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Energetics of vicinal Si(111) steps using empirical potentials
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Motivated by recent experimental determinations of step energies on the high-temperature 1x1
reconstructed phase of Si(111), we have calculated step and step-step interaction energies using
empirical potentials. Two distinct configurations of atoms along the step edge are plausible: con-
figurations with atoms on the upper terrace that could rebond with atoms on the lower terrace and
others without these atoms. By considering two di8'erent empirical potentials, only one of which
allows this rebonding, we show that the rebonding gives rise to a behavior inconsistent with ex-
periments probing step-step interactions. For con6gurations without the rebonding the step-step
interaction coefficient is in the range 0.00—0.39 eV A, roughly agreeing with the experimental esti-
mate of approximately 0.15 eV A. With the rebonding, however, the step-step interaction coefficient
for the [1 12] steps is 4.5 eV A, much larger than the experimental estimate. This suggests that
rebonding does not occur. Kink energies are also calculated from the orientational dependence of the
step energies and compared with experiment. These calculations show that kink-kink interactions
are negligible although there are significant corner energies.

I. INTRODUCTION

There is a growing body of experimental work in-
volving step dynamics on semiconductor ' and metal
surfaces. These experiments measure step fluctua-
tions, specifically the time dependence of terrace width
distributions, to obtain information about step energet-
ics. Theoretical models to explain these observations
have been based on the I angevin formalism. ' This for-
malism, however, does not directly allow the atomic pro-
cesses by which the steps Buctuate to be obtained. The
equilibrium properties of steps on Si(ill) have recently
been described using a simple terrace-step-kink model to
6t experimental data on the orientational phase diagram
of vicinal surfaces. The work here is motivated by the
need for theoretical estimates of the microscopic param-
eters such as the step, kink, and step-step interaction
energies that are used in such models.

We will focus on interpreting recent experiments which
have determined step energies on I x 1 reconstructed
Si(111) using observations of step fluctuations, step
distributions, ' ' and observations of sublimation holes.
The step-step interactions on this surface have also been
estimated. ' Observations of circular step systems at
high temperature ' suggest that the step &ee energy is
isotropic. Our work here is aimed at verifying if the zero-
temperature energetics are consistent with these high-
temperature observations, particularly with regard to
anisotropy in step energy, by directly calculating them
using the empirical potentials of Stillinger-Weber and
Khor —Das Sarma. Specifically, kink energies calculated
here may be compared to those used previously in sta-
tistical mechanical fits to experimental data. As there
is no direct evidence that the observed step-step interac-
tions are due to elastic relaxations, these interactions are
calculated here to see if the elastic hypothesis is indeed
plausible.

We And in this study that these two potentials pre-
dict significantly difFerent energetics for steps on Si(111),

both diÃering &om the 6t of a square lattice model to
experiment. However, there are robust trends, i.e. , com-
mon features predicted by both the potentials. DiÃer-
ences between the predictions of the two potentials, the
common trends and disagreements with experiment, are
interpreted in the discussion and conclusion sections of
the paper.

II. POTENTIALS

Understanding step energetics on Si(111) requires an
understanding of the rebonding that occurs at the step
edges which reduce the dangling bonds. This rebond-
ing is similar in nature to the rebonding that occurs
in the dimer reconstruction on Si(100). The Stillinger-
Weber potential gives reasonable results for this re-
construction on Si(100), i and for properties of steps on
Si(100). ' The use of a second empirical potential in
this study is mainly motivated by the need to identify the
results that are independent of the details of the poten-
tial. It must, however, be noted that the Stillinger-Weber
potential does not give any reconstruction of the Si(ill)
surface and the predicted adatom energetics on this sur-
face are not satisfactory. Similarly, although the Khor-
Das Sarma potential reproduces bulk properties and
the dimerization on Si(100), it needs additional modifi-
cation to predict adatom energetics on Si(111) correctly.
Reproduction of the dimer reconstruction on Si(100) by
both potentials [and properties of steps on Si(100) by
the Stillinger-Weber potential] is however an encourag-
ing feature as most of the configurations in our study
have step-kink facets that are locally (100). Further,
the Khor —Das Sarma potential has parameters which are
tuned to handle cases when the coordination number is
not equal to four, specifically m bonding in graphitelike
configurations that occur on the Si(111)surface. The pre-
dictions of the two potentials can therefore be regarded
as rough estimates of the step-kink energetics.
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A. Stillinger-Weber (SW)

This potential consists of two- and three-body terms
of the following form: where

V = ) V, (r-, , r-, ) + ) V, (r-, , r-, , r-„),
igj ig jgkgi

rj (ao
rj &ao

f
1 ' r

Ae cos 8~;I, + ~ exp p&,(r, , rj, rA. ) = ~ 0
0

—a + ' —a rij and rig & acr

r;~ and/or r, g ) acr
(lb)

with

1 ri rj ri r/g
r;~ =~ r; —r~ ~, 8~;I, ——cos rijriI (lc)

The parameters of this potential are chosen to make the diamond structure the most stable and also give a liquid
structure (the pair correlation function) which is in reasonable accord with experiment. The length scale cr and
the energy scale e are chosen to give the observed lattice spacing and cohesive energy of crystalline silicon at zero
temperature. The parameter values are listed in Table I.

B. Khor —Das Sarma (KD)

This is a many-body potential consisting of pairwise interactions moderated by the local environment:

where

Vj =A&;j « e '~ x 1+ ) (cos[g(8,,g
—8;)j —ljZ,,

i efF A:gi,j
(2a)

TABLE I. Parameters of the potentials used in the simulations.

A=7.049556277
q= 0
7=1.2

Potential parameters
SW potential
H =0.6022245584

a=1.8
e =1 (2.168256721 eV)

@=4
A=21

o' = 1(2.0951 A)

A = 2794.2386 (eV)
A = 1.34146 (A ')
P =25.44123 (A. ~)

Cp ——3.8
2.6
9

Dp ——2.358083636
D2 ———0.2876355442

Cp ——3.8
C3 ——0.3

Do ———3.844080610
D2 ———10.00769657

KD potential
Hp =0.08251716
o. = 0.6249096
77 =0.90084597

C, = —'0.1
91.45C4 9

D1 ——0.07598029648
D3 ——0

Modified KD potential
C1———0.3

C4 ——0
D1 ——13.65684306
D3 ——2.272812689

8 = 3.13269 (A )
p =3.38218

f = 25 (A )
2.35~2 ——

9

C, =0.2
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with

mlnlmum pij
t (2b)

P(„. R.P' i (r~ —rj) . (r~ —r&)
Z& =6 &, 8& I =cos

~ij ~ik
(2c)

Z ff = C, ~ C, (Z. —3) + C, (Z —3)' + C, (Z. —3)' + C, (Z —3)'

O' = Do + Di(ln Z') + Ds(lil Z') + D4(lii Z') (2d)

where

Z;=) Z;,
jgi

(2e)

is a measure of the number of nearest neighbors. Panther,
V~ is explicitly cutoff, i.e. , V~ = 0 if r;~ ) 3.8 A. . The
parameters of the potential (with Z;,ff

——Z; and g =
0) are chosen to reproduce the linear variation of ln(Z)
and ln( —V,~„;& per atom/Z) (all Z; = Z) with equilib-
rium interatomic distance for a wide range of structures
of silicon, as well as the bulk modulus of the diamond
structure. The polynomial in ln(Z;) for 0, is chosen such
that the original results for the graphitic, diamond, and
simple cubic structures are recovered: 0; = cos (—1/2),
cos (—1/3), and cos (0) for Z = 3, 4, and 6, respec-
tively. The parameter rI is then fitted [with Z;,ff = Z
and 0; = cos (—1/3)] to obtain the bond bending force
constant of the diamond structure.

In this study, the polynomial in Z, for Zi g is cho-
sen such that the gradient of the potential is continuous
across Z; = 4: Since Z; ff = Z, for Z; ) 4, dZ;, ff/dZ;
= 1 at Z; = 4. Further, Z, ,ff(Z; = 3)= 3.8 so that the
bond strength agrees to scaled results in carbon chem-
istry for the sp -sp bond. Additional fitting such that
Z; ff(Z' —2) = 3.4 and Z, ,ff(Z; = 1) = 3.0 has been
done somewhat arbitrarily: the only requirement being
that Z;,ff not become small for Z; 1 (Z;,ff = 3.4 cor-
responds to the bond strength of an sp-sos bondis).

In the simulations with the Khor —Das Sarma poten-
tial, the above-mentioned functional forms for Zi,g and
8i were used. However, the results showed that in some
of the step-kink configurations [Figs. 3(f) and 3(i)] there
were some atoms with Z, 2. As no particular fitting
was done in this range of Zi either for Zi ~ or 0;, there
is no reason for the energetics to be correct in such con-
figurations. Thus for the configuration with the largest
number of such atoms per unit length of step, Fig. 3(c),
the energetics have been recalculated using a diferent fit
based on the following argument: In such configurations
the atom with Zi 2 is bonded to an atom with Zi =
3 and another with Z; 4. Hence, assuming that (i)
the bonding is through two p orbitals so that the bond
angle is 90 and that the bond strength with the Zi 4
atom is that of a p-Sps bond, and further assuming that
(ii) the bond strength with the Z; 3 atom is the sum

of a p-sp and a vr bond, (iii) the p-sos bond strength is
the average of p-p and sps-sp bond strengths, and (iv)
the p-p bond strength 1/6 the energy per atom in the
simple cubic structure, then it can be seen using the data
in Refs. 15 and 16 that the average bond strength of the
atom with Zi = 2 is very close to the Sp -sp or the di-
amond structure bond strength. Therefore the modified
KD potential has Z;,ff(Z, = 2) = 4 and 0;(Z; = 2) =
90 . The parameters of the potential with the two fits
for Zi,~ and ei are shown in Table I.

III. STRUCTURAL ENERGIES

A. Molecular-dynamics method

The molecular-dynamics cell, sketched in Fig. 1, is con-
figured such that it allows for at most one single height
step with at most one unit depth kink. It consists of
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I
I

I
I
I

I
I
I
I
I

C
f/ "C

FIG. 1. The molecular-dynamics cell, used in the calcula-
tions. The shaded region consists of three Si(ill) bilayers
with atoms fixed at diamond lattice coordinates. Periodic
boundary conditions applied along the 2: axis by the associa-
tion of points b —b' and c —c', and along the y axis by the
association of points b —b" (or b) and c —c' (or c).



51 ENERGETICS OF VICINAL Si(111)STEPS USING. . . 5203

a chosen number of bilayers of Si(111) with the bottom
three bilayers (shaded region) having atoms fixed at the
diamond lattice coordinates throughout the simulation.
The z axis is perpendicular to the bilayer and the x axis
is along one of the two surface lattice constants, aq or
a2, as shown in Fig. 2. Periodic boundary conditions
are applied along the x and y axis: the points b —b' and
c—c showing the association along the x axis, the points
b —b" and c—c" showing the association along the y axis.
When the b —b" and c —c" association is not possible
(the x axis along the [101]step), the association is shown
by b —b and c —c.

The system potential energy E is computed in such a
way that only the moving atoms constitute the system.
Hence, in addition to all the interactions between mov-
ing atoms, in case of the SW potential, only half of any
two-body interaction between a fixed and a moving atom
is included in E. The fraction of the three-body inter-
action included is equal to 1/3 if only one of the three
atoms is moving, and 2/3 if two of the three atoms are
moving. Similarly, for the KD potential, in addition to
all interactions between moving atoms, only half of any
pairwise interaction between a fixed and a moving atom
is included in this energy.

For every configuration studied, the initial coordinates
of the atoms near the step edge are changed &om their
corresponding bulk values so as to minimize the potential
energy. The initial velocities are maxwellian distributed
so that the system is at a small "temperature. " With
this initialization the potential energy of the system is
minimized using the following cycle:

(a) Integration of Newtons law (with dissipation):

dp2

ds i (4)

B. Notation and definition

The step energy P is defined as

P = (E —¹s—s, I. Ev)/(E + k ) ~,

Typically, the above cycle is repeated five times. How-
ever, only in the first cycle is dissipation used to reduce
the "temperature" (kinetic energy) of the system. The
dissipation is not continuous so as to allow the system to
reach "equilibrium" at each temperature. In subsequent
cycles there is no dissipation and the system begins with
zero kinetic energy. This technique was eKcient in re-
ducing the potential energy, as any increase in the ki-
netic energy had to correspond to a decrease in potential
energy.

Integration of the above equations was done using a
fifth-order Gear algorithm. In simulations with the SW
potential the units of mass, length, and energy are chosen
to be the mass of the silicon atom I,, the parameters of
the potential 0 and e, respectively. In simulations with
the KD potential the same are chosen to be m, 1 A. , and
1 eV, respectively. In these units, the time step dt, the
8 step ds, and the dissipation factor p were chosen to
be 0.005, 0.001, and 0.2, respectively. The initial tem-
perature in simulations with the SW (KD) potential was
0.0015 (0.003). The typical total number of time and s
steps to obtain the minimum value of the system poten-
tial energy E for any configuration was 40000.

(b) Integration of the steepest-descent equations:

e=o

a2

e=60,
[2

(3) where E is the minimum potential energy of the system
with N atoms, ~p is the bulk energy per atom, e, is the
surface energy per unit area, A: is the depth of one kink,
and E and E„are the molecular-dynamics cell dimensions
(see Fig. 1) along the x and y axes, respectively. The
numerator is the excess energy relative to the unstepped
surface and the denominator is the corresponding length
along the step. Only unit kinks and single height steps
are considered in this study. Therefore the kink depth k
and the step height h are constants. For a step with no
kinks A: vanishes. The surface energy e, is defined when
there is no step (Ii = 0, k = 0) as

e, = (E —Nss)/8 E„.

8=30

e=o [01 1]
8=30

0=60'

Assuming that classical elasticity theory applies, and
that steps interact only through elastic dipole-dipole in-
teractions, the functional form for P in terms of the an-
gle (() between the step and the z axis of the molecular
dynamics cell, and the terrace width (t) measured per-
pendicular to the step edge, is given by

p(~ t) = p (~) + &(()/t
FIG. 2. One bilayer of the Si(111)surface consisting of the

upper monolayer (gray) and the lower monolayer (black). The
6gure shows the threefold and reHection symmetry of this
surface: Steps running along directions with equal 8 have
equal energy.

where ( = tan (k/E ) and t = E„cos((). This equation
defines the energy of an isolated step P and the step-
step interaction coeKcient A. Further neglecting kink-
kink interactions, the step energy per unit length along
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may not be as shown in Fig. 3 (which corresponds to
initial configurations investigated with the SW poten-
tial). All atoms labeled by letters are displaced from
their corresponding bulk-terminated positions. However
the initial displacement used with the KD potential was
large (as shown) if it lowered the energy and very small
if not. As a rule the SW potential favored significant
displacement even if only one of the atoms (participating
in rebonding parallel or perpendicular to the step-kink
edge with the other atom) could be moved (i.e., had only
two nearest neighbors before any displacement) whereas
the KD potential favored this displacement only if both
the rebonding atoms could be moved. For both poten-
tials, rebonding between atoms in the final configuration
was directly correlated to the displacements in the corre-
sponding (low energy) initial configuration: Rebonding
occurs if the displacement of an atom towards another
was large and does not occur if it was very small.

The following are the system sizes along the x- and y-
axes for periodic boundary conditions to apply:

(111) surface: f. = niai, I„=n2o2,

[112] step: 8 = niai, I„= (n2 —2/3)a2,

[1 12] kink: 8 = (ni + I/2)ai, I„= (n2 —2/3)a2,

[101] step: 8 = nia2, I„= (n2 —2/3)ai,

[211] kink: f. = (ni + I/2)ai, I„= (n2 —I/3)a2,

[211] step: f = niai, I„= (n2 —1/3)a2,

where ai and a2 are surface lattice constants as shown
in Fig. 2 and nq and n2 are positive integers. Note that

there are two types of [1 12] kinks within configuration
type A: Ai when n~ is odd and A2 when n-i is even.
The system depth along the z axis is specified by n3 which
is the number of (111) bilayers (of moving atoms).

Since steps are defined by the intersection of a plane
with the (111)surface, the configurations of the face also
correspond to the surface of the intersecting plane [again
the three fold and reHection symmetry about the (111)
axis may be used to label surfaces by their normals or
by the normals of the surfaces equal to them in energy].
Hence, surface energies can be calculated &om the corre-
sponding step energies. Specifically the (110) and (331)
surfaces are the [211] step configuration with n2 ——1 and
n2 ——1.5, respectively. The (100), (311), and (211) sur-
faces are the [1 12] step configuration with n2 ——1, n2 ——1.5,
and nq ——2, respectively. The type (A or B) of the con-
figuration determines the type of reconstruction on the
corresponding surface.

D. Energetics

Table III shows the results of the simulation with the
step configurations of Fig. 3. Isolated step energies Po
and interaction coeKcients A have been extracted by fit-
ting the variation of the step energy with terrace width E„
[configurations 3(a)—3(e) in Fig. 3] to Eq. (7) (with ( =
0). Figure 4 is typical of the straight line fits attempted
(when ns ——27). Success of this fitting procedure in
all cases shows that the variation of step energy is con-
sistent with elasticity theory in the chosen range(s) of
terrace width(s) (n2) as listed in Table III. It can be seen
that a depth (ns) of typically nine moving Si(111) bi-
layers is sufBcient to obtain the step energies accurately.
However, this is not the case with interaction coeFicients
as they probe very small variations in the step energy.
InsufBcient system depth results in slightly smaller in-
teraction coeKcients: a result that may not be evident

TABLE III. Energetics of unkinked step configurations: step energy (P ) and step-step interaction strength (A). ni and n2
are the system dimensions, in units of the appropriate surface lattice constant, along the 2: and y axes, respectively. n3 is the
depth of the system in number of (ill) bilayers.

Configuration Type

(I) 1 12 step
m 0 = 0'

(II) 101 step
~8=30'

(III) 211 step
mB=60

(I) 101 step
m8= 30

ng
2
2
2
1
1
1
1
1
4
1

System size

n2
5 to 11
5 to 14
2 to 10
2 to 21
6 to 18
6 to 20
5 to 15
5to20

4,7
1 to 14

nl
4
2
2
1
1
1
1
1
2

1

n3
9
27
9

27
10
27
10
27
12
27

Unkinked step configurations
SW potential

Energetics

P (meV/A. ) A (meV A)
162.2 -+ —0+
162.2 —+ —0+
39.0 4.5 x 10
38.8 4.5 x 10
188.4 24 x 10~
188.4 24x 10
152.6 15x 10
152.6 1.5 x 10

188.2 0.0
188.2 0.0

Sytems size
KD potential

Energetics

n2 n3 P (meV/A) A (meV A)
8 to 10 9 240 2 7.8 x 10
8 to 20 27 2402 1.3 x ].02

8 to 10 9 347.8 19x 10
8 to 20 27 347.8 x 1P'
8 to 10 9 3238 1.1 x 102
ll to 20 27 323.8 1.3 x 10
8 to 10 9 322.0 1.5 x 1P'
10 to 20 27 322.0 1.8 x 10'
8 to 10 9 202.4 1.5 x 1P'
8 to 20 27 202.4 2.1 x 10

Modified KD potential
11 to 20 27 361.5 3.9 x ].02
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240.28

240.27

13
I

10

240.26

e 240.25
2

240.24

240.23

240.22
0.0 1.0 2.0

e„-'(x 0-'A-')
3.0

&om the table as the values are quoted to only two sig-
nificant figures. The uncertainity in the calculated val-
ues for the interaction coefficients are due to the devi-
ations &om the expected E„behavior. Step configura-

tions with large interaction coefficients ()I eVA) and
also soxne with small values (&0.4 eV A.) decrease as the
terrace width (f.„) increases. This decrease is at least in
part; due to insufficient system depth since it is observed
to diminish as depth increases. The fitting to Eq. (7)
in such cases has been done over the entire range of Z&—
larger E„naturally contributing less to the fit. Other step
configurations with small values of interaction coefficient
(& 0.4 eVA. ) show a rise and saturate with increasing

In suc.h cases the fitting to Eq. (7) has been done
over the range of larger E„only. Table III also shows the
result of simulation with the modified KD potential for
the [101]step (configuration type A). The step energy is
relatively insensitive to the modification —increasing by
about 12%. The interaction coefficient however increases

FIG. 4. Typical variation of the step energy P with the ter-
race width E„ in a step configuration. The linear variation of
P with /„ is consistent with elasticity theory. The intercept
is the step energy P and the slope is the step-step interaction
coeKcient A. The terrace width is linearly related to n2.

by a factor of 3. Similar results may be expected for the
predictions of this potential in other cases. Specifically,
kink energies (for type A configurations) may increase by
the same percentage as the step energy.

The step energies P~o —
j

and P~o—
j

coxnputed here are
comparable to the tight-binding calculation by Chadi and
Chelikowsky for configurations of type A. Their re-
sults, obtained using an energy minimization approach,
are P —— 100 meV/A and P~

— 182 meV/A. . The
SW results are in better agreement with these values.
Surface energies computed by Chadi22 (and the same pre-
dicted here &om the step energies in the corresponding
configurations) in eV/(1x1 unit cell area) are the follow-
ing: (211) type A=1.4 (SW=1.24, KD=1.38); (211) type
B=1.2 (SW=1.02), (311) type B=l.66 (SW=1.31) and
(331) type A=1.09 (SW=1.29, ED=1.35). The (311) and
(331) surface energies have been obtained by an extrap-
olation of the results obtained in this study to a terrace
width (n2) not studied. The surfaces composed of type
B steps are comparable only to the results of SW poten-
tial since Chadi's calculations show that the rebonding
occurs (similar to the SW potential) whereas this is not
the case with the results of the KD potential.

Reconstructions observed using the SW potential agree
qualitatively with those obtained by Wilson, Todd,
Sutton who used the same potential. They observed
no reconstruction on the (110) surface, symmetric dimers
on the (100) surface, and rebonded atoms on the (311)
surface. Their values for the corresponding surface ener-
gies agree (to within 5%%up) to the same computed in this
study: [e,(110)]sw=108.3 meV/A2, [e, (100)]sw=89.91
xneV/A. , [e, (311)]sw=102.9 meV/A (the 311 surface
requires an extrapolation of the results to a terrace width
not studied). [e, (100)]sw predicted here agrees with the
same calculated by Poon et al. Surface energy ratios
calculated by Gilmer and Bakker using the SW poten-
tial agree with those predicted here ([e,(110)/e, (111)]sw
= 1.225, [e,(100)/e, (111)]sw = 1.059). The correspond-
ing ratios for the KD potential are 1.246 and 1.234, re-
spectively. They also find that reconstruction at the step
edge reduces the [1 12] step energy by an order of mag-
nitude in relation to the bulk terminated step. This

TABLE IV. Energetics of kinked step configurations: (unkinked) step energy (P ) and kink energy ei. nx and n2 are the
system dimensions, in units of the appropriate surface lattice constant, along the x and y axes, respectively. n3 is the depth-of
the system in number of (111)bilayers.

Con6guration

(IV) 1 12 kink

m30 )8)0

(V) 211 kink

m 30 (8 (60

Type

Ag

Kinked step con6gurations
SW potential

System size

n1
odd values

5 to 13
even values

2 to 14
1 to 7

7 9

7 9
21 9

4 9

11 9

162.0220

407
785

162.1
40.4

previous
value used
previous

value used

1to8

1to8

Energetics

n2 n3 lEQ (meV) P (meV/A. )

KD potential
System size

ng
odd values

3 to 11
even values

2 to 12

798 240.211 9

11 9 240.2324

1 to 8 11 9 987 202.4

Energetics

n2 nq ee, (meV) P (meV/A)



5208 KODIYALAM, KHOR, BARTELT, WILLIAMS, AND DAS SARMA

is the case here also for the configuration type B—
the reduction being a factor of 9.7. From experiments
on equilibrium shape of voids on Si(ill) Eaglesham et
al.s (and Follstaedt2s) predict surface &ee energy (f,)
ratios, f, (100)/f, (111) = 1.10 +5% (1.09 +0.07) and
f (110)/f (ill) = 1.16 +5% (1.07 +0.03).

Table IV shows the results of simulations with the kink
configurations. The orientational dependence of the step
energy is obtained by varying the kink-kink separation

(ni) with a fixed terrace width (n2) for configurations
3(f) to 3(j) in Fig. 3. The value of n2 is chosen so that
the terrace width is large enough to make the step-step
interactions negligible, i.e., the contribution to the step
energy in the worst case is less than 0.5%. The step en-
ergies P are therefore assumed to be equal to isolated
step energies P . Kink energies ef, are extracted by fit-
ting the isolated step energy per unit length along the x
axis Po to Eq. (8). Step energies along g = 0 are also
extracted &om these fits for comparison to previous re-
sults. The range of nz quoted in the table is the region
over which these fits have been done. Figure 5 is typ-
ical of the straight line fits attempted. Success of this
fitting procedure in most cases shows that kink-kink in-
teractions are indeed negligible (beyond = 5 lattice spac-
ings). Further, the agreement between the step energies
extracted here and those calculated previously also shows
that kink-kink and step-step interactions (at the chosen
values of n2) are negligible. However this procedure fails
for the [211]kink when using the SW potential. This may
be due to the kink energies being very small and possibly
negative (as calculated using Eq. (8) with P (( = 0) from
previous calculations]. It may also be due to larger range
of kink-kink interactions when using the SW potential.

The orientational dependence of the step energy P vs
0 is shown in the polar plots of Fig. 6. Plot 6(a) shows
that the SW potential favors configurations of type B
at least for 0 & 0 & 38'. It is expected Rom plot 6(b)

8=60 [2 11]

50 100 150
p'(me V/A)

' 8=0 [112]
200

9=60 [2 11]

o

g=0 [1 I 2]
0 50 100 150 200 250 300 350

p'(~ev/A)

FIG. 6. Polar plots showing the variation of the step energy
P with orientation 8. , (&, A, and x correspond to config-
uration types Az, Az, A, and B, respectively. Lowest-energy
configurations corresponding to both potentials show signifi-
cant anisotropy in step energy inconsistent with experimental
observations at high temperature.

13 9 7 5
174 I I I I

SW potential, Configuration: figure S(f
172

170

that the KD potential favors configurations of type B at
least for 0 & 0 ( 30'. In both cases the lower energy
configurations show a significant anisotropy in the step
energy: for the SW case; Po /Po — = 4.8 with P-
P —— 150 meV/A. and for the KD case; P(— )/P(—

168
2

166 IV. DISCUSSION

162

0.0
I

1.0 2.0 3.0
f„'(10 A '}

4.0 5.0

FIG. 5. Typical variation of the projected step energy P
with the kink-kink separation E in a kink configuration. The
linear variation of P with / shows that the kink-kink inter-
action is negligible. The intercept is the step energy P (g = 0)
and the slope is the kink energy eg. The kink-kink separation
is linearly related to nz

The empirical potentials used in this study have both
been tuned to bulk properties of silicon. There has been
no additional tuning to surface properties. Hence the en-
ergetics predicted here are only estimates of the quantita-
tive values, but are expected to yield useful information
about energetic trends. The robust results, i.e., com-
mon features predicted by both potentials are the follow-
ing: (1) Step-step interactions vary as (terrace width)
in particular range(s) of terrace width(s) consistent with
elasticity theory; (2) negligible kink-kink interactions be-
yond 5 lattice spacings (in most cases); (3) in all cases
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of nonzero step-step interaction, the interaction coeffi-
cient cannot be accounted for by the magnitude of the
surface stress alone (see Appendix A)—the SW results
in zero surface stress and the surface stress of the KD po-
tential can account for an interaction coefficient of only
= 80 meV A.—hence the moment of in-plane forces must
also exist in such cases (see Appendix A); (4) lowest-
energy configurations calculated for both potentials show
signi6cant anisotropy in step energy in relation to the ex-
perimental temperature of 101 meV. A rough estimate
of anisotropy would be the maximal energy difference
per unit length between steps of all possible orientations.
Choosing the unit of length to be the lattice constant
along the steps in the high symmetry directions, i.e., a~
(=3.84 A. ) this value is 574 meV (466 meV) for the lower
energy configurations of the SW (KD) potential.

Using isotropic elastic theory (Appendix A) it can be
seen that step-step interactions arise due to moments of
the in-plane and normal forces that a step exerts on the
underlying substrate. The very large step-step interac-
tions predicted by the SW potential in configurations of
type B, cannot however be due to the moment of the
normal forces caused by the surface stress since it is pre-
dicted to be zero by this potential. Therefore, it is in-
ferred that such a rebonding results in a large in-plane
dipole moment (p„). For the [1 12] step of configuration
type B, since the displacement of atoms on the terrace is
towards the closer step edge, this moment has to be posi-
tive. Its value, for this step, using the computed value of
the interaction coefficient, is 62 meV/A. Interestingly, for
steps on 7x 7 reconstructed Si(ill), &om the experimen-
tal value of surface stress and the asymptotic displace-
ment Geld of a step, p~ and p„have been estimated to
be 0 58 6 0 04 eV/A and 1 46 + 0 3 eV/A.

Kink energies computed in this study show that they
are not (in most cases) of a simple geometric origin, i.e.,
they cannot be derived &om the energies of steps along
the high symmetry directions. Since a kink of depth m
units along a particular high symmetry direction (say, 1)
is part of a step along the other high symmetry direc-
tion (say, 2), its energy in a simple geometric model (c& )
would be

6y (m) = (p2 —pi/2)mai,

where Pio and P2o are the step energies along the high
symmetry directions 1 and 2, respectively, and a~ is the

lattice constant along either of the steps. Table V shows
the derived and computed unit depth kink energies. Dif-
ferences between them show that corner energies due to
the presence and/or absence of rebonding at the kink site
are signi6cant and in some cases negative. The geomet-
ric model must therefore be extended to include a corner
energy (e,):

fA, (m) = (P2 —Pi /2)mai + e, . (10)

Two results in this study are apparently inconsistent
with experimental observations. The 6rst of these is the
step-step interaction coefficient predicted by the SW po-
tential for the con6gurations of type B. Prom the data
of Alfonso et al. on step distributions Williams et al.
determined the step-step interaction coefficient for the
1x1 phase of Si(111) to be 0.15 eV A. . The experimental
estimate agrees roughly with the predictions of the KD
potential but is about an order of magnitude smaller than
the interaction coefficients predicted by the SW potential
for con6gurations of type B. The rebonding between up-
per and lower terrace atoms predicted by the SW poten-
tial in such con6gurations results in large step-step inter-
actions. Previous calculationsi2 (using the SW potential)
on the SB type step on Si(100) which has very siinilar re-
bonding along the step edge, i.e., between an atom with
only two nearest neighbors and another with three in the
bulk terminated con6guration, have also shown that such
a rebonding results in very large step-step interactions.
For this step the interaction coefficient was computed
to be 2.40+0.06 eVA. . Disagreement between the exper-
imental estimate and the computed value of the interac-
tion coefficient in this study therefore suggests that this
rebonding does not occur for Si(ill) steps, i.e. , it is an
"unphysical result. "

However it must be noted that the same rebonding
is predicted in the tight-binding calculations of Wilson,
Todd, and Sutton2s for the Si(311) surface and Chadi's2~
calculations for the Si(311) and Si(211) surfaces. The
large interaction coefficient predicted here for [1 12] steps
is further supported by one of Ranke's models for the
Si(311) surface. The model explains the observed 3x2
periodicity on this surface by building it with [1 12] steps
with the configuration type being a "mixture" of types
A and B, i.e., with some rebonding along the step edge
(type A) and some between upper and lower terrace
atoms (type B). Extrapolating the SW results it can

TABLE V. Comparison between kink energies derived from a simple geometric model (ez ) [using
Eq. (9) with m = 1] and the same computed directly in the simulations (cz). The corner energy
e = e1, —eI, , is significant and in some cases negative.

Configuration

(IV) 1 12 kink
m30 )8)0

(V) 211 kink
m 30 (8 (60

T5'pe

A
B
A
B

411
648
262

—211

Geometric model for kink energies
SW potential

e„(meV) eg (meV)
220 (Type Ai)
407 (Type Aq)

785
—20
—1

316
109
533
946

987

KD potential

(meV) eg (meV)
798 (Type Ai)
324 (Type A2)
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be seen that the energy of this surface when built of
steps of type B (=1.31 eV/1 x 1 unit cell area) is greater
(but nearly degenerate) than if built with steps of type A
(=1.26 eV/1x 1 unit cell area). Hence, a mixture of con-
figuration types (as modeled) may be lower in energy. In
the rebonded configurations, as the rebonding is maxi-
mal for [1 12] steps and not possible for [211] steps it can
be inferred &om this study that the step-step interaction
coefficient shows a strong orientational dependence with
its magnitude in the range 0.0—4.5 eVA. As the exper-
imental estimate of the interaction coefficient has been
derived for steps of unspecified orientation, a study of
the orientational dependence of the step-step interaction
coefficient will resolve the problem of the presence or ab-
sence of rebonding unambiguously.

The second apparent inconsistency with experiment is
the large values of kink energy (and consequent large
anisotropy in step energies) corresponding to the lower
energy configurations of both potentials. From Alfonso's
estimate of step stifFness, Williams et al. derive a kink
energy of 0.23 eV in a square lattice Ising model. This
gives the step energy in the square lattice model of 0.23
eV/ai. A crude estimate of the anisotropy in a square lat-
tice model with this step energy would be 95 meV which
is smaller than the experimental temperature of 101 meV—disagreeing with similar estimates for the lowest energy
configurations of the SW (574 meV) and KD (466 meV)
potentials. This study suggests that anisotropy is un-
avoidable since if configurations of type B are lower in
energy, then the rebonding (in such configurations where
only one of the rebonding atoms is able to move, i.e. ,
has two nearest neighbors when the system is bulk ter-
minated whereas the other atom has three) would drasti-
cally reduce the energy of the [1 12] step —as is the case
with the SW potential. If con6gurations of type A are
lower in energy then this rebonding would not occur and
similar rebonding not occurring for the [101] step would
result in its step energy (in either configuration A or H)
being high —as is the case with the KD potential.

Since the experimentally derived kink energy uses a
square lattice model a Monte Carlo simulation was car-
ried out on a hexagonal lattice for a step with an average
orientation along the high symmetry direction(s). The
aim of the simulation was to check if the hexagonal lat-
tice allowed for a larger kink energy. The energy of the
step is defined by a simple kink Hamiltonian of the form

N —1

H=~o+ ) ei Iy' y+i I

where x; = i x a~~ with a~~
= ai/2 and y; x uz = y(x;) is

an integral multiple of a~ = a2/2. Ho is the energy of a
straight step, i.e. , H((y; = 0)). It is a constant indepen-
dent of the configuration (y, ) and is therefore irrelevant
for the simulation. Periodic boundary conditions are ap-
plied identifying xo and xN where the system size N is
chosen to be 800. The step positions y, are moved accord-
ing to the standard Metropolis algorithm at a tempera-
ture of kgT. However the assumption of a single-valued
y; forces the following constraints on a hexagonal lattice:
(1) Neighboring step positions can differ maximally by

only one unit equal to a~, (2) a particular step position
cannot be changed without a correlated change in at least
one of the neighboring step positions, and (3) since cor-
related changes of only nearest neighbor step positions
are allowed, some step positions cannot be changed in
particular configurations of their nearest neighbors. The
simulation is run beginning &om a straight step until
equilibrium is reached. This is detected through the sat-
uration of the squared width (see Appendix B).Defining
the Monte Carlo unit of time to be N attempts to change
randomly chosen step positions, equilibrium is reached
for the system size of N = 800 around 8x10 time units
at the largest value of the ratio ei, /ksT considered in
this study. The simulation is run until twice this time
for all values of this ratio thus ensuring that averages
computed beyond t = 8x10 time units correspond to
equilibrium averages. The spatial correlation function
G(x, t) (see Appendix B) is computed as an average over
50 such runs. Further, time averaging, using 21 equally
time-spaced values of G(x, t) between t = 12 x 10s and
t = 16 x 10, is assumed to give the equilibrium spatial
correlation function G,~(2:).

The assumption of a single valued y; may have elimi-
nated con6gurations of significant weight in the partition
function corresponding to a more general Hamiltonian
which allows for multi-valued y;. However, the typical
equilibrium step configuration, with ei, /ksT correspond-
ing to the smallest nonzero value of kink energy (220
meV) and the experimental temperaturei of 101 meV,
shows only unit depth kinks or antikinks [Fig. 7(a)]. It
can therefore be argued that the constraints imposed by
the assumption of a single-valued y, eliminate only con-

10
(a) s~/k, T = 2. 178

—10
200 225 250

X BiI

275 300

10
(b) s„jk 7 = 1.838

—10
200 250

X B]I

275 300

FIG. 7. Typical equilibrium step con6gurations from
Monte Carlo simulation: the configuration with larger kink
energy has only unit depth kinks-antikinks whereas the config-
uration with smaller kink energy has kinks-antikinks of more
than unit depth. Hence, the step stifFness (shown in Fig. 8),
computed from the spatial correlation function, is expected
to be unafFected by the assumption of a single-valued y(x), at
and above the larger value of kink energy. aI~ and az are half
of the surface lattice constants ai and a2, respectively.
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FIG. 8. Variation of the step stifFness P with the ratio of
the kink energy (sI, ) and the temperature (k&T). Only the
unfavorable configuration to the SW potential (type Ai) gives
a small enough kink energy whose corresponding stifFness is
roughly consistent with experimental observations. a~~ and a&
are half of the surface lattice constants az and az, respectively.

V. CONCLUSION

Energetics of vicinal Si(111) steps with 1x1 terraces,
calculated using the empirical potentials of Stillinger-
Weber and Khor —Das Sarma, show that rebonding be-

6gurations of negligible weight. The results of this simu-
lation are therefore assumed to be correct at and beyond
this value of kink energy. At smaller values of eI, /ksT
the results may be in error: Fig. 7(b) shows the typical
equilibrium step configuration at the smallest value of
et, /ksT considered in this study. Since there are kinks-
antikinks of more than unit depth, configurations of sig-
ni6cant weight may have been eliminated.

The step stiffness P is extracted from the linear re-
lationship between G,~(x) and x for "small" (here x &

10a~~) values of x (see Appendix B). Figure 8 shows the
variation of P with sr, /ksT. Using the experimental tem-
perature of 101 meV the figure gives a stifFness of 0.22
eV/A when ay=220 meV. Since the experimental value
of stifFness is smaller (0.14 eV/A. ) and since the corre-
sponding kink energy derived in a square lattice model
is 230 meV it can be concluded that the hexagonal lat-
tice is stifFer than a square lat;tice at least around this
value of eg/ksT, i.e., does not permit larger kink ener-
gies. Ihuther, since the step stiffness increases rapidly
with eg/ksT (as shown in Fig. 8), its value is much larger
than the experimental value for the kink energies cor-
responding to the lowest energy con6gurations of both
the SW and KD potentials (and a temperature of 101
meV). Hence, the hexagonal lattice does not resolve the
inconsistency between experiment and the results of this
study.

tween upper and lower terrace atoms results in step-step
interactions much larger than experimental estimates.
This suggests that such a rebonding does not occur.
These calculations also show that the variation of step
energy with terrace width is consistent with elasticity
theory with the step-step interactions being not only due
to surface stress but also due to in-plane force moments at
the step edges. Calculations on the orientational depen-
dence of the step energy show that kink-kink interactions
are negligible beyond 5 lattice spacings and that there
are signi6cant corner energies. Differences between the
predictions of the two potentials can be interpreted as
being due to their differing wit;h regard to bond bending:
the SW potential is very "soft" and therefore allows two
atoms to rebond even if only one of the rebonding atoms
is able to move (i.e., has before rebonding only two near-
est neighbors while the other has three) whereas the KD
potential is very "hard, " allowing rebonding only if both
atoms can move. Two unresolved problems are brought
out in this study: (a) configurations with rebonding be-
tween upper and lower terrace atoms although inconsis-
tent with experiments probing step-step interactions are
however the lowest energy con6gurations. This rebond-
ing is further supported by a model for the Si(311)surface
and other tight-binding calculations for the Si(211) and
Si(311) surfaces and (b) the kink energies correspond-
ing to the lowest energy con6gurations of both potentials
give a step stifFness much higher than the experimental
value. Possible resolutions to these problems may lie in
tuning the empirical potential to surface-step properties.
Also since adatom coverage is significant around the
temperature of 900'C (20—22'Po of a monolayer), zero-
temperature energetics of con6gurations with adatoms
may be more appropriate for use in statistical mechan-
ical models explaining the experimental observations on
step fluctuations and step-step interactions.
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APPENDIX A: ELASTICITY THEORY
OF STEP-STEP INTERACTIONS

In this section elasticity theory has been used to es-
timate the step-step interaction coefficient. A step is
assumed to create a force distribution on the surface.
The distribution causes displacements in the substrate.
Steps therefore interact through the interference of their
respective displacement 6elds.

Assuming that the step is along the x direction (at
y = 0), invariance along the step implies that there is
no x component to these forces and that the distribution
is independent of x. Purther, assuming that the surface
is at constant z, the force distribution E(y) = E„(y)j +
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F(y) = p ~(y)J+ p-~(y)I (A1)

where p„ is the dipole moment of the in-plane forces E»
and p is the dipole moment of the forces perpendicular
to the plane F, which is given by

F,(y)k may be approximated by the zeroth (monopole)
and the first (dipole) moments of the F„(y) and F, (y)
about the step edge y = 0. From the work of Stewart,
Pohland, and Gibson, on a surface with an isotropic
stress tensor [as is the case with Si(111)]the distribution
created by a step has vanishing monopole moments and
the dipole moment corresponding to F, (y) must be equal
in magnitude to the product of the surface stress o. and
the step height h. Hence, F(y) is approximated by

APPENDIX B: EQUILIBRIUM STATISTICAL
MECHANICS OF STEP FLUCTUATIONS

In this section equilibrium statistical mechanics has
been used to derive the functional form of the spatial
correlation function G,~(r). The fluctuations of a step
along the x axis are described by a coarse-grained f'ree

energy functional, or effective Hamiltonian, for config-
urations y(x) .

In the absence of any potential and neglecting terms
independent of the configuration the effective Hamilto-
nian can be written as

(B1)

p = +borh, (A2)

A = vr(1 —v2)(p„'+ p,')/(3E).

Assuming silicon to be elastically isotropic, the above ex-
pression is used in the text to calculate the contribution
of the surface stress to the step-step interaction coefFi-
cient and also the dipole moment p& given A and p .
The Poisson's ratio v = cq2/(cqq + cq2) and the Young's
modulus E = (cqq —cq2)(1 + v) where cqq and cq2 are
elastic constants of silicon computed by Ito, Khor, and
Das Sarma.

with the positive y axis in the step down direction.
From the work of Rickman and Srolovitz, for an

elastically isotropic medium the interaction energy for
two force distributions of the above form separated by
a distance E along the y axis varies as A/I2, with
A=2(l —v2)(p„+p2)/(vrE) where E is the Young's mod-
ulus and v is the Poisson s ratio for the medium [the dis-
placement field in the y direction due to the single force
distribution at y = 0 is given by —2(1 —v2)p„/{vrEy)].
Due to the 1/l2 variation of the interaction energy a pe-
riodic array of steps will have an interaction coefEcient
A greater than A by a factor of 7r2/6, i.e. ,

where P is the step stiffness and L is the length over
which periodic boundary conditions are applied. The
equilibrium squared width W may now be evaluated by
calculating the expectation value of [y(x)] and y(x) in
the canonical ensemble. Due to translational invariance
these quantities are independent of x and therefore can
be averaged over x. Hence,

~..= (( [y(*)]' —(y(~)).' ).) . (B2)

Similarly, the equilibrium spatial correlation function
G,q(x, x + r) may now be evaluated by calculating the
expectation value of [y(x) —y(x + r)] . Hence,

G"(r) = (( [y(*) —y(*+ r)l')*) (B3)

G.q(r) = r (1 ——
) (B4)

Hence, in a Monte Carlo simulation, the linear relation-
ship between G(r) and r for small r ( & « 1) can be used

to determine P.

with the Hamiltonian as specified before.
Calculating the above using Fourier components of

y(x) gives
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