which appeared, in particular, as an extra denominator in terms involving the
anomalous sum SM(). The absence of such an extra denominator in (26a) shows that an enhancement of the anomaly at
E =+v 3, which would be expected from this denominator, does not exist.

Finally we turn to Eqs. (24b) and (24c) where, by using (25), we obtain successively
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~}3M } [1+(3M} ](Y3M+) &

2

+ a +' a (a +4a +9a +4a +1)S' '+
6M M

2 2(1+a +a ) (S' ' —S' ')
(a —l)(l —a+a )

(26b)

and

( (2) ) — ( (2) )Y3M —1
1 (3M)

—1 }3M

E'OQ
2

+ a (a +4a +9a +4a+1)S' ' +a (a+1)(1+a+a ) S' '
2(3M —1) M —1 M —1

22 3M —1

+ (1+a+a ) a (S(3),+S(:3))+1+4 + 2

(a —l)(1—a+a )
(26c)

which will be analyzed in detail at the special energies (27) in Sec. III.

D. Random dimer-monomer model

Finally, we consider a simple alternative trimerization model where we define a triplet unit composed of a dimer and
of a neighboring isolated site which fluctuates independently of the dimer and of the sites of neighboring triplets. Thus
we arrange the site of the sequence n =1,2, 3,4, . . . into independent units [(1,2},3], [(4,5),6], [(7,8),9], . . . where the
constituent sites of the dimer of a given triplet are chosen to have the same site energy, while the remaining site of the
triplet has an energy which fluctuates independently from that of the dimer to which it is associated. More simply, this
model may thus be referred to as a random system of alternating independent dimers and monomers.

In the present case Eq. (12}has three possible forms which may be combined in the following expression:

[(hk +sk }(5,3k+1+5,3k+2}

where
+( k+1+ k)5n, 3(k+))+en —1a 5n, 3k+2] (29)

k —1

(a
—(3p+1)+a —(3p+2))~ ~3p+1 a

p=0
k

Sk g 63pa
p=1

(30)

(31)

The explicit form of I obtained from (15), (29)—(31) and (2) may be written, after some calculations, in the rather com-
pact form

l E'O

(I ) = (a+a (a+3)5 3k+2+(a +1)a [[(1+a) +a ]Sk '[5 3k+1+5 3k+2]

+[(1+a) Sk+,'+a Sk ']5 3(k+))]) (32)

and the form of the rates of exponential variation of wave functions at the three distinct types of sites N »1 are de6ned
by (24a) —(24c). Thus by evaluating the various summations over (I' } in Eq. (24a) using (32) and (22) one obtains,
with some patience,

&r3('M+) &
=— 2

a(1+a +a )[M +au(SM' —M)]

+a (a +1) (1+3a +a )M+a u (SM' —M)+aM — (a~+a2+2a +1)Ma (a+1)
a 1

2
+ (a +4a +a+1)(SM' —M) —(a+1)u [(a +l)SM' —SM' —a M]

+1
[(a +1)(a +a '+3)SM'a' —1

—(a +2a +a +1)(a +1)SM' —(a+a '+3}M] (33)
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where

1 2au= 1+
a —1 a4+a2+1 (34)

From the form of (33}it follows that, like for the random
trimer model, one expects anomalous behavior for
( y3M+, ) in the vicinity of the special energies (27) corre-
sponding to the solutions of (28). Furthermore, due to
the occurrence of terms with a denominator a —1 multi-
plying the anomalous quantities SM' and SM' in (33), one
generally expects more pronounced anomalies than in the
corresponding expression (26a) for the trimer model.
Some detailed results are presented in Sec. III. Since the
differences between the forms of (y(N') for the three
types of sites 3M + 1, 3M, and 3M —1 have already been
investigated for the trimer model [Eqs. (26a) —(26c)], we
refrain from discussing here the analogous but more
cumbersome} expressions for (y3M) and (y3M () for
the monomer-dimer model. Their analysis, along with
other details, are deferred to a later more technical publi-
cation. '

model, the localization length is larger than in the corre-
sponding monomer model except at the four intermediate
energy values, E =++2+~2, at which they coincide.
The enhancement of the localization length in the dimer
case is a consequence of the reduced disorder as a result
of the dimer correlation. The dimer correlation also
leads to a nonvanishing imaginary part (37) in (y' ')
which describes a modification of the Bloch phase (3) due
to the disorder. The above discussion for intermediate
energies remains valid for finite N »1 to leading order in
N ' since, as recalled earlier, our weak disorder expan-
sion is defined for all X in this case.

We now turn to the discussion of the form of (yN') at
the special energies given by (23), restricting to the
domain of finite 1«N &g for which the weak disorder
expansion is nondivergent. ' At the band center E =0
(q =n./2) we substitute the values a = —1 and
SM'=SM'=M in (21) which readily yields the real expres-
sion

2 2

( )=—fi(2&
~o 1

5yN 4 N2M 4 1+(2M) ) N2M+1

III. DETAILED RESULTS E=O. (39)

A. Dimer model

We first analyze (21) at energies sufficiently far away
from the edges and from the center of the band (4). For
N ~~ we then obtain

&y'")= lim (yN")=-
&~ Oo

boa (1+a) +0
2(a —1)

where, by using (4) and (14), we obtain

~2+ 2

Re&y' '&=
4

2

Im& y"'
&
= — '

sin2q .
8

(36)

The Eq. (36) may be compared with the weak disorder re-
sult for the inverse localization length for completely un-
correlated site energies (monomer model), namely

2

( (2))—
2(4—E )

(38)

first derived by Thouless. It follows that, in the dimer

In this section we analyze the detailed form of the ex-
ponential rates of variation of wave function amplitudes
at a distance 1V from the edge site, for the three models of
correlated site energies defined in Sec. II. For intermedi-
ate energies the weak disorder expansions for (yN') con-
verge to a stationary limit for X»1, from which we ob-
tain the localization length. On the other hand, in study-
ing anomalies of (y'N') at finite distances N »1 we re-
strict for simplicity to expressions right at the special en-
ergies above, although the general results of Sec. II per-
mit, of course, their study (with additional effort) in small
neighborhoods of these energies. These further details
are also deferred to the later paper. '

Note that (39) differs quite drastically from the extrapola-
tion of (36) to the band center, i.e., ( y' ') =0. In particu-
lar (39) implies that, as a result of the site-energy correla-
tions, the wave function at a given dimer unit at a short
distance from the edge site is composed of a dominant ex-
ponentially large part at the even site and a correspond-
ing exponentially small part at the odd site.

At the special energies E =6+2 (q =m/4, 3m. /4) we
obtain (y(N') for sites N =2M+1 by substituting the
values a =hi, SM'=M, and SM'= —,'[1—( —1) ]. At th
even sites the indeterminacy at a = —1 which is present
in the last term of the curly bracket in (21) must first be
removed (by means of power series expansion in the
neighborhood of a = —1). In this way we obtain succes-
sively

2

(y2M ) =—(I+2i)— (I+3i)[1—( —1) ], (40a)

p2

( (2) ) 0 1+ *& (I ( 1)M)
4 1+(2M)-'

E =+&2, (40b)

where expressions with the upper sign apply for E =&2
and those with the lower sign for E = —V2. We note
that at the distances of interest (N »1) the real parts of
the expressions (40a) and (40b) for the two types of sites
differ only by terms of 0 (1/M), unlike the corresponding
expression (39) at the band center.

Finally, we study the form of (yN') at the band edges
(a =1), where the whole expression (21) is indeterminate
due to the overall factor (a —1) . From an expansion
of (21) to leading order in small deviations from the value
a = 1, we obtain the following results in final form:
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4@if 9
1 +

3 8M 16M2 (41a)

& }'zM+ i &

4eo M~
1+1+(2M}

1

16M

8=+2 . (41b)

Apart from the strong length dependence of these rates
their most remarkable feature is their negative sign,
which implies a phenomenon of antilocalization at short
distances at the band edges: at these energies an incident
Bloch wave at the edge site of the semi-infinite disordered
chain decreases exponentially as it penetrates inside the
chain. This is to be contrasted, e.g. , with the positive

I

value of (yIv'} for finite N at intermediate energies at
which the wave functions thus tend to localize away from
the edge in the interior of the disordered chain. Negative
rates of variation of the wave functions at the band edges,
depending quadratically on the distance, have been found
previously for completely uncorrelated Gaussian site en-
ergies. ' Finally we also note that, to leading order in
N ', the rates (y&') at the even and odd sites of a given
dimer coincide.

B. Trirner model

In this case the rates of exponential variation of wave
functions are given, for the various types of sites, by
(26a)-(26c). For intermediate energies we consider the
asymptotic limit (N ~ Do ) of these expressions given by

6'OQ

(y' '}=— 2+a+a +(1+a)(1+6a+3a +a )
6

2 2a(1+a+a ) a (1+4 +9 2+4 3+ 4)
(a —l)~ a —1

whose real and imaginary parts are easily obtained, using (14), e.g.,
2

Re ( y' ' ) = ——[2 cos2q +cos4q +cos6q +7 cos8q +9 cos10q +4 cos12q +cos14q
6

+ (4 sin q) '(cos12q +3 coslOq +5 cos8q —5 cos6q

—3cos4q —cos2q)+(4sin q) (cos12q —2cos6q+1)],

(42)

(43)

which defines the inverse localization length at the above
intermediate energies. The rates Re(y' ') and Im(y' ')
are plotted as functions of the energy band wave number
in Figs. 1 and 2. Figure 1 shows several remarkable
features.

(i) The trimer model leads to six delocalized states cor-

responding to zeros of Re(y' ') which are symmetrically
placed at q =0.15m, 0.26m, 0.43m., 0.57m., 0.74m, 0.85m,
well in the domains of intermediate energies.

(ii) The energies of the delocalized states separate
domains of positive values of Re( y' ' }, which corre-
spond to true localized states, from domains where

4
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FIG. 1. Reduced inverse localization length vs the pure band
energy for the 1D random trimer lattice in contact with an or-
dered lattice.

FIG. 2. Imaginary part of the Lyapunov exponent vs the
pure band energy for the 1D random trimer lattice in contact
with an ordered lattice.
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Re(y' ') is negative, which we refer to as domains of an-
tilocalized states. The antilocalized states correspond to
incident Bloch waves which decrease exponentially away
from the edge site towards the interior of the disordered
chain. From Fig. 1 it would appear that both types of
states (localized and antilocalized) are present in numbers
of order N in the energy band, although a more precise
statement on their relative distribution would require a
study of the density of states.

(iii) From the discussion of Sec. II it is clear that (43) is
invalid near the special energies (27) where the weak dis-
order expansion ceases to be valid for X~~. Thus the
extrapolations of (43) at the special energies (27) shown in
Fig. 1 are of interest only as reference values for measur-
ing the relative importance of the anomalies of (yIv')
(for finite N) at the special energies studied below. We
recall that Eq. (43) for intermediate energies is valid to
leading order at finite N»1. Figure 2 reveals an in-
teresting antisymmetric variation across the energy band
(4) of the additional phase of the wave functions induced
by the disorder.

We now study the anomalous forms of (yIv') for finite
distances N at the special energies (27), by explicitly
evaluating (26a) —(26c). At the band center they are
readily obtained by inserting the values a = —1,
S~'= —,'[1—( —1) ], and S~'=1. Similarly, their evalua-
tion at the energies E =+1 just requires inserting the
solutions a+ =

—,'( —1+iv 3) (where the upper and lower
signs correspond to E =1 and to —1, respectively) of
a +a+1=0, for which a =1 and hence SM'=SM'=M.
On the other hand, the determination of the rates (yP~ )
and (y~&~ &) at the energies E =++3 corresponding to
the solution a + =

—,
'

( 1+i&3 ) requires expanding the
numerator in the quantity (S~' —S~~ ')/(a —a+1) to
linear order near a =a+, in order to remove its indeter-

I

2

(44a)

(44b)

2

~'"-' =12 — ' 2M['+ '
12 1 —(3M)

2

( (z) )
1 eo i~. 3

1+(3M)

E=0, (44c)

(45a)

2

(y )=—1+,(~) eo Q3
3M (45b)

eo 1 t 3&3
4M

(1+i&3)

(45c)

where the upper sign corresponds to E =1 and the lower
sign to E = —1 and

minacy at a+. The remaining terms in (26b) and (26c) as
well as (26a) are evaluated at E =4&3 by inserting the
values a =—'(1&i&3), S~ =

—,
' [1—( —1) ], (a = —1),

and S~'=M. Finally, we obtain (yIv') at the band
edges, by inserting the values a = 1 and SM'=SM'=M in
(26a) —(26c) after. performing the necessary power series
expansions near a = 1 in order to remove indeterminacies
at a =1. This leads successively to the following anoma-
lous rates at the energies (27), at finite distances:

g2
&y',",)= ' 1+ [1—( —1) ]12 1+(3M) ~ 2M'

2

(yg~+() = I 3+i 5&3 +(1 5+i 11&3) [1—( —1) ]12 1+(3M) 2M
(46a)

( ' ' ) = [1+(3M) ']( ' ' )+i eo 1+ [1—( —1) ] (46b)

&y',",) =[1—(3M)-']&)'," )

i2&3 eo ( —1) 5 i &3
3 1 —(3M) ~ M SM 3

where the upper sign corresponds to the results for E = —V 3 and the lower sign to those for E =V3, and finally

2

1+(3M) ' 2M 6M'

g2

(y ' ) =[1+(3M) '](y' ', )+—9M+
2 3

(46c)

(47a)

(47b)

2

(y' ' )=[1—(3M) '](y' ' )+— 9M ———
3M —1

1 —(3M)
13

3M
(47c)

at the band edges E=+2.
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The above results lead to the following general observations.
(i) At the band center the rates of localization of wave functions at finite distance are the same, to leading order in

, for the three sites of a trimer, unlike in the case of dimer correlations. They are quite different from the extrapo-
lated value obtained from (43).

(ii) At the special energies E =+1 the real parts of the rates of variation of the wave functions are different for the
three sites of a trimer while being equal at the energies E =kv'3.

(iii) At the band edges the rates are negative and vary quadratically with X for N » 1, like in the dimer case. As dis-
cussed in Sec. IIIA, this implies antilocalization of the wave functions at the band edges, at nonasymptotic length
scales. Note also that, to leading order in N, these negative rates are the same for the three types of sites.

C. Monomer-dimer model

The explicit analysis of (33) in the asymptotic domain, for intermediate energies is analogous to that for the random
trimer model above. For energies which differ from the special values (27) we have ~a~ ( 1 in which case we obtain to
leading order

EOQ
2

(y' ')= — a +Sa +5a+3—
6

2 2

2a +8a +7a +3+
a —1 g~+g2+1

(a +3a +2a —1)
(u —1)' (48)

after some analytical manipulations aimed at cancelling the unpleasant denominators, a —1, as much as possible. The
real part of ( y' ') is of special interest since it defines the inverse localization length. Its explicit expression is

E()
Re ( y' ' ) = ——cos8q + 5 cos6q +5 cos4q + 3 cos2q

6

1+
2 2 cos10q +6 cos8q —cos6q 4 cos4q

4sin q

cos8q —cos6q +cos4q —2 cos2q + 1—3 cos2q+2
1+4cos4q +4cos 4q

1+ (cos12q +cos1Oq —3 cos8q —2 cos6q +4 cos4q —cos2q)
16sin q

(49)

which is plotted in Fig. 3. For completeness sake we also
display Im( y" ' } in Fig. 4. An interesting feature of the
results of Fig. 3 is the fact that, except for the neighbor-
hood of the special energies E =+V3, (q =sr/6, 5m/6)
(where our weak disorder results are anyway invalid for
N ~~ ) they are remarkably similar to those obtained in

I

Fig. 1 for the trimer model. Indeed Re{y' ') has six
zeros corresponding to extended states at the wave num-
bers q =0.19m., q =0.31m, q =0.44m. , q =0.56~,
q =0.69m, and q =0.81~, which are qualitatively similar
to those corresponding to extended states in the trimer
model. Again the energies of the extended states separate
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FIG. 3. Same as Fig. 1 for the 1D random dimer-monomer
lattice.

FIG. 4. Same as Fig. 2 for the 1D random dimer-Inonomer
lattice.
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domains where all states are localized from domains
where they are all antilocalized. Apart from the
differences between Figs. 1 and 3 in the vicinity of the
values E =+~3, the most significant qualitative
difference seems to be that the states in the central region
of the energy band are localized for the random
monomer-dimer model while being antilocalized for the
random trimer model.

The discussion of the rate of wave-function variation at
finite distances, Eq. (33), for special energies (27) is simple
only for the band center. In this case the analysis is the
same as for the trimer model and we obtain

g2
I+ [I—( —1) j12 1+(3M)-' 2M '

E =0, (50)

which difFers from (44a} only by the sign of the second
term in the bracket. At each one of the other special en-
ergies (27) several terms in (33) are indeterminate and
their treatment requires rather lengthy algebra. These re-
sults will be discussed in our later publication along with
the study of the rates (y&') at the other sites (N =3M
and N =3M —1} of a monomer-dimer unit and that of
their energy dependences in neighborhoods of the special
energies. '

IV. CONCLUDING REMARKS

In this paper we have studied the inhuence on one-
dimensional (1D) localization of simple correlations of
the random tight-binding site energies associated with
various multimer systems in contact with an ordered lat-
tice. While previous work on 1D random dimer models
has been restricted to a discrete double-valued distribu-
tion of site energies we have considered the general case
of a continuous distribution.

We have calculated localization lengths at intermediate
energies of the pure system's energy band, i.e., energies
away from the special values (23) and (27) for the random
dimer model and for the random trimer and dimer-
monomer models, respectively. At these energies all
eigenstates are localized for the random dimer model
while, both for the random trimer and for the random
dimer-monomer models we have found six delocalized
states. More importantly, the delocalized states are
found to separate energy domains corresponding to two
distinct types of localized states: the usual localized
states centered at sites in the interior of the disordered
chain and a new type of states which are localized at the
contact with the nondisordered lattice, which we have
called antilocalized states.

The above results for the inverse localization length for
weak disorder (i.e., random site energies small compared
to the nearest-neighbor hopping rate) cannot be directly
compared with the results of Dunlap et al. for a random
dimer model defined from a binary alloy lattice with ran-
domly distributed constituents having fixed energies ez
and e~. The random alloy model closest to our lattice
with Cxaussian site energies fluctuating weakly about an
ordered energy level (at E =0), would correspond to the

case of arbitrarily small energy differences, e„—e~, for
the constituents, e.g. , ez =w, ez= —w, w~0, where
both e~ and e~ would be assigned to lattice sites with
probabilities of —,

' (equiconcentrated alloy). In this case
E'g and ez could indeed be viewed as small fIuctuations
(with a vanishing mean) about a fictitious nondisordered
atomic level at E =0. This random alloy lattice should
further be in contact with an ordered semi-infinite lattice
with site energies a=0 (rather than with an ordered
parent alloy lattice with alternating site energies e~ and
e~). Clearly the weak disorder expansion in powers of
site-energy Auctuations applied to this random alloy
model, generalized to include the dimer correlations of
Sec. II, could not reveal the now familiar delocalization
of states for Pnite large values of the site energies
difference, namely e„—ez=+2V, where V is the con-
stant nearest-neighbor hopping rate. We recall that the
purpose of this paper was to present an analysis of the lo-
calization problem (and of delocalization of states, in par-
ticular) specifically for weakly disordered multimer mod-
els in contact with an ordered lattice, using a method
akin to the familiar weak disorder expansions for Ander-
son localization in the case of uncorrelated random site
energies (see Ref. 1 and references therein).

Another remark concerns the existence of different
types of random dimer and trimer models. In Sec. II, we
have restricted ourselves to models in which the random
site energies are individually assigned to pairs or triplets
of lattice sites in succession. It seems reasonable to as-
sume that randomness in these systems (which divide up
into independent fluctuating unit cells with two sites per
cell) is maximal with respect to cases where only a frac-
tion of the sites are grouped into pairs whose constituent
nearest-neighbor sites are assigned common energies fluc-
tuating independently from one pair to another, while the
remaining sites are assigned independently fluctuating en-
ergies. Our random dimer-monomer model which leads
to delocalized states at energies corresponding to
localization-antilocalization transitions (Fig. 3) is a spe-
cial model of this type. The appearance of localization-
antilocalization transitions and of associated delocalized
states might, in fact, be expected to be a common feature
of these generalized dimer models, which would contrast
with the simple dimer model of Sec. II, where all states
are localized. In this context we also recall that in the
random dimer model of Dunlap et al. delocalized states
have been found numerically in the case where one of the
two site energies (Fz or e~) is assigned at random to
pairs of lattice sites, as well as in the case where both site
energies are individually assigned to pairs of sites in suc-
cession.

The antilocalized states are expected to play a special
role, e.g., in the study of the electrical noise associated
with the scattering of electrons by the surface of a disor-
dered conductor. Here the overlap of incident electrons
with Anderson localized states near the surface of the
conductor causes random delays in the electron back-
scattering, leading to a low-frequency current fluctuation
noise. ' '

We have also studied the rates of exponential variation
of the site wave functions at the above special energies for
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finite distances from the edge site. As discussed earlier'
for the monomer model (i.e., for completely uncorrelated
site energies) these results may be used for discussing the
resistance of metallic samples of length X «g (localiza-
tion length). Indeed, the Landauer formula' relates the
resistance to the transmission coefficient & ~ tz ~

& which in

turn is expected to be given by

& it~i'&-exp[ —2iRe&y„&iX] .
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