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Using first-principles interatomic potentials derived from generalized pseudopotential theory, high-
temperature solid-phase stability and melting in magnesium have been studied through a combination of
analytic statistical methods and molecular-dynamics simulation. Extending our previous work on the
hcp-bcc phase line in the solid below 1000 K [Phys. Rev. B 48, 13 253 (1993)],a complete and accurate
temperature-pressure phase diagram to 3500 K and 60 GPa has thereby been obtained. The rapidly
temperature-dependent hcp-bcc phase line in the solid is pr.=dieted to end in a triple point on the melting
curve near 1200 K and 4 GPa. Calculated melting properties at ambient pressure and the hcp-liquid
melt line to 4 GPa are in good agreement with existing experimental data. The high-pressure, high-
temperature hcp-bcc and bcc-liquid phase lines should be readily accessible to experimental investigation
via the laser-heated diamond-anvil cell.

I. INTRODUCTION

The calculation of temperature-pressure phase dia-
grams in elemental materials from basic quantum-
mechanical principles has been of long-standing interest
in condensed-matter theory. Central to this task for any
given material is the need for both an accurate and Aexi-
ble total-energy functional, E„,(R& Rz), which can
express the configuration dependence of the energy for an
arbitrary arrangement of the atoms. Modern density-
functional quantum mechanics in the local-density ap-
proximation' (LDA) has provided a practical first-
principles framework from which to proceed. At zero
temperature, self-consistent LDA electronic-band-
structure calculations of E„, can explain both the ob-
served structural trends at ambient pressure as well as
pressure-induced solid-solid phase transitions. In some
cases it has even been possible to accurately predict
high-pressure phase transitions prior to experiment, such
as the hcp ~ bcc transition near 50 GPa in magnesi-
um. ' More difBcult, however, is the temperature axis of
the phase diagram where the high symmetry of the zero-
temperature environment is lost. One effective strategy
in this regard has been to develop E„, systematically in
terms of transferable interatomic potentials which apply
equally to all phases of a material, both ordered and
disordered, including the liquid. %'ithin the framework
of LDA quantum mechanics, this has been done success-

fully for simple and transition metals alike via general-
ized pseudopotential theory ' (CxPT) by expanding E„,
in terms of weak pseudopotential and d-state matrix ele-
ments coupling different sites. These interatomic poten-
tials can then not only deal with the zero-temperature en-
ergetics and pressure-induced phase transitions, but they
can be used together with appropriate statistical mechan-
ics tools to treat temperature-induced solid-solid transi-
tions and melting as well. In the case of magnesium,
first-principles GPT potentials can accurately predict the
hcp ~ bcc phase transition at zero temperature. ' At
the same time, these potentials yield an excellent descrip-
tion of ground-state cohesive properties, phonons, and
thermodynamic properties, as was demonstrated in a re-
cent study of the temperature dependence of the hcp-bcc
phase line to 1000 K. The purpose of this paper is to ex-
tend the application of these potentials to the high-
temperature hcp, bcc, and liquid phases above 1000 K
and thereby obtain the entire temperature-pressure phase
diagram of magnesium below 3500 K and 60 GPa.

In addition to being a prototype case for theory, the
phase diagram of magnesium is of special interest from a
physical standpoint as well. Magnesium is the only ele-
ment on the left-hand side of the Periodic Table (columns
IA through VIB) which does not melt out of the bcc
structure at ambient pressure. As we demonstrated in
Ref. 6, the bcc structure is mechanically unstable at low
pressure with a negative C' shear elastic constant for
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atomic volumes Q&0.93Qo, where Qo is the observed
equilibrium volume. In this paper we show that, as a
consequence, the hcp-bcc phase line ends in a triple point
on the melting curve at about 4 GPa. Above that pres-
sure, magnesium behaves more similarly to other simple
metals with a close-packed low-temperature phase and a
high-temperature bcc phase stabilized by soft T& [110]
phonons.

Our primary statistical mechanics tools for treating
magnesium at finite temperature are quasiharmonic lat-
tice dynamics (QHLD), liquid variational perturbation
theory (VPT), and molecular-dynamics (MD) simula-
tion. In Ref. 6 we showed that the quasiharmonic ap-
proximation yields an accurate description of most prop-
erties of the high-temperature solid. In particular, anhar-
monic corrections to hcp and bcc free energies, as es-
timated from a standard cell model, ' were shown to have
a negligible impact on the hcp-bcc phase line even at
1000 K. In this paper, the smallness of anharmonic
effects is confirmed through direct molecular-dynamics
simulation, and we use quasiharmonic lattice dynamics
both to extend the hcp-bcc phase line to higher tempera-
ture and to provide solid free energies for melting. We
then employ variational perturbation theory based on an
r ' reference system to calculate corresponding liquid
free energies, so that a complete temperature-pressure
phase diagram can be calculated. This procedure is here
benchmarked by molecular dynamics through a detailed
study of melting out of the bcc structure near 30 GPa.

In Sec. II, we first briefly discuss our first-principles
GPT potentials for magnesium and the calculation of
thermodynamic functions using the baseline QHLD and
VPT techniques. Then in Sec. III, we elaborate our MD
simulations of melting and the benchmarking of our cal-
culational procedure for obtaining the phase diagram. In
Sec. IV, we present and discuss our calculated phase dia-
gram together with computed melting properties near
ambient pressure, which can be directly compared with
experiment. We conclude in Sec. V.

vz(r, Q) both depend on the atomic volume Q but are in-
dependent of structure and transferable to all bulk solid
and liquid phases. In the simple-metal limit, the pair po-
tential v2 takes the form of a screened Coulomb potential
given by

2

T o
"q'

q

where Z* is an effective valence and F& is a normalized
energy-wave-number characteristic given by Eq. (3) of
Ref. 6. These quantities are volume-dependent function-
als of the atomic component of the pseudopotential.
Both the volume term E„& and the pair potential vz can
be evaluated entirely from first principles with only the
atomic number (Z, =12) and valence (Z=2) as input.
The calculated behavior of U2(r, Q) for magnesium at four
equally spaced volumes is illustrated in Fig. 1. The gen-
eral energy scale of these potentials is 10 Ry and that
of structural-energy differences between solid phases,
with the magnitude of the first minimum less than 2
mRy. Note that the position of this minimum is almost
independent of volume but moves to positive energy un-
der sufhcient compression. As was discussed in Ref. 6,
this behavior is consistent with the high-pressure hcp ~
bcc phase transition. In contrast, the long-range oscilla-
tions of v2(r, Q) are strongly volume dependent and
asymptotically approach the familiar Friedel form
[U2 ~ sin(2k~r)/r ]. In applying these potentials, we cut
off the oscillatory tail of v2(r, Q) at r =8.25Rws for each
volume Q=4mR ~s /3, as was done in Ref. 6. Real-space
sums centered on a given ion then typically include
525 —550 nonzero near-neighbor interactions, which is
sufficient to maintain both accurate and smoothly varying
thermodynamic functions.

Free energies and other thermodynamics functions in
metals can be partitioned into zero-temperature, ion-
thermal, and electron-thermal contributions. Here the

II. FIRST-PRINCIPLES
INTERATOMIC POTENTIALS

AND THE CALCULATION
OF THERMODYNAMIC FUNCTIONS

Below about 100 GPa in pressure, magnesium is a good
nearly free-electron metal which is well described by the
simple-metal limit of the GPT, as discussed in Ref. 6. In
this limit a plane-wave basis is employed and the electron
density and total energy are expanded in terms of weak
nonlocal pseudopotential matrix elements. To second or-
der in the pseudopotential, the real-space total-energy
functional can be expressed as a large volume term plus a
smaller pairwise sum over a two-ion central-force intera-
tomic potential:
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where Q is the atomic volume, R;i = ~R; —RJ ~
is the dis-

tance between ions i and j, and the prime on the summa-
tion excludes the i =j term. The functions E„»(Q) and

FIG. 1. First-principles GPT interatomic potentials for mag-
nesium calculated at four equally spaced atomic volumes Q.
Here Qo is the observed equilibrium volume of 156.8 a.u.
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A „,(Q, T)=Eo(0)+3;,„(0,T), (3)

zero-temperature components of a given solid phase can
be obtained directly from Eq. (1) evaluated for the ap-
propriate crystal structure, while the ion-thermal com-
ponents, arising from ion motion, must be provided by
statistical mechanics. Electron-thermal components, on
the other hand, arising from the excitation of electrons
above the Fermi level Ez, are negligibly small in simple
metals like magnesium at the temperatures of interest for
the phase diagram. This is due both to the small, nearly
free-electron density of electronic states at Ez and the
fact that k~T (&Ez, where T is the melting tempera-
ture. Neglecting the electron-thermal contribution, the
Helmholtz free energy per ion of any given solid phase,
A, &, is then

where EO=E„,/N and 3;,„ is the corresponding ion-
thermal free energy. In general, A;,„will have both
quasiharmonic and anharmonic contributions. In our
baseline QHLD treatment, however, the latter is neglect-
ed entirely and the quasiharmonic contribution is calcu-
lated from the standard expression

2&,"„(Q,T)=ksT g ln[2sinh[hvi(q)/(2k&T)]] . (4)
q, A.

Here the phonon frequencies vi (q) are implicit functions
of volume and the sum is over all phonon wave vectors q
and branches A, in the first Brillouin zone of the lattice.
The required phonons in Eq. (4) can be calculated from
standard lattice-dynamics theory in terms of tangential
and radial force-constant functions, L, and E„which, in
turn, can be obtained analytically from Eq. (2):

1 Bu2(r, Q)
K, (r, Q):——

r 9r

F~(q, Q) rcos—(qr) dq
(Z e ) 2 ~ sin(qr)

r3 m o
(5)

=2 1 ——f F&(q, Q) [1—(qr) /2] —r cos(qr) dq
(Z e) 2 z sin(qr)

P' 7T 0 q
(6)

In this work Eqs (3) and (4) are applied to both the hcp and bcc phases of magnesium over a volume range
(1 23 & 0/Qo &0.44 with Qo= 156.8 a.u. ) and a temperature range 0 & T & 35OO K. As in Ref.

6 the c/a ratio for the hcp structure is fixed at 1.62, which approximately minimizes the hcp total energy at all
volumes. The resulting minimum-energy hcp phase is found to be mechanically stable with real phonon frequencies
over the entire volume range considered, while the bcc phase is stable only for volumes Q & 145.8 a.u. (0/'0 & p 93)
In evaluating the right-hand side of Eq. (4), we sample phonon frequencies at 252 and 124O q points in the irreducible
wedges of the hcp and bcc Brillouin zones, respectively.

As previous experience on aluminum and other simple metals"' has shown, an appropriate complement of QHLD
in the solid is VPT based on an r ' reference system for the liquid. In VPT an upper bound on the liquid free energy
per ion, A»z, is established by the rigorous Gibbs-Bogolyubov inequality:

2 i;q(0, T) & 3 i;q'"(0, T),
where

Ai~&q "(Q,T)=E„,i(0)+A«r(z)+(2n/0) f g„r(r,z)[u2(r, Q) u«r(r, z)]r dr—.
0

Here A „&, g„z, and U„& are the free energy, pair-
correlation function, and pair potential of the reference
system, where

u„r(r, z) =e(o /r)'

z=(cr /V20)(e/ksT)', and A„i(z) and g«r(r, z) are
known functions. At each volume and temperature of
interest, the variational parameter z can be chosen to
minimize the right-hand side of Eq. (8), so that in prac-
tice A&;~" becomes a very close upper bound to the true
liquid free energy A» . With the equal sign in Eq. (7)
thereby approximately satisfied, Eq. (8) is then applied to

I

obtain A&;z over the same volume range as in the solid
and a temperature range 500(T &3500 K. This is our
baseline treatment of the liquid.

In calculating solid and liquid pressures from the above
free energies, we have found it both convenient and use-
ful to incorporate one minor ad hoc modi6cation, which
normalizes the pressure scale, into our otherwise 6rst-
principles procedure. As in any LDA calculational
scheme, there is a small ofFset here between the calculated
and the observed equilibrium atomic volume Qo. In mag-
nesium with Eq. (1), Qo is overestimated by 4.2 a.u. or
2.7%, which corresponds to an overestimate in pressure
of 1.8 GPa at T=300 K. As we noted in Ref. 6, the



5612 JOHN A. MORIARTY AND J. D. ALTHOFF 51

equation of state is approximately corrected by subtract-
ing from it a pressure hP =1.8 GPa at all volumes and
temperatures. Formally, this can be accomplished in a
thermodynamically consistent manner by adding a term
EP(Q —Qo) to the volume term E„,I(Q), and in all appli-
cations of Eq. (1) below this has been done implicitly. At
high pressure, of course, this modification is of little
consequence. At low pressure, on the other hand, the
normalized pressure scale allows one to make compar-
isons with experiment at the correct atomic volumes,
which is important, for example, in analyzing melting
properties.

III. MQLECULAR-DYNAMICS SIMULATIONS

make an accurate determination of the mechanical melt-
ing point. This is found to be 2650+50 K which corre-
sponds to an average pressure of 31.3 GPa. Melting is in-
dicated by sharp increases in E;,„and P;,„as well as by
clear qualitative discontinuities in all structural proper-
ties. Figure 2 illustrates our calculated g (r) for magnesi-
um in the low-temperature bcc solid, near melting, and in

(a) bcc Mg:

500 K

1500 K

R, =F, /m —gR, ,

where F; the total force on ion i,

F;= —g'II. , (R,J,Q)R J,
J

(10)

with II., calculated from Eq. (5), and where the effective
friction coefficient g is given by

To examine the adequacy of our baseline QHLD treat-
ment of the solid and VPT treatment of the liquid, we
have performed MD simulations on magnesium over a
wide temperature range at a single compressed volume of
Q=113.3 a.u. , where the bcc structure is mechanically
stable and melting corresponds to a bcc —+ liquid phase
transition. In these simulations we have treated 1024
ions in a constant-Q, constant-T ensemble. Constant
volume Q is maintained by performing each simulation in
a cubic box with periodic boundary conditions applied to
the sides of the box. Constant temperature T is main-
tained with a Gaussian thermostat, ' ' which is intro-
duced through a friction term in modified Newtonian
equations of motion for the ions:
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Here the coupled equations of motion (10) are integrated
with a standard velocity-Verlet algorithm' using a time
step of approximately 1 X 10 ' sec (1 fsec).

The thermodynamic and structural properties of mag-
nesium have thereby been explored in the temperature
range 500( T (8000 K. Beginning at 500 K in the bcc
solid, we have moved upward in increments of AT=500
to 2500 K, where the increment has been reduced to 100
K through the melting transition. Once in the liquid,
data has been accumulated from 2400 to 3000 K at
AT=300 K, from 3000 to 4000 K at ET=500 K, and
from 4000 to 8000 K at ET=1000 K. In each simula-
tion, we begin with positions and scaled velocities for the
ions from a previously equilibrated run at the closest
nearby temperature. We then run 4000—8000 time steps
to establish a good thermodynamic equilibrium and an
additional 8000 time steps to gather statistics for the cal-
culation of thermal energies and pressures, E;,„and P;,„,
and various structural properties such as the pair correla-
tion function, g(r). In the vicinity of melting, the num-
ber of latter time steps has been increased to 40000 to

I
I

I

I

I

I

I

I

I

I

I

I

I

I
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FKx. 2. Pair correlation function, g(r), in solid and liquid
magnesium at Q=113.3 a.u. , as determined from the present
MD simulations: (a) in the bcc solid; (b) near melting; and (c) in
liquid.
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the high-temperature liquid. The loss of long-range order
in g (r) as one passes from 2600 to 2700 K is clearly evi-
dent in the figure.

The ion-thermal energy and pressure are calculated as:

anharmonic portion of the thermal energy in the bcc
solid, E,',"„, can be extracted from the MD data as
Ej Ej~ 3kg T and fit to the polynomial form

E;,„(Q,T)= (E„,) /N Eo—(Q) (13) E;,"„(Q, T)= —A q T 2A—i T 3A—q T (16)

and

P;,„(Q,T)= ( dE—to, /dQ ) /N+dEo(Q)/d Q, (14)

respectively, where ( ) denotes a thermal average
over the 1024-ion ensemble. Our MD results for these
quantities in both the bcc solid and the liquid are plotted
in Fig. 3. In the solid we find that E;,„and P;,„ indeed
remain very close to their high-temperature quasihar-
monic liinits of 3kir T and 3kir Ty /Q, respectively, where
y is the Griineisen parameter, which can be calculated
directly from the bcc phonons:

A;,"„(Q,T)= —TI [E;,"„(Q,T')/(T') ]dT'

=A2T +A~T +A4T (17)

The total solid free energy is obtained by simply adding
this result to Eqs. (3) and (4):

The expansion coefBcients A„, which in general are
volume dependent, are determined by making a least-
squares fit to the MD data. Equation (16) then can be
readily integrated to yield the corresponding anharmonic
component of the ion-thermal free energy:

r) ln[h v&(q)]
y(Q) = —(Q/3N)g

BQ
(15) A i(Q T) =Eo(Q)

+kz T g in[2 sinh[h v&(q)/(2kir T)]]
q, A,

+A2T +A~T +A4T (18)

In the liquid phase, the entire ion-thermal free energy,
A,",q„, can be obtained from the MD data, apart from an
additive constant. Specifically, the first line of Eq. (17) is
replaced by

A',q„(Q, T)/T

At Q=113.3 a.u. , we obtain y=1.317 from Eq. (15).
The corresponding quasiharmonic value of the Debye
temperature at this volume is calculated to be 509 K.

The thermal energies can also be used to obtain solid
and liquid free energies and an estimate of the equilibri-
um thermodynamic melting point implied by our MD
simulations. To do this we follow the general procedure
developed in Ref. 16 for a similar study on the melting
curve of molybdenum. We first note that the small

=Co(Q }/To —f [E;','q„(Q, T')/( T')2]dT',
0

(19)
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FIG. 3. Thermal energies and pressures, E;,„(0,T) and
P;,„(Q,T), in solid and liquid magnesium at A=113.3 a.u. , as
determined from the present MD simulations. Here the solid
points represent the actual MD data, while the dashed and dot-
dashed lines are polynomial fits to the data. The reference line
y = 1.317 is the quasiharmonic value of the Griineisen parame-
ter calculated from Eq. (15}.

where To is a reference temperature and
Co(Q}:—A',q„(Q, To). Allowing for an additional term
linear in T, the temperature dependence of E,",„can be
represented by a generalized expansion of the form

E,",q ( Q, T)=C, & C2 2C r 3C—v— —(20)

A i q(Q, T) =Eo(Q)+ Cov C is ln~+ C2r(~—1)—
+Cia(H 1)+Cqr(~— 1) . —(21)

It then remains to determine the single constant Co in
Eq. (21). This can be done very accurately using a tech-
nique developed by Boercker and Young based on ele-
ments of VPT. In addition to the usual upper bound on
Ai;„established by Eqs. (7) and (8), a corresponding lower
bound on the liquid free energy, A &;'",'zan be established
by interchanging the roles of the true and the reference
systems. This yields

Ai; (Q, T) ~ Aiq" (Q, T),
where

(22)

where w= T/To and where the expansion coefficients C„
C2, C~, and C4 are again determined from a least-squares
fit to the MD data. Using this result back in Eq. (19}and
adding a zero-temperature contribution, one thus obtains
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A& "(Q,T)=E„,r(Q)+A„r(z)+(2~IQ) J g(r)[U2(r, Q) —v„r(r, z)]r dr .
0

(23)

Here g (r) is the true pair-correlation function for uz and
in our case is directly determined from the MD simula-
tions. The variational parameter z can now be chosen to
maximize A& ", making it a close lower bound to Aj; .
At high temperature the range between A& "and A]pq"
becomes very narrow, so that an accurate value of A] q
can be calculated by taking the average

Ah (Q, T)= —,'[Ai "(Q, T)+Ai "(Q, T)] . (24)

A„i(Q, T )=Ar; (Q, T ) . (25)

We have evaluated Eq. (24) at a reference temperature of
To=4000 K and used the result in Eq. (21) to obtain
C0= —0. 19660 Ry. We have verified that 3» given by
Eq. (21) is basically insensitive to where Eq. (24) is evalu-
ated, by applying the latter at 8000 K and then integrat-
ing E',q„down to 4000 K via Eq. (19) to obtain
C0= —0. 19685 Ry. The resulting small uncertainty of
0.25 mRy leads to an uncertainty of about 30 K in the
melting temperature.

To finally calculate a thermodynamic melting point
from our MD data at a single atomic volume Q, we fol-
low a well-established procedure' which accurately ap-
proximates the rigorous common-tangent construction
between A„& and A]&q Specifically, we interpret 0 as the
average volume of melting and equate free energies from
Eqs. (18) and (21) to obtain a melting temperature T

The corresponding melting pressure is then calculated as
the average

P =
—,'[Psoi(Q, T )+Puq(Q, T )] . (26)

We thereby obtain T =2320 K at P =30.0 GPa, which
is about 15% lower in temperature than the mechanical
melting point observed in our MD simulations. The
difference can be attributed to the usual superheating of
the solid prior to melting occurring in direct mechanical
simulations. These MD values of T are compared with
the melting curve obtained from our baseline QHLD plus
VPT treatment in Fig. 4. The latter is based on a full
common-tangent construction, using Eqs. (3) and (4) for
the solid free energy and Eqs. (7) and (8) for the liquid
free energy, but we have also verified the accuracy of Eqs.
(25) and (26) in this context, as shown in Fig. 4. The
QHLD + VPT curve in this figure is seen to lie about
100 K or 4% above the MD free-energy point. We re-
gard this as a quite tolerable error, especially considering
the enormous computational simplification that our base-
line treatment provides. We have further noted that if an
anharmonic cell-model' contribution is included in the
solid free energy, this error is approximately halved, as
also shown in Fig. 4. Closer inspection, however, indi-
cates that the latter improvement is somewhat fortuitous.
In fact, anharmonic effects here are sufficiently small and
subtle that, other than their general magnitude, the cell
model does not appear to describe them accurately. For
this reason, we prefer the QHLD plus VPT treatment.
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FIG. 4. Calculated melting temperatures of magnesium near
30 GPa, as obtained from the present MD simulation studies
(solid square points) and the base1ine QHLD plus VPT treat-
ment (solid line and accompanying solid circular point) dis-
cussed in the text. The dot-dashed line result adds an anhar-
monic cell-model contribution to the baseline treatment. The
solid and dot-dashed lines have been derived from common-
tangent constructions between solid and liquid free energies,
while the lower three solid points have been calculated from
Eqs. (25) and (26) using data at a single atomic volume
(Q= 113.3 a.u. ).

Using the baseline solid and liquid free energies dis-
cussed above, the full phase diagram of magnesium has
been calculated to 3500 K in temperature and 60 GPa in
pressure. This result is plotted in Fig. 5 and compared
with existing experimental data on the hcp-bcc phase
boundary near 50 GPa from room-temperature
diamond-anvil-ce11 measurements and on the melting
curve below 4 GPa from early piston-cylinder measure-
ments. ' The agreement is seen to be very good in both
cases. The qualitative features of the calculated phase di-
agram are similar to those of the earlier semiempirical re-
sult of Pelissier, ' but quantitatively, the present phase di-
agram appears to be considerably more accurate. The
highly temperature dependent hcp-bcc phase line is here
predicted to end in a triple point on the melting curve at
1180 K and 4.3 GPa. The unusual dip in the hcp-bcc line
near the triple point is an artifact of the extreme softness
of T, [110]bcc phonons in this region and is a real pre-
diction of the theory. Below 4.3 GPa, the bcc structure
becomes mechanically unstable with the long-wavelength
T, [110]phonon modes calculated to be imaginary. This
behavior explains the well-known absence of a high-
temperature bcc phase in magnesium at ambient pres-
sure. It is also interesting to note that the rapid tempera-
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TABLE I. Melting properties of magnesium at zero pressure,
as calculated from the baseline QHLD plus VPT approach and
compared with experiment. Quantities and units: melting tem-
perature T in K; solid and liquid volumes 0„&and Q„ in a.u. ;
EQ= 0&;q

—Q„&,' latent heat L in mRy/atom; entropy change hS
in k&, melting-curve slope dT /dP in K/kbar; liquid specific
heat cp in kz,' and liquid sound speed v,""in km/sec.

00 10 20 30 40

Pressure {GPa}

50 eo

Quantity

T
Q„I
0&;q
hQ
L
b,S/k~
dT /dP

liq
S

Present theory

885
165.6
175.1

9.5
7.16
1.28
8.0
3.8
4.34

Experiment

922'
163.3b

171.3'
8 0b

6.82'
1.17'
74
3 9'
4.065'

FIG. 5. Temperature-pressure phase diagram of magnesium,
as obtained from the baseline QHLD plus VPT approach dis-
cussed in the text (solid lines). The solid point with error bars
represents the diamond-anvil-cell measurements of Ref. 4 for
the hcp —+ bcc transition, while the dots represent the experi-
mental melting curve of Ref. 18.

'Reference 20.
Inferred from Eq. (30) using the measured values of dT /dP

Tm, L, and 0);q.
'Reference 21.
Reference 18.

'Reference 22.

dT /dP = T b.Q/L, (30)
ture dependence of the hcp-bcc phase line implies that
there is a corresponding rapid tradeoff between the two
different physical mechanisms which stabilize the bcc
structure above this line at high and low temperature. At
low pressure and high temperature, the dominant stabil-
izing mechanism is the large entropy contribution to the
free energy produced by the soft bcc phonons. At high
pressure and low temperature, on the other hand, pho-
nons play no important role and the bcc structure is in-
stead stabilized by subtle electronic-structure effects con-
nected with sp ~d electron transfer. These latter effects
are embodied directly in the short-range part of the in-
teratomic potentials. '

Calculated melting properties at zero pressure are
given in Table I and compared with available experirnen-
tal data. '8' Included are the melting temperature
Tm; solid and liquid volumes, Q„& and Q]lq and the corre-
sponding volume change

hQ:—Q); —Q„),' (27)

the latent heat I and the corresponding entropy change

b,S=I./T (28)

the initial slope of the melting curve, dT /dP; the
constant-pressure specific heat in the liquid, c"q; and the
liquid sound speed

liq (gliq/ )1/2
Us s Puq (29)

where 8," and ph are the adiabatic bulk modulus and
the density, respectively, in the liquid. The experimental
values listed are directly measured quantities except for
Q, &

and EQ, which have been inferred from the
Clausius-Clapeyron relation

and for b,S, which has been inferred from Eq. (28). The
agreement between theory and experiment is within 10%
for all quantities considered except EQ, which is overes-
timated by about 19%.

V. CONCLUSIONS

In this work we have successfully combined first-
principles GPT interatomic potentials with quasiharmon-
ic lattice dynamics in the solid and with variational per-
turbation theory in the liquid to calculate a complete and
accurate temperature-pressure phase diagram for mag-
nesium. The validity of the latter statistical mechanics
tools for this application has been directly verified
through molecular-dynamics simulations. These simula-
tions confirm the smallness of anharmonic effects in the
bcc solid and demonstrate that the bcc-liquid melting
curve so obtained is accurate to about 4% for the given
potentials. The hcp-liquid portion of the melting curve
to 4 GPa and the hcp-bcc phase boundary near 50 GPa
and 300 K are in good agreement with existing experi-
rnental data, as are calculated melting properties at zero
pressure. The bcc-liquid portion of the melting curve,
the high-temperature portion of the hcp-bcc phase line,
and the hcp-bcc-liquid triple point near 1200 K and 4
GPa are predictions which await experimental investiga-
tion. These features of the phase diagram should all be
experimentally accessible through the laser-heated
diamond-anvil cell.

The success of our baseline QHLD plus VPT approach
in magnesium also confirms our earlier successful applica-
tions" ' of this type of approach to the equation of state
and high-pressure melting curves of aluminum and other
metals which are well described by first-principles OPT



5616 JOHN A. MORIARTY AND J. D. ALTHOFF 51

pair potentials. In none of the latter cases, however, has
the full temperature-pressure phase diagram been investi-
gated, although this would be of considerable interest. In
aluminum, for example, a rapid sequence of high-pressure
phase transitions, fcc ~ hcp ~ bcc, has been predicted
above 100 GPa at zero temperature, and one can expect
a correspondingly rich phase diagram at high tempera-
ture. We hope to investigate this and other interesting
cases in the future.
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