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Double-tip scanning tunneling microscope for surface analysis

Q. Niu, M. C. Chang, and C. K. Shih
Department ofPhysics, University of Texas, Austin, Texas 787I2

(Received 18 July 1994)

We explore the possibility of using a double-tip scanning tunneling microscope to probe the single-

electron Green function of a sample surface, and describe a few important applications: (1) probing con-
stant energy surfaces in k space by ballistic transport; (2) measuring scattering phase shifts of defects; (3)

observing the transition from ballistic to difFusive transport to localization; and (4) measuring inelastic
mean free paths.

The single-tip scanning tunneling microscope (STM)
has become a major tool for surface analysis. ' However,
its use has been limited to probing static properties of
electronic systems such as the local density of states on or
near sample surfaces. In addition, it lacks the k resolu-
tion to enable one to determine the energy dispersion in
band structures. Transport properties are also out of
reach of the single-tip STM, except for the ballistic-
energy-electron-microscope (BEEM) configuration used
to probe ballistic transport across a metal film. In this
paper, we explore the possibility of realizing a double-tip
STM, and describe a few important applications.

In a typical double-tip experiment, electrons are emit-
ted from one tip, and propagate through the sample,
some of which are picked up by the other tip. Naturally,
the propagator or the Green function of an electron in
the sample is involved. Since all single-particle properties
of the system can be derived from the Green function,
one expects that a lot more information about the sample
surface and nearby region can be learned from an experi-
ment using a pair of tips than from using a single tip.
Some important applications are as follows: (1) deducing
useful information about the band structure of surface
states, (2) measuring scattering phase shifts of surface de-
fects, (3) observing transition from ballistic to diffusive
transport to localization, and (4) measuring inelastic
mean free paths.

Shown in Fig. 1 is a schematic experimental setup.
The sample is assumed to be large enough to have a well-
defined chemical potential po. Voltages V& and Vz are
applied to the tips relative to the sample, and electric
currents II and I2 from the tips to the sample are mea-
sured. Like the BEEM, this is a three-terminal setup.
Unlike the BEEM, here the tip-sample separations, the
tip biases (Vl and V2), and the tip locations (ri and rz)
are controlled independently. Direct junction conduc-
tances at r, and r2 are defined as o.

, =8I,. /BV, , and are
given to leading order in the tunneling rate as

coherent tunneling of an electron from one tip to the oth-
er through the sample, which can be measured through
the transconductance defined by oz, —=BIz/BV, . The
transition rates can easily be accounted for by the Fermi
golden rule using second-order transition-matrix ele-
ments, yielding

2me
, =I,I iG( „;=p, )~ (2)
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where G(r„rz,'e)is the retarded Green function of the
sample for noninteracting electrons at zero temperature.

In the presence of electron-electron and/or electron-
phonon interactions in the sample, the Fermi golden rule
gives the same result if p, =pz and if the sample is nonsu-
perconducting. For p, Apz, four-point Green functions
of the sample are involved to account for the inelastic
scattering of the tunneling electrons. For a supercon-

27Teo;= I;p(r;,p;), S I
s 2

where p(r;, p, ) is the local density of states of the sample
at the chemical potential of tip i, and I; describes tip-
sample couplings as well as the density of states of the
tips (which are routinely .—.ieasured in single-tip STM ex-
periments). Up to order I iI z, there are also processes of

FIG. 1. Schematic diagram of the double-tip STM experimen-
tal setup. Tip 1 is biased at Vl and tip 2 at V& relative to the
sample. Il and I2 are also measured relative to the sample.
When pl )p2, I2 contains a transconductance component due to
the cotunneling process.
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ducting sample, Andreev processes can also contribute to
a transconductance within the same order. With the
direct conductance and transconductance measured at
p, =pz =p, one can thus obtain information about the re-
tarded Green function as shown below:

z 2~ez
~G(r&, rz, e=p)~ = p(r&, p)p(rz, p) .

0 )Oz
(3)

Since constant-current STM images trace constant con-
tours of the local density of states, the last two factors
can be treated as a normalization constant.

We next identify experimental parameters from which
such a measurement can be realized. As a second-order
process, it is clear that o.z, is a weak signal to detect. Tak-
ing BEEM as a reference, for a total tunneling current of
1 —10 nA, the detecting limit is about 0.1 —1 pA for bal-
listically transported electrons, corresponding to a factor
of 10 —10 . However, it is possible to utilize a fre-
quency lock-in amplifier to boost this limit to 10 —10
For the sake of argument, we set a conservative number
of 10 as a practical detection limit. Considering a sym-
metric setup such that o

&
=crz=o, from Eq. (3) one im-

mediately finds that cr &&/ois on. the order of (A'/2m. e )cr,
with additional factors determined by the ratio between
the Green function and local density of states. For a case
of ballistic transport through surface states (see below),
~G~ /p is approximately 2m/kr, where k is the wave
number at energy p, and r is the distance between the
tips. The closest tip-to-tip distance is determined by the
radius of curvature and the aspect ratio of the tips. Re-
cent advances of tip-fabrication techniques can reprodu-
cibly make high-aspect-ratio tips with a radius of curva-
ture on the order of 50—100 A. It is thus conceivable to
consider operating a double-tip STM in the range of a
300—1000-A tip-to-tip distance. This gives ~G~ /p on
the order of 1%.Since h /e =25 kQ, one can immediate-
ly identify the practical operation range of tunnel junc-
tion resistance to be on the order of 1 —10 MQ. For the
case of an anisotropic Fermi surface (as discussed below)
~G~ /p is on the order of unity in the same range of tip
to tip distance and the STM junction resistance can be as
large as 1 GQ. The most advantageous case is for a one-
dimensional structure, such as a fullerene nanotube, for
which ~G~ /p does not depend on distance at all and is
of order unity. In the following, we describe some of the
most important applications of the double-tip STM.

H,"'(kr) = —'
mkr

i (kr —m/4)e (4)

where k is the wave number, r = ~rz
—r, ~

is the tip-tip dis-
tance, and Ho" is a Hankel function of the first kind.
The right-hand side is valid in the asymptotic region
kr )&1, which is also the regime of our interest. There-
fore, the transconductance decreases inversely with r and

Ballistic transport and surface state band structure

Consider a situation where surface states play a dom-
inant role in electron transport. It is well known that the
Green function for two-dimensional (2D) free electrons is
given by

1/2

BE„B6„

Bkg

—1/2
1[~, '~~p r) ~ /4]

(5)
where k~~ and k~ are the components of k in the direc-
tions parallel and perpendicular to rz —r„respectively.
The partial derivatives are evaluated at the point k, on
the energy surface where the normal vector Be„/Bk
(group velocity) points in the direction of rz —r&. In the
following analysis we assume for simplicity that there is
only a single or single dominant k, .

Like the free-electron case, the transconductance has
an overall inverse r dependence. However, two interest-
ing new features appear for a crystal: (1) The transcon-
ductance is modulated by the magnitude squared of the
Bloch functions. (2) There is also an overall orientational
dependence from the factors involving the partial deriva-
tives of the band energy. In Fig. 2, the transconductance
for a square lattice is plotted at an energy close to a
nested-energy surface, showing an inverse r dependence
and a pronounced anisotropy. Bloch-function modulation
has been removed by averaging over a unit cell. Since the
critical point k, runs through the energy surface as one
changes the orientation of rz —r, , it is possible to recon-
struct the constant energy contour of the surface band
structure for the filled and empty states using the mapped
out

~
G~ . The oscillatory modulation of the transconduc-

tance should also tell us the shape of the Bloch waves for
each k, . The energy resolution of the tunneling measure-
ment is practically limited only by k~ T. Sub-meV resolu-
tion is routinely obtained. In comparison, angle-
resolved photoemission spectroscopy (ARPES) can map
out the k-dependent band structure only for the filled
states and its resolution is currently limited to about 15
meV both by the spectrometer and the photon source. A
fourth power dependence of the signal-to-noise ratio on
the demanded resolution makes it very difficult for
ARPES to achieve a finer energy resolution.

Phase shifts from a surface defect

One can move the tips near (but still far compared to
the wavelength) to a surface defect and observe how it
scatters the electrons by an interference effect. An elec-
tron may propagate freely from tip 1 to tip 2, or it may
propagate to the defect and be scattered to tip 2. The su-
perposition of these processes can give rise to a modula-
tion of

~ G~, when tip 2 is moved around relative to tip 1

and the defect. To illustrate the point, consider the 2D
free-electron model again. If the scattering is dominated
by the s-wave channel, the interference pattern will con-
sist of curves of constant path-length difference
r&+rz —r, where r; is the distance from the defect to tip
i. Clearly, these are hyperbolic curves, with the positions
of tip 1 and the defects being the two focal points. Quan-
titatively, we have

is isotropic. On an actual crystalline surface, the states
are Bloch waves e' 'u„k(r) with band energies e„(k). It
can be shown that for large kr, the Green function can be
approximated as

G (r~, rp', 6)= —iu„j, (r~ )u„*q (rq)
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where D is the diffusion constant. Here, we should em-
phasize that this formula only describes the overall trend;
statistical Auctuations can still persist in the diffusive re-
gime in the form of the so-called universal conductance
fluctuations. ' The average transconductance in this re-
gime should then behave as

(AD) 'E~(r /Dt, ),
where E&(X)=fx(dx/x)e " is the incomplete I func-

tion, and t, is a cutoff time beyond which elastic diffusive
behavior creases to occur. In the absence of inelastic
scattering, this cutoff time is given by I, /D, where I, is
the Anderson localization length. ' It is interesting to
see that the transconductance for r « l, behaves like
(rrD) 21n(l, /r). This slow falloff with distance is in

sharp contrast with the behavior in the ballistic regime.
Also, the angular dependence should go away for a sur-
face with square or hexagonal crystalline symmetry, be-
cause as a second-rank tensor, the diffusion coeKcient
cannot distinguish such point-group symmetries from full

isotropy. Finally, when r is beyond the localization
length, the Green function and the transconductance
should drop exponentially.

Inelastic mean free path

In the above discussions, we have ignored electron-
electron and electron-phonon interactions in order to
simplify the presentation. It is well known that the
single-particle Green function will acquire a self-energy
with an imaginary part as well as a real part due to such
interactions. ' The imaginary part pushes the poles of
the Green function off the real axis, yielding an exponen-
tial decay of the Green function in distance r = ~r2

—r, ~.

Physically, an electron tunneled in from tip 1 may lose
energy by exciting electron-hole pairs or emitting pho-
nons as it travels in the sample, and becomes unable to

tunnel out to tip 2. The typical length scale over which
such a process occurs defines the inelastic mean free path,
and is given by the decay length of the Green function.
Therefore, the inelastic mean free path and its energy
dependence may be measured by observing how the
transconductance decays with tip-tip distance, and how
the decay length varies with p —po. For p —

po above the
Debye energy (tens of meV, hot electrons), phonon emis-
sion dominates the inelastic processes. At lower energy
differences, electron-hole pair excitations become dom-
inant. In a Fermi liquid without disorder, the mean free
path goes as hE„UF/(p po)—Ad. ifferent energy depen-
dence has been predicted for non-Fermi-liquid systems.
The ability to measure the energy-dependent mean free
path using the double-tip method should have an impor-
tant impact on this issue.

Summary and discussion

Because a double-tip STM can probe the all important
single-article Green function of a sample, it has the po-
tential of becoming an extremely useful new tool in sur-
face analysis. We have identified key experimental param-
eters for such measurements. We have further described
some basic applications of a double-tip STM: (1) probing
the k-resolved band structure of surface states, as well as
the shape of Bloch functions; (2) measuring scattering
phase shifts or amplitude of surface defects; (3) observing
transition from ballistic to diffusive transport to localiza-
tion; and (4) measuring inelastic mean free paths.

Apart from these applications, one can consider apply-
ing a magnetic field to observe the cyclotronic motion of
electrons in the semiclassical regime, ' or to possibly
probe some properties of a quantum Hall system in a
strong magnetic field. ' One can also consider mapping
out the quasiparticle band structure of a superconductor
through ballistic transport or gap structure through An-
dreev rejections as proposed in Ref. 6.
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