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Electronic excitations produced by deep-level promotion during atomic collisions in solids
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Expressions have been derived for electron-energy distributions of electrons excited in solids by one-
electron core-level promotion processes during low-energy ion bombardment. Excitation occurs either
due to the well-known autoionization of a promoted level or due to the excitation of electrons from oc-
cupied conduction-band states by a process indirectly mediated by core-level promotion. These expres-
sions have been applied to evaluate electron-energy spectra of bombarded Al metal. As an example, two
Al atoms in Al metal that collide with a kinetic energy of 1000 eV give rise to a one-electron energy
spectrum which extends beyond the 2p Auger peak energy (a=54 eV) and which can be described ap-
proximately by an exponential dependence exp( —e/10).

INTR GDUCTION

The interaction of localized electronic levels with a
continuum of levels plays a crucial role in a variety of
physical processes, which include the interaction of ad-
sorbed atoms with solid surfaces, ' the scattering of ions
from surfaces, and the autoionization of molecules. '

The theoretical description of a localized level-continuum
interaction has been discussed in the literature from vari-
ous points of view, particularly in connection with the
solution of the dynamic Anderson-Newns Hamiltonian
for resonant neutralization and ionization of atoms at
metal surfaces, where for specific cases analytical solu-
tions of the Hamiltonian have been found.

In this paper we wish to discuss the application of the
theory to the problem of electronic excitation produced
by deep-level promotion during atomic collisions in
solids. It is well established that this excitation can be
described in terms of electronic transitions in the quasi-
molecule formed transiently during the collision. The
electronic states of the quasimolecule can be reasonably
well approximated by one-electron molecular orbitals
(MO's). Some of these orbitals can be promoted to higher
energies due to the competing effect of the increased nu-
clear charge in the quasimolecule with decreasing inter-
nuclear distance and of the increase in kinetic energy of
the electron caused by its increased localization. The
promoted localized molecular orbitals interact with the
continuum of the conduction-band electrons and with the
continuum states in vacuum. Due to the dynamics of the
interaction between the promoted MO (which plays the
role of the localized level) and the continuum of levels,
the excitation of electrons takes place with possible sub-
sequent electron emission [one-electron kinetic electron
emission (KEE) induced by the level promotion]. More-
over, the promoted MO's may create a hole in the core
levels of one of the colliding atoms. The hole can then be

neutralized by a conventional two-electron Auger process
or by processes involving more electrons. All these one-,
two-, and multiple-electron excitations contribute to the
energy distribution of emitted electrons, and it is difficult
to disentangle individual contributions experimentally.
One of the aims of this paper is to provide a theoretical
description of the electron-energy distributions in KEE,
which are due to one-electron promotion processes only.
Part of the analysis has been already carried out before in
a simplified version. ' In this paper we first formulate
the problem of the localized level-continuum interaction
quite generally, pointing out in detail various approxima-
tions leading to analytical formulas. The resulting ex-
pressions for the energy distributions due to one-electron
excitation will then be applied to a specific problem,
namely, to the energy distribution of electrons excited in
binary collisions of Al atoms in Al metal due to 2p-2s Al
core-level promotion.

THEGRETICAL DESCRIPTIGN

We will describe a system consisting of a continuum of
states and a set of localized levels, which interact time
dependently with the states of the continuum. The sys-
tem is described by the time-dependent Hamiltonian
H(t) having the general characteristic that
H( —00)=H(+ ~). We assume that the total time-
dependent wave function P(t) can be expressed as a linear
combination of a suitably truncated set of continuum
wave functions gk and by a set of localized wave func-
tions g/

/t/(t) =pa/, (t)q/, (t)+ pa/(t)tt//(t) .
k I

We further assume that the self-energies ek of the states
in the continuum are time independent and that Pk(t)
and g/(t) are orthogonal at any time, i.e.,
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& P, (t) IH(t) leak(t) & =~k,

& p, (t)lg, (t) & =&„,
&q(t)ly (t)&=0,

(2)

(3)

(4)

aa, (t)
i —e&(t)a&(t)

Bt

&y, (t)ly, (t) &=&/, (t)lH(t)lq, (t) &=0, (5)

g&(t) are obtained by diagonalizing the Hamiltonian K(t)
at any time t within the basis formed only of localized
functions. Therefore,

Because of the orthogonality relations (3) and (4) it can be
easily shown that the matrix elements in square brackets
in (8) and (9) are Hermitian. To simplify the notation we
will denote the elements in the square brackets as follows:

where 1&l'.
The self-energy coresponding to g&(t) is time depen-

dent, thus

&q (t)IH(t)ly (t) &=~ (t) .

The total time-dependent wave function P(t) must satisfy
the Schrodinger equation (in a.u. )

~4k
&Okl~ltk'& ~(4k &'kk &k&'

at

& Pk I~1k&k &
—

k(k&k ~
—&'kt& t& .

Equations (8) and (9) can then be rewritten as

Gkak(t) —g Vkk (t}ak (t)

(10)

i =H (t)P(t) .
&}1

(7)
k'

+g Vk((t}a((t),
1

(12)

A.s usual we substitute (1) into (7), and, using relations
(2)—(6), we obtain the following set of equations for a&(t)
and ak(t) [we drop the explicit notation of the time
dependence of fk(t), p&(t), and H(t)]:

&3ak(t)
~k k(t}at

&}aI(t)
i Et(t)ar—(t) =g Vrk(t)ak(t) .

at k
(13)

(14)

It should be stressed that except for ek all quantities in
(12) and (13) are time dependent. Equations (12) and (13)
can be further simplified using the following substitution

a„(t)=c„(t)exp i —e„(r)dr
=X &gklHI&k & t gk

— a, (t)
k' ai

a@,+g &pklHI&(& —i gk ~
a((t),

I at
(8)

or, when e„ is time independent,

a„(t)=c„(t)exp( i e„t) . — (15)

After substituting (14}and (15) into (12) and (13) we get

dck(t) t
i =QVkk(t)exp[i(ek —ek )t]ck.(t)+QVkI(t)exp i ekt —f eI(r)dr c((t),Bt I 00

Bc((t}
i =QVtk(t) exp i ekt —f —e&(r)dr ck(t) .

k 00

If we neglect the existence of the localized levels (g& ), the system of equations (16) and (17) reduces to

BCk~
i =g Vkk. (t) exp[i(ek —ek )t]ck,(t) .

k'

(16)

(17)

(18)

These are the equations for excitations in the continuum of levels, that are mostly responsible for electronic energy
losses of moving particles in solids. When the "slowness" approximation is introduced, we obtain

ck(t) =ck( —~ )+ —.g dr exp[i (e'k ek. H]Tkk. (r)ck.( ——~ ). ,
l k' 00

(19)

where Tkk is the T matrix for the valence electron k —A.
" scattering caused by the perturbing potential V. In the Qrst

Born approximation the matrix Tkk becomes equal to Vkk. Physical consequences of this scattering process are dis-
cussed in Ref. 8.

In the next step we neglect direct k —k' interaction [thus we put Vkk (t) =0 in (16)] and assume, for simplicity, that
only one localized level I is relevant in the excitation process. Thus,
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dck(t)

Bt

Oct(t)

t—iV„,(t) exp i e„t — e, (r)dr c((t),

i—+V k(t) exp —i okt — e&(r)dr ck(t) .
k

(20)

(21)

From (20) we obtain

c„(t)= i— dr Vk, (r}exp i ekr —f e&(r')dr' c&(r)+ck{—~) .

When (22) is substituted in (21) we get

ac, (t)
Bt

= —g V&k(t) f dr Vk&(r) exp i ek(r t) —f—'e~(r')dr' c&(r)
00

ig V—&k(t) exp i E—kt — e&(r)dr ck( ~ ) .
k oo

(23)

The matrix elements V&k ( t) depend upon the wave vector k. To take this dependence into account would, however,
complicate the calculation and does not seem to yield physically new results. Thus in the next section we will neglect
the k dependence, and we will replace V&k(t) by an averaged value V, (t) The.n instead of summing we integrate over the
continuum, i.e.,

g= fp(e„)de„.

Consequently (23) can be rewritten as

a l I= —V&(t) f dr V& (r)f dekp(ek) exp irk(r t) i f—e~(r—')dr' c&(r)
00 t

i V&(t)f—dekp(ek ) exp iekt +i f ' et—(r)dr ck( —oo ) . (25)

In the first term on the right-hand side of (25) we can integrate over ek. The integral over Ek is the Fourier transform of
the density of states

f dekp(ek ) exp[ irk(t ——r)]=F(t 1)— (26)

The 6rst term can then be written as

—V&(t) f dr V& (r)F(t —r) exp —f e&(r')dr' c&(r) .
00

(27)

The value of F(t r) is essentia—lly zero when t —r is greater than the inverse of the electronic bandwidth bE (band-
width of the continuum} of the solid, i.e., if It rl & 1/b, E—. As we assume that both V&(t) and e&{t)do not change much
within the time 1/b, E, we can use the "slowness" approximation and in (27) introduce the following approximate rela-
tions:

V, (r)= V,(t),
exp —f et(r')dr' =exp[ i e&(r)(r t)—]—
ct(r) =c,«) .

Thus, (27) can be rewritten as a product of c&(t) and of
—

I V((t)I'f drF{t r) exp[is, (r)(t ——r)]=
I
V((t)l'K(t)

where we have introduced the notation

K(t)= f drF(t r) exp[i@,(r)(t —r—)]

(29)

(30)

Equation {29) is the generalization of the formula for the virtual linewidth often used in solid-adsorbate studies. In
those studies the adsorbate is characterized by the energy e&(t) of the adsorbate virtual level, which lies always within
the electronic band of the solid and the band is assumed to be very wide. The electronic density of states p(ek ) can then
be well approximated by a constant value at E=6( denoted by p(e& ) and (26}yields
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F(t r—) =2~p(e, )5(t —~) .

When (31) is substituted into (30) we obtain

K(t)=~p(eI ),
and (29) simplifies to

m~Vi(t)i p(ei)=h(ei, t),

(31)

(32)

(33)

where 2b, (ei, t) is the linewidth of the virtual level described by gi.
To obtain the general solution for ci(t) we will keep (29) in its general form and resort to the approximate expression

(33) for semiqualitative studies. We now substitute (29) in the first term on the right-hand side of (25). Further, we will
assume that the initial conditions are such that only one ck( —00 ) is equal to 1; the other ck( —~ ) are equal to zero.
Then (25) can be written as

dc, (t)
Bt

= —~Vi(t)~ K(t)cr(t) iVI(t)—exp iek—t+i f ei(r)d1 ck( 00) . (34)

This is a standard first-order di6'erential equation, which can be solved in a closed form. The solution is

c&(t)= i e—xp i f e&(~')dr' f d~ V&(r) exp f ~
V&(v')

~

K(~')d~' i ok—r+i f el(~')d~' ck( —~ )
oo oo

+c&( —oo) exp —f ~
V&(r) K(~)d~

It is important to realize that (35) together with (22) give all the information on cI(t) and ck(t) that are needed. The re-
sults depend only upon the initial conditions. If we are interested, for example, in the probability that the localized lev-
el, originally situated below the Fermi level, is occupied by a hole at the end of the process (i.e., at t = 00 ) we should in-
terpret ~c„(t)~

as the probability that the state f„ is occupied by a hole. The initial conditions in (35) are now such that
c&(

—oo ) =0 (i.e., the localized level is originally occupied by an electron, thus the hole occupation probability of the
state gi at t = —00 is zero). Only the states gk above the Fermi energy are occupied by holes, i.e., ck( —00 ) = 1 for one
of those levels. The total probability P& of the hole occupancy of the state QI at t =+ ~ is obtained by squaring (35)
and summing over all unoccupied states, i.e.,

lci( ~ )I'
Ikl) lkpl

= f p«k) f d~ Vi(~) exp f I
Vi(r')I'K(r')dr' ie„r+i f—ei(r')d&'

QO QO QO

(36)

If we are interested in the probability that a state gk above the Fermi energy is occupied by an electron at t =+ oo,
we must use (22) and substitute for ci(r) from (35). Because the state gk is originally (at t = —ao) unoccupied by an
electron, ck( —oo ) in (22) must be equal to zero. By substituting (35) into (22) we have thus only two contributions. The
first contribution is due to direct electron excitation from the localized level, provided it is occupied by an electron at
t = —~ [c&( —~ )=1]. Then the probability that an electron will be excited from f& into the unoccupied Pk by this
process is

~c„(00)~ = f dv V;(~)exp i e„~—f e&(~')d~' exp —f ~V&(r')~ K(r')dr' (37)

Naturally (37) and (36) are closely related. It should also be noted that (37) is essentially equivalent to the formula
describing the autoionization of quasimolecules in atomic collision physics. The introduction of (K~) enables us to de-
scribe the continuum boundary (the bottom of the conduction band is normally neglected in atomic quasimolecular
studies).

The second contribution results from electrons that are transferred from occupied states fk below the Fermi level to
the originally unoccupied state gk above the Fermi level via the interaction with the localized state g&. Since the pro-
cess is entirely analogous to the process of a direct excitation (19) from fk. into fk due to the matrix Vkk. it must be pos-
sible using the slowness approximation to cast the final formulation of this process into a similar form by the use of a T
matrix.

This can be shown if we substitute (35) [with c&( —~ ) =0] into (22). We should keep in mind that ck( —00 ) in (35)
corresponds to an occupied state gk below the Fermi level and thus is equal to one. We obtain

+ oo

ck ( oo ) — f d'r Vi (r) exp[i ( Ek'r) ]
gl gl

X f d~" V&(~") exp f ~

VI(v'")~ K(~"')dr"' iek r"+i f e&(r—'")d~'" ck.( —~ ) .
oo 1 1

(38)
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This complex expression for the transfer of an electron from fk. into gk can be considerably simplified if we assume
that the localized level always lies within the conduction band and that the virtual linewidth h(t) of the level is always
such that e&(t) and Vi(t) do not change much within the time 1/h(t). These are the essential conditions for application
of the slowness approximation as discussed in connection with Eqs. (27)—(29}.The only difference in this case is that the
limiting time is given by the inverse of the virtual linewidth rather than by the inverse bandwidth.

First, we introduce the virtual linewidth b, (t) of f& by using (32) for IC (t) in (38). Secondly, in the spirit of the slow-
ness approximation [see (28)], we replace Vi(r") in (38) by V&(r) and the integral j e&(r"')d~"' by ei(r)(r" r)—Th. en
we can integrate in (38) the integral over r" and obtain

exp[i (ek ek, )—r]
ck( ~ )= —f dr~ Vs(r)~ . . ck.(

—oo ) .
b, (e&, r) irk.—+i e, (r)

(39)

When we compare (39) and (19) we can immediately identify the T matrix for the process of excitation from gk into Pk
via fi, namely, '

( Vi(eI, r)
~

7kk'(r)= .
& ~(&i,r) +&k &i(r—)

The probability of excitation from occupied orbitals ~k') into the empty orbital ~k ) is then equal to

(40)

(41)

In summary, we can say that there are basically four
difFerent processes that lead to excitation of electrons due
to a time-dependent perturbing potential V(t}. The first
is described by (19) and requires nonzero matrix elements
of V(t) between the delocalized states gk, i e , Vi,I, (t.)%. 0.
This process is essentially equivalent to the classical
particle-electron collision mechanism. The second pro-
cess, described by (37), is due to a direct electron transfer
from the uppermost quasimolecule level into the empty
states and is known as a quasimolecular ionization (or au-
toionization). The matrix element of V between the
quasimolecular state gi and the gk states must be
nonzero, i.e., Vik(t}%0. The third process, described by
(41), again requires nonzero V&k matrix elements. An
electron is transferred in this process from an occupied
fk state into the empty but previously occupied gi state
and subsequently from P& into an empty tfik state.
Though it is of second order in Vjk, the contribution of
this mechanism to the electron excitation is considerable,
particularly at high electron kinetic energies. Finally the
fourth process, which was not described in this paper,
would require both VIk and Vkk to be nonzero and would
depend on the cross product VIk V«. . The analysis of this
mechanism has not yet been carried out.

Except for the first process, which is equivalent to a
particle-electron collisional excitation, the three remain-
ing processes depend critically upon the promotion of the
antibonding quasimolecular orbital. The energy of this
level, which we have previously denoted by eI, and the
energies of other quasimolecular levels are plotted as a
function of the interatomic distance R in correlation dia-
grams. A typical p-level promotion in a symmetrical col-
lision is illustrated in the correlation diagram of Fig. 1.
The maximum energy (OE) to which a promoted level is
shifted depends on the impact energy (IE), which in turn
determines the distance of closest approach, i.e.,
R, & R, & R „ for corresponding energies IE3 & IE2

l

& IEI, as shown in Fig. 1.
Core-level binding energies are a function of the

specific atomic configuration and can vary over a large
range of energies. Some metal atoms in solids for exam-
ple have localized 2p and 3p orbitals, where the 2p bind-
ing energy may be hundreds of eV, while the 3p energy
may be only tens of eV. Here it may be possible to col-
lisionally promote the 3p level to a fairly high molecular
orbital (in, say, a 5-keV collision), which can ionize and
produce kinetic secondary electrons with energies of
perhaps hundreds of eV. In such cases it may be unlikely

LU
C)

0-
CD

OE

LLJ

I I I

RI RI RI
3 i 2l 1 t

FICz. 1. The part of the correlation diagram that shows the
promotion of p levels in an atomic binary collision. R denotes
the interatomic distance; R„denotes the distance of closest ap-
proach for a given impact energy. The vacuum level is indicat-
ed by 0 and the highest orbital energy for a given R„by OE„.
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that the 2p level also will be excited (in a 5-keV collision)
to such high energies. We illustrate such a two-level
(2p, 3p) case in Fig. 1, where at R 3 {the distance of closest
approach for a given impact energy) only the 3p level can
be excited into the continuum. Therefore the considera-
tion of invoking only one localized level as used here in
our theoretical analysis is usually justified. In the next
section we will illustrate the conclusions reached in this
chapter by analyzing collisional excitations in Al metal as
an example. Al atoms have only one deep level (2p),
which can be promoted, and thus the quasimolecular or-
bital scheme is rather simple.

APPLICATION TO AI UMINUM

We apply the analysis of the preceding section to the
problem of one-electron excitation in aluminum metal
during violent binary collisions of Al atoms. The role of
the localized level is, as discussed above, in this case
played by the highest antibonding orbital formed by the
core levels of the transient Al-Al quasimolecule. As in
the preceding section, the energy of the level is denoted
by e& and the interaction matrix element between the lo-
calized level and a level ~k } in the continuum is denoted
by V&, which is the value of Vk& averaged over k.

A similar problem has been treated previously using
the numerical solution of the dynamical problem in
which an incomplete set of localized functions (i.e., the ls
level has been neglected) was used. The inclusion of
this 1s level in the analysis does significantly inhuence the
"fastness" of the promotion process and thus the dynam-
ics of the excitation process at higher collision energies.

The Hamiltonian H(t), which describes the collision,
depends upon the electron coordinate r and upon the in-
teratomic separation D (t) of the two colliding atoms, i.e.,
we can write H(t) =H(r, D (t) ). As in Ref. 7, the Hamil-
tonian H(r, D(t)) has been chosen as follows: We adopt
the picture of the free-electron model for the states in the
conduction band of the solid (metal), so that 1(z are the

I

V;(r) = [(N —1)l —Z]/r,
where

(42}

I =1—Q(r) (43)

with

0( r) =

[(pig�)

[exp(gr) —1]+1] (44)

where N is the total number of electrons in the atom (or
ion) plus one electron, which is calculated; Z is the nu-
clear charge. The parameters g and g are found for the
given Z and N in Refs. 10. To the potential (42) one must
add the potential of the (Z N+1) co—nduction elec-
trons. When the conduction electrons are homogeneous-
ly distributed within a sphere of the radius R, this addi-
tional potential is equal to

3(Z —N+1) 1 r
2R, 3 R,

Z —N+1
for r&R, .

T

The total potential is then

2

for r &R, ,

(45)

free-electron wave functions. The two colliding atoms in
the solid are represented by properly screened atomic po-
tentials. Specifically we have used for ion cores the
independent-particle-model (IPM) potential of Green,
Sellin, and Zachor' screened by free electrons. The for-
mation of adiabatic quasimolecular levels for various in-
teratomic distances has been described by the variable-
screening model of Eichler and Wille. " The effective
single-electron potential is, in this model, obtained by
smoothly interpolating the screening parameters of the
IPM potentials between the separate and united-atom
limits. This model allows us to calculate, with reasonable
precision, the wave functions and energies of deep levels,
in our case gt and e~ of the highest antibonding level.

The IPM potential (in a.u.} of an ion is assumed to
have the same form as in Ref. 7, i.e.,

Z (N —1)I —Z 3r(Z —N+ 1) 1 rV(r)= —. + 1 ——
T Z 2R, Z 3 R,

for r &R, ,

V{r)=0 for r )R, ,

which can be also written as

V(r) = — P(r, g, rt, R, Z, N), —Z
(47)

where P(r, g, r), R„Z,N) is the parametrical screening
function.

The radius R, can be calculated from the condition
that the electron density should be equal to the
conduction-electron density in the metal. To improve the
accuracy of the potential (46) we use R, as an additional
fitting parameter such that (46) satisfies the Friedel sum
rule It should b.e noted that the fitted potential (46) gives

the transport cross sections a, in close agreement with
the o., calculated using the best density-functional poten-
tials.

For the purpose of calculating molecular correlation
diagrams and wave functions, the variable screening mod-
el" can be very useful. This model is based on the idea
that the mutual screening of the atoms making up the
quasimolecule can be properly approximated by a spheri-
cal, but variable (as a function of the internuclear dis-
tance D) screening function. The electronic states of the
separated and the united atom may be generated to a
good approximation by phenomenological single-electron
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potentials V(r) =( Z—lr)P(r, a), which depend on sets of
parameters collectively described by a" and a"', respec-
tively. If we adopt the interpolation scheme"

sag2+ ua 2
jef a p

+p
(48)

2=where A, =3 and p; =2r; ID, we can expect that

V (ri, r2, D)= — P(ri, ai ) — P(r2, az )
eff (49)

will be a good approximation to the molecular single-
electron potential, where r& and r2 are the distances of
the electron from the nuclei.

For two colliding aluminum atoms, that in the united-
atom limit form an Fe atom the parameters are the fol-
lowing'

OJ

CL
~ -50
UJ

LU

-100—

2p

g"=3.544,
P'=2. 496,

R,"=3.5,
Z"=13
X"=11
g"'=4. 18,
g"'= 1.596,

R,"'=2.2,
Zua

N"'=24 .

(50)

For a given interatomic separation D, we can calculate
the energy levels e'1(D) and the wave function g (D) by
solving the Schrodinger equation

[ ——,'V + V' (r, , r2, D)]g, =e,g, . (51)

In order to solve (51) for the relevant energy levels (i.e.,
evels originating from 2s, 2p, and ls deep levels), we ex-

pand the wave function g& in terms of six basis functions
i), gz~~( 2), gz, (r, ), $2, (rz), f»(ri), and g„(r2)

and use simple orbitals (with distances in a.u. ), which, to-
gether with the potential (46), give the correct atomic en-
ergies:

=25. 14z exp( —6.5r ) +8.296z exp( —3.5r ),
$2, =6.4exp( —6.8r) —32r exp( —5.2r),

fatti, =23.72exp( —12r) .

(52)

The diagonalization of (51) yields energies of the Al-Al
quasimolecule. Of interest is the energy e& at various in-
teratomic distances D. The calculated e& as a function of
D are shown in Fig. 2. The inclusion of 1s orbitals in the
calculation causes the energy of the highest orbital to in-
crease monotonically with decreasing D and is important
for modeling high-energy excitations. The dependence of
e&(D) on D can be converted into a time-dependent e (t)

1 2 3
Al-Al INTERATOMIC DISTANCE (o.U. )

FIG. 2. The energies of 2p-2s levels of an Al-Al quasi-
molecule embedded in Al metal as a function of the interatomic
distance D. The energies are in electronvolts. The bottom of
the conduction band of Al is at e=O and the Fermi energy at
E'= 6'F = 11 eV. The energies of the quasimolecule have been cal-
culated with the use of the variable screening model (Ref. 11)
with potentials appropriate to Al atoms embedded in Al metal.

once the time dependence of D is known. We have calcu-
lated D(t) for head-on collisions at various center-of-
mass kinetic energies using the Moliere interatomic po-
tential. The resulting e& for Al-Al collisions at different
center-of-mass energies are shown in Fig. 3. Also shown
in the figure by a dotted line is the analytical approxima-
tion of e&(t) for 1000-eV impact, namely,

40
cosh(4. 7 )

(53)

This expression has been used here to numerically calcu-
late the excitations. In Fig. 2, in (53) and in all numerical
calculations we use electronvolts (eV) as the unit of ener-
gy and, correspondingly, for time we use (eV) ' with
fi= 1.

According to the analysis described in the previous
chapter, there are two contributions to the one-electron
excitations that are due to level promotion. One contri-
bution is given by (37) and represents a direct transfer of
one electron from the localized level into empty

b
~ ~ ~

states k . The second contribution is described by (38)
y its simplified version (39). The probability of excita-

tion into empty states
~
k ) due to (39) is given by (41) and

represents the probability of excitation, which is indirect-
ly mediated by the dynamics of the promoted level.

To estimate the energy distributions from (37) and
from (41) one needs to know the value of VI(t ), p(e), and
b, (e&, t). We have calculated V&k for various interatomic
distances D. The values of VIk vary from small values for
small k near the bottom of the band to large values ( ) 10
eV) for smaller D, the averaged value of V& being larger
for smaller D. In expression (33) both V& and p depend
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on e& and therefore on time. To include all these varia-
tions would involve a complicated numerical integration
and would not yield much new information. Thus we
choose to neglect the dependence of p on e and express
(37) and (41) only in terms of h(el(t)) and E&(t), where

I

eI(t) is calculated from (51) and the function b, (e) is an
adjustable function of e.

Within this approximation the relation (37) would give
the number n(ek ) of electrons excited in the energy inter-
val between ek and ek+dek as

nl(ek)= —f dr[6(r)]' exp irked i f—' e&(r')dr' exp ——f ' b(r')dr'
00 7T

2

(54)

Similarly one can simplify (41). The number nz(ek) of electrons excited between ek and ek+dek due to this second
process is then

nz(ek ) = +a) b,(e), r)
dek f d~ . exp[i(Ek Ek )r]—ao —ao lk EI, r+E'k. —E) 'r

(55)

The expression (55) can be still further simplified if we as-
sume that the virtual width 2b, is time independent dur-
ing the excitation process and that e&(r) can be approxi-
mated by a linear time dependence e&(r) =br+c, where b
and c are constants. Evaluation of the integrals in (55)
can be carried out analytically in this case, yielding

50

40

2h 2h
nz (ek) = exp — (e„—ez) (56)

To estimate the contributions of (54), (55), and (56), quan-
titatively we take for e&(t) the expression (53) and for h(t)
the same functional dependence on r rassuming essential-
ly that h(t) is proportional to e&(t)], i.e. ,

60
b,(t)=

cos(4. 7t)

The value of b, (t) at t =0 is an adjustable constant b,o,
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FIG. 3. The highest energy e& of the Al-Al quasimolecule
from Fig. 2 is plotted as a function of time for head-on collisions
with different center-of-mass kinetic energies (500, 700, 900, and
1000 eV). The distance dependence in Fig. 1 has been converted
into a time dependence using the Moliere potential. The unit of
time is eV ' (Pi=1) and t =0 corresponds to the distance of
closest approach. The analytical function (53) is indicated by a
dotted line, which approximately describes e&(t) in the interac-
tion region responsible for excitation and which is used in the
numerical calculation.
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FIG. 4. Distributions (in units of the number of excited elec-
trons per eV) of one-electron excitations obtained for 1000-eV
Al-Al collisions. The distributions were calculated from (54)
(full line), from (SS) (dashed line), from (56) with b =56 (dotted
line), and from (56) with b =103 (dashed dotted line). The
dashed line interpolates between the values (circles) calculated
numerically from (55).
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which we take equal to 10 eV in the actual numerical cal-
culation. The constant 6 in (56) can be obtained by sub-
stituting in (57) for t the time when et(t) crosses the Fer-
mi energy. The constant b can be obtained from the
derivative of (53} at t when e, (t} crosses the Fermi ener-
gy. This procedure yields b =56 eV and 6=3 eV. The
value of b can also be determined directly from the calcu-
alted et(t) in Fig. 3, and such a procedure gives b =103
eV.

The resulting n, (ek ), nz(ek ), and nz(ek ) for a collision
energy of 1000 eV are shown in Fig. 4. n~(ek) shows
characteristic oscillations due to interference effects.
Typically, n, (ek) decreases rapidly at energies ek higher
than the maximum value of el achieved during the col-
lision, whereas the distribution nz(ek ) spreads monotoni-
cally to higher values of ek.

As seen from Fig. 4, the simple analytical expression
(56) gives results practically equivalent to those obtained
numerically from (55} provided the same descriptions of
Et(t) and b, t(t) are used. In view of the uncertainties in
determining the constant b, the actual values of nz. (ek)
can lie between the dotted and dashed-dotted lines in Fig.
4

CONCLUSION

Expressions for electron excitation caused by the pro-
motion of electronic levels in bombarded solids have been
derived using a method developed for studying localized
level-continuum interactions. The necessary approxima-
tions have been discussed in detail. Two excitation pro-
cesses have been found to be important, i.e., the direct
electron transfer from the promoted level into empty
states (autoionization of the quasimolecule) and the exci-

tation from occupied levels into empty states mediated by
level promotion. The expressions for these processes
have been applied to estimate quantitatively electron ex-
citation and emission during binary atoxnic collisions in
Al metal. For this purpose the electronic levels of an A12
quasimolecule embedded in Al metal have been calculat-
ed with a method described previously, but now using a
larger set of localized wave functions. The calculated
dependence of the promoted level on the interatomic dis-
tance was the basis for evaluating the excitation probabil-
ities. For a center-of-mass kinetic energy of 1000 eV, it
was found that the tail of the calculated electron-energy
distribution extends beyond the energies of the 2p Auger
lines and can be described by exp( —ek/w), where w is
around 10 eV. In aluminum the intensity and energy dis-
tributions of the calculated one-electron excitation pro-
cess depend strongly upon the impact energy. The inten-
sity would be very small and the energy distribution very
narrow for center-of-mass kinetic energies below 700 eV.

The one-electron excitation formulas (54), (55), and (56)
appear to describe characteristic features of recently mea-
sured kinetic electron emission spectra from bombarded
Ge and Ga. ' They fail, however, to explain the extend-
ed, very slowly decaying energy-distribution tails report-
ed in Ref. 13, which are presumably caused by many-
electron processes.

ACKNOWLEDGMENTS

The authors thank Dr. K. Zd'ansky and Dr. K.
Franzreb for valuable discussions. The work was sup-
ported by U.S.-Czech Science and Technology Program
under Grant No. 92001 and by the Czech Academical
Grant No. 16757.

J. W. Gadzuk, Surf. Sci. 6, 133 (1967).
~A. Blandin, A. Nourtier, and D. W. Hone, J. Phys. 37, 369

(1976).
V. N. Ostrovsky and N. R. Toivonen, J. Phys. B 25, 2981

(1992);A. Niehaus, Phys. Rep. 186, 149 (1990).
4B. G. Krakow and E. S. Parilis, Sov. Phys. Usp. 32, 251 (1989).
5R. Brako and D. M. Newns, Surf. Sci. 108, 253 (1981).
G. Falcone and Z. Sroubek, Phys. Rev. B 38, 4989 (1988).

7Z. Sroubek and Cx. Falcone, in Ionization of Solids by Heavy
Particles, Proceedings of the NA TO Advanced Research
8'orkshop, Giardini-¹xos, Italy, 1992, edited by R. A. Bara-

giola (Plenum, New York, 1993).
G. Falcone and Z. Sroubek, Phys. Rev. B 39, 1999 (1989).
R. Brako and D. M. Newns, J. Phys. C 14, 3065 (1981).
A. E. S. Green, D. L. Sellin, and A. S. Zachor, Phys. Rev. 184,
1 (1969); R. H. Garray, C. H. Jackman, and A. E. Green,
Phys. Rev. A 12, 1144 (1975).
J. Eichler and U. Wille, Phys. Rev. A 11, 1973 (1975).
J. Fine, T. D. Andreadis, J. A. D. Matthew, K. Franzreb, and
Z. Sroubek (unpublished).
R. A. Baragiola, E. V. Alonso, A. Oliva, A. Bonanno, and F.
Xu, Phys. Rev. A 45, 5286 (1992).


