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The time dispersion of the averaged conductance G(t) of a mesoscopic sample is calculated in the
long-time limit when ¢ is much larger than the diffusion traveling time tp. In this case the functional
integral in the effective supersymmetric field theory is determined by the saddle-point contribution.
If t is shorter than the inverse level spacing A (At/kE < 1), then G(t) decays as exp[—t/tp]. In
the ultra-long-time limit (At/#A > 1) the conductance G(t) is determined by the electron states
that are poorly connected with the outside leads. The probability to find such a state decreases
more slowly than any exponential funcion as t tends to infinity. It is worth mentioning that the
saddle-point equation looks very similar to the well known Eilenberger equation in the theory of

dirty superconductors.

We consider long-time relaxation phenomena in a dis-
ordered conductor that is attached to ideal leads. For
simplicity we assume that the electrons in this conductor
do not interact with each other, the temperature is zero
(T = 0) and there are no inelastic processes. The total
current I(t) at time ¢ depends upon the voltage according
to the Ohm law,

1) = /_ L WG - )V (e,

We are interested in the asymptotic form of the conduc-
tance G(t) as t — oo.

The same problem has been considered earlier by Alt-
shuler, Kravtsov, and Lerner! (AKL). Our initial goal
was to obtain their results by means of a more direct cal-
culation. At present, we can neither confirm nor disprove
the AKL results. We have found an intermediate range
of times, where the conductance G(t) decays more slowly
than it was predicted in Ref. 1. The AKL asymptote
could be valid at longer times (see discussion below).

There are three time scales in the problem.

(1) The mean-free time 7 = /v, where vy is the
Fermi velocity and ! is the mean-free path. This time
scale det(/ermines the dispersion of the Drude conductivity
oo ~ e /7,

(2) The time of diffusion through the sample tp =
L?/D, where D = [2/3r is the diffusion coefficient, and
L is the sample size.

(3) The inverse mean level spacing i/A = hvV, where

v is the density of states and V is the volume of the
sample.
In a macroscopic sample the inequality 7 < tp < Ai/A is
valid, provided that L >> [ and the disorder is weak. In-
deed, the product Atp is connected with the dimension-
less conductance of the sample g = 2wf/(tpA), which is
large for a weak disorder. The times tp and %/A enter
into time dispersion only due to quantum corrections to
conductivity.

At times t <« A/A an electron can be considered a
wave packet of many superimposed states propagating
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semiclassically. Therefore, it is natural to assume that
the conductance G(t) is proportional to the probability of
finding a Brownian trajectory that remains in the sample
for the time ¢t. For ¢ > tp such a probability decays as
exp [—t/tp]. Our calculations confirm this result.

In the opposite limit, for ¢ > A/A, the conductance
G(t) is proportional to the probability of finding an elec-
tron state with the lifetime ¢. In order to trap an electron
for a long time the state must be poorly connected with
the leads (nearly localized). We show that the probabil-
ity of finding such a state decays nonexponentially with
time. Namely, G(t) ~ exp [—glnz(tA)] for d = 1 and
G(t) ~ (tA)79 for d = 2. These results are not valid in
the very-long-time limit. We discuss this later together
with the question of dimensional crossover.

Instead of calculating the conductance as a function of
time, we could have worked in the frequency represen-
tation. In that way we would have found a singularity
in G(w) as w — 0. This singularity, however, does not
affect the value of the dc conductance and, therefore, has
an obscure physical meaning, while the time domain re-
sults have the direct interpretation.

Since the long-time asymptote corresponds to the rare
events when the electron is nearly trapped in the sample,
it is natural to use the saddle-point approximation. We
carry out the following program:

(1) We express the averaged conductance® as a func-
tional integral over supermatrices® (see Refs. 4 and 5 for
a review):

2

G(t) = Goe /™ + / Z—:—e_i“’t /DQ('/‘)P{Q} exp [—A4],
A= % /dr Str{D(VQ)? + 2iwAQ}. (1)

(2) We vary the action A with respect to Q, taking into
account the constraint Q2 = 1, and obtain the saddle-
point condition which recalls the diffusion limit of the
Eilenberger equation®

2DV(QVQ) + iw [A,Q] = 0. (2)
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(3) We derive the condition at the boundary with the
lead

Qllead =A. (3)

(4) We perform the integration over w in Eq. (1) and
obtain the self-consistency condition

dr 4tA
[ 5 su@) =~ (4)

h

which allows us to exclude w from Eq. (2).

(5) We substitute the solution of Eq. (2) with bound-
ary conditions (3) in Eq. (1) and obtain the results with
exponential accuracy.

The 8 x 8 supermatrix Q has commutative and anti-
commutative matrix elements. Since Q2 = 1 it can be
chosen in the form”:

_ —1 _ u 0
Q=V-lHY, V—(Ov),
COSé

10 isin@
= = ~ ~ 5
A (0 —1)’ H (—isinB —cosa)’ )

66 0 0 O
6 — 06, 00
0 0 ¢ 0
0 0 0 26

This decomposition allows us to present the action A
in the form

4= / dr Ste{D(VH)? + DM? + 2iwAH}, (6)

where M = [V71VV, H] The minimum action is
reached for V = const, and Eq. (6) may be expressed
in terms of 6 variables only,

a=" / dr{{D(V6)? — 2w cosh 6] (7)

+[D(V81)? + 2iw cos 6,]}.

Consequently, Eq. (2) has the form

DV?@ + iwsinh § = 0, (8a)
DV?0; + iwsinf; = 0. (8b)

The boundary condition (3) follows from the fact that @
does not fluctuate in the bulk electrodes, Q@ = A. Hence,
at the boundary with the ideal lead § = 6; = 0.8 The time
decay of the conductance G(t) ~ exp(—iwt) corresponds
to real and positive values of iw. The permitted values
of frequency w in Eq. (8b) are bounded from below by
the value wi ~ 1/tp, which corresponds to the linearized
form of Eq. (8b). For smaller frequencies w < wy, which
will turn out to be the only relevant ones, Eq. (8b) has
only trivial solutions #; = 0. Thus, the self-consistency
equation (4) has the form

/iiv—’f{cosha _1)= %. )

The solutions of Eq. (8a) depend on the sample geometry.
We start by considering a one-dimensional wire of length
L, attached to ideal leads at z = +L/2. If tA <« 1,
then, to satisfy the self-consistency condition (9) we must
choose § < 1. Therefore, Eq. (8a) can be linearized. The
solutions that satisfy the boundary conditions are

—im3n?

tp

0 = Ccos(mnz/L), w,= (10)
where n is an arbitrary integer. The above formula for
the frequency implies that in the discussed regime

2
G(t) ~ et = exp (—’—t’D—t) . (11)

To obtain this result we determine the amplitude C from
the linearized self-consistency equation, and then substi-
tute (10) into the action A.

For arbitrary times Egs. (8a) and (9) in dimensionless
coordinates have the form

a6 4% z
2T 3 sinh§ =0, =z A (12)
1/2 At
/ dz[coshf — 1] = =, ~% = 2iwtp. (13)
—1/2 wh

The solution of (12) is symmetric 8(z) = 6(—z), and in
the region z > 0 is given by the quadrature:

1 [% do’
o / , (14)
7 Jo(z) VcoshBy — cosh ¢
1
00=0(0)=21nl+2lnln; for y < 1. (15)
v

The function 6(z) is almost linear § = 6o(1 — 2|z|)
everywhere except in the region |z|] < 1/In(1/v) « 1.
Substituting Eq. (14) into Egs. (9) and (1) we get

w = —2t£ In %, G(t) ~ exp [—gln2 %] . (16)

As mentioned earlier, the contribution from the indi-
vidual nearly localized states dominates in G(t) when-
ever tA/h > 1. The square modulus of the wave func-
tion for such a state |¥|% equals coshf. As we can see,
this value decays exponentially towards the leads, where
|¥(z = £L/2)|*> = coshf(+1/2) = 1. Because of the
latter condition, the current through the wire is equal
to unity. Therefore, the escape time t is proportional
to the normalization integral. This is exactly what is
stated in the self-consistency condition (13) for § > 1.
To summarize, the wave function is localized in the region
|z| <« & < L with the localization length § = L/In(tA/R)
and the probability to find such a state is given by
Eq. (16). For very long times, when £ becomes less than
the transverse size of the sample, the one-dimensional
regime crosses over to a two- or three-dimensional one.

In the two-dimensional case we consider a mesoscopic
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disk of radius R surrounded by a well conducting elec-
trode. The Laplacian operator in Eq. (8) is now two
dimensional and the boundary condition is (R) = 0 at
the circumference of the disk. It is natural to assume
that the minimal action corresponds to 6 that depends
on the radius only and, therefore, obeys the equation

0" +6'/z + iwtpsinh6 =0, 6(1) =0, (17)

where z = r/R and tp = R%/D.
For t « A/A, Eq. (17) can be linearized. Its solution
is the Bessel function

0= CJ()(’)’Z), 7 = Vwip = Hns

where pu, denotes the nth zero of the Bessel function.
The conductance is

it
G(t) ~ exp (—’—:—11;—) , tp <t< K/A. (18)

For a long-time tail £ > A/A, the nonlinear term in
Eq. (17) is large near the origin and can be neglected
elsewhere. As a result,

0(z) = Cln% (19)

for all but very small z. On the other hand, for z < 1,
the parameter 6 is large and sinh§ = e%/2. With this
approximation the solution of Eq. (17) can be found®
having the asymptote

4
g(z)=_0(0)+61n2+ln?+4ln§, (20)

for v « z < 1. Comparing with Eq. (19), we have 6(0) =
61n2 + In(4/~?) and C = 4. To calculate the integral in
the self-consistency equation

At !
3 :/0 {cosh8(z) — 1}zdz (21)

we multiply Eq. (17) by z, integrate in the limits 0 and
1, and obtain

1
z—

1
+ iwtp / sinh 6(z)zdz = 0. (22)
dz °

0

Since 6(0) > 1, we neglect the difference between the
integrals in Egs. (21) and (22), and with asymptote (19)
finally get iw = 4g/t. The action A is dominated by the
contribution of the tail (19)

tA B\
_ ~ Y 23
A=4gln ey G (At) (23)

The characteristic size of the averaged 2D wave function
is ¢ = YR = R(h/tA)/2. The crossover to a 3D case oc-
curs when £ becomes comparable with the film thickness.

The consideration of the 3D case makes relevant the
question of the validity of the diffusion approximation.
As before, we consider a disordered drop of radius R sur-

rounded by a well conducting lead. Analogously to what
has been done in the 2D case, the function 6 depends on
the radius r only and obeys Eq. (8a), where the Laplace
operator is substituted by its 3D radial component. The
boundary condition is (r = R) = 0. The analysis of the
linear regime is similar to that for 1D and 2D cases and
gives for tp = R?/D < t < h/A,

A = 7m%t/tp, G(t) ~ exp(—m2t/tp). (24)

The nonlinear in 6 regime leads to the equation

2

g—}-%% + iwtpsinh§ = 0, z:%. (25)
The analysis of this equation shows that the permitted
values of w are larger than a certain value wy > 0, and
that the integral in Eq. (9) remains finite even for the
solutions of Eq. (25) with (r = 0) — oco. As a result,
the self-consistency equation cannot be satisfied for suf-
ficiently long time ¢ > A/A. Thus, for |wtp| < 1, all
nontrivial solutions of Eq. (25) satisfying the condition
6(1) = 0 are singular at z — 0. Therefore, the derivative
df/dr becomes comparable with the inverse mean-free
path 1/1 for a certain radius r,. The diffusion approxima-
tion inevitably breaks down for smaller distances, where
nonlocal corrections become important.

We do not try to solve the kinetic problem now but
assume that the mentioned nonlocality smoothes out the
singularity at the origin. We also assume that, similarly
to what has happened in the 1D and 2D cases, the non-
linear term in Eq. (25) can be neglected at r > r, and is
important for r ~ r,. Thus

0(r)~C’(§-—1), > 7,

dé
l_la;

CIR

= —F’
and r, = (CIR)'/2. Then 0, = 0(r,) = (CR/I)}/2 and,
finally,

R 1 ’
thexp(ﬁ*)NeR ~0—<§) ,

2
72 l

which gives

1 (R\? I .| 1 (R\?

Using the self-consistency condition we express the fre-
quency w through the time ¢ and obtain a rough estimate
for the action

A~ (%)2111& (;) , G(t) ~exp[-A()],  (26)

where A = i/pp is the Fermi wavelength and the expo-
nent a ~ 1 can only be determined from the solution of
the kinetic problem. Equation (26) looks similar to the
AKL result if o = 2. The action (26) becomes compara-
ble with that from Eq. (24) at
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2
t=t, =tp (%) =-Z—é, th € te < %. (27)
Therefore, we have two independent contributions to
the conductance G(t), which is dominated by one of them
[Eq. (24)] at t < t, and by the other [Eq. (26)] at t > t,.
It is sensible now to analyze whether the diffusion
treatment is valid in the 1D and 2D cases. Using the
solutions of Eqgs. (12) and (17) we find the value of ¢,
such that for ¢ < t, the derivative [df/dr is less than
unity. This gives

. h { etV d=1 (28)
* = 2

(B, =2
Therefore, we can expect that the asymptotes (16) and
(23) are valid for ¢ < t,. At longer times t > t, for all
dimensions d = 1,2,3 the asymptote cannot be found

within the diffusion approximation. A detailed kinetic
analysis of this problem will be done in a separate work.

We want now to speculate on the possible relation of
this long-time tail to the AKL asymptote. AKL studied
the coefficient growth rate in a power expansion of G(w)
in wr. The rate they found means that G(t) has a univer-
sal logarithmically normal asymptote at very long-times.
The presence of the mean-free time 7 in this expansion
makes it plausible that the AKL asymptote is related to
a kind of kinetic problem. This is why we hope that at
t > t, the tail will match the results of Ref. 1.

In the case of a tunnel barrier at the sample-lead in-
terface, the time dispersion of the conductance can be
considered in the same way with the usage of the gener-
alized boundary condition (see Ref. 8).
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