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At strong magnetic fields, double-layer two-dimensional electron-gas systems can form an unusual
broken-symmetry state with spontaneous interlayer phase coherence. In this paper we explore the
rich variety of quantum and finite-temperature phase transitions associated with this broken sym-
metry. We describe the system using a pseudospin language in which the layer degree of freedom
is mapped to a fictional spin 1/2 degree of freedom. With this mapping the spontaneous symmetry
breaking is equivalent to that of a spin 1/2 easy-plane ferromagnet. In this language, spin textures
can carry a charge. In particular, vortices carry +e/2 electrical charge and vortex-antivortex pairs
can be neutral or carry charge +e. We derive an effective low-energy action and use it to discuss
the charged and collective neutral excitations of the system. We have obtained the parameters of
the Landau-Ginzburg functional from first-principles estimates and from finite-size exact diagonal-
ization studies. We use these results to estimate the dependence of the critical temperature for the
Kosterlitz-Thouless phase transition on layer separation.

I. XNTRODUCTION

Technological progress has made it possible to produce
double-layer two-dimensional (2D) electron-gas systems
of extremely high mobility. As illustrated schematically
in Fig. 1, these systems consist of a pair of 2D elec-
tron gases separated by a distance d so small (d 100
A.) as to be comparable to the typical spacing between
electrons in the same layer. In a large magnetic field,
strong correlations between the layers have long been
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FIG. 1. Schematic conduction band edge profile for a dou-
ble-layer two-dimensional electron gas system.

expected to lead to novel fractional quantum Hall ef-
fects. Correlations are especially important in the strong
magnetic-field regime because all electrons can be ac-
commodated within the lowest Landau level and exe-
cute cyclotron orbits with a common kinetic energy. The
&actional quantum Hall effect occurs when the system
has a gap for making charged excitations, i.e., when the
system is incompressible, and theory has predicted~
that at some I andau level filling factors, gaps occur in
double-layer systems only if interlayer interactions are
sufficiently strong. These theoretical predictions have re-
cently been confirmed. 4 More recently work &om several
different points of view has suggested that interlayer
correlations can also lead to unusual broken-symmetry
states with spontaneous phase coherence between layers
which are isolated except for interlayer Coulomb interac-
tions. We have recently argued that it is spontaneous
interlayer phase coherence that is responsible for the re-
cently discovered extreme sensitivity of the &actional
quantum Hall effect at total Landau level filling factor
v = 1 to small tilts of the magnetic field away Rom the
normal to the layers. (v—:N/N~, where N is the number
of electrons and Ny is the number of single-particle levels
per Landau level. )

We have previously presented a phenomenological
theory of the rich zero-temperature phase diagram as-
sociated with spontaneous interlayer coherence. In the
present paper we provide a detailed microscopic deriva-
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tion of the effective action used in our phenomenologi-
cal theory. We also discuss the low-energy neutral and
charged excitations of the system in some detail. Much of
our discussion of the properties of double-layer systems
with spontaneous interlayer coherence will be couched
in language based on a simple mapping of the layer
degree of &eedom in a double-layer system to an arti-
ficial pseudospin degree of &eedom. In this language
the spontaneous-interlayer-coherence broken symmetry
appears as easy-plane ferromagnetism. The mapping is
convenient because the Hamiltonian of the system may
be simply expressed in terms of pseudospin operators and
because some aspects of the physics are familiar when
expressed in this way. This mapping is discussed in
detail in Sec. II. In Sec. III we present a microscopic
derivation of the connection between spin textures and
Coulomb charges in our model. This relationship was
discussed previously by Sondhi et al. in the context
of a Chem-Simons effective field theory for the case of
a single-layer system at v = 1 with weak Zeeman cou-
pling (to the real spin). In Sec. IV we derive an efFec-
tive action which describes the low-energy physics of the
system whenever the system has spontaneous interlayer
coherence and is incompressible. We use the spin-charge
connection and our effective action in Sec. V to discuss
the low-lying excitations of the system which are formed
&om vortices in the pseudospin configuration. We show
that vortices carry charge +e/2 and that the vortices ap-
pear in four Havors corresponding to the independently
available sign choices for vorticity and Coulomb charge.
Neutral excitations of finite energy can be formed from
vortex pairs with both opposite vorticity and opposite
charge. Collective spin-wave-like excitations of the sys-
tem also occur and dominate response functions at long
wavelengths. These collective modes are discussed in Sec.
VI. We believe that a double-layer system with sponta-
neous interlayer coherence will have a finite-temperature
Kosterlitz- Thouless phase transition, ' which we discuss
in Sec. VII. In the low-temperature phase a kind of su-
perconducting behavior will occur in which the linear re-
sistivity vanishes when opposite currents are carried in
the two layers. Fully microscopic calculations for the
double-layer systems, using exact diagonalization studies
of finite-size systems and many-body perturbation the-
ory, are reported in Sec. VIII. These calculations allow
us to estimate the parameters of the low-energy effective
action and hence to provide quantitative estimates of the
dependence of the Kosterlitz-Thouless temperature on
the separation between the layers. Section IX gives a
brief summary of the Chem-Simons effective field theory
description of double-layer systems. Finally, in Sec. X
we brieQy summarize our findings. A companion paper
will discuss issues which arise when a weak symmetry-
breaking tunneling term is added to the Hamiltonian of
the double-layer system, particularly those issues which
arise &om the recent experiments of Murphy et al.

II. SPIN ANALOGY

We wish to show that the double-layer system at cer-
tain total filling factors, particularly at v = 1, can be

where 4~ is a Vandermonde determinant wave function
of the form

(z' —z~) (2)

where E = (hc/eB)~~2 is the quantized cyclotron orbit
radius of the lowest Landau level. The first term in Eq.
(1) is simply the Laughlin spatial wave function for the
flied Landau level and the second term indicates that
every spin is up. This state has total spin S = N/2
and S 4 = (N/2)4'. Because Coulomb interactions do
not directly afFect the spins (magnetism is caused by
Coulomb forces plus the Pauli principle, not magnetic
forces), [H, S"j = 0 and 4' is simply one of a total of
2S+ 1 degenerate states, all with S = N/2. The other
states are simply created using the total spin lowering

viewed as an easy-plane quantum itinerant ferromagnet,
In this section we will give a qualitative introduction to
the essential ideas of the physical picture. The math-
ematical details of the microscopic physics will be pre-
sented in the subsequent sections.

We will use a pseudospin magnetic language in which
pseudospin up (down) refers to an electron in the upper
(lower) layer. 4 Using this language and building upon
recent progress in understanding the case of single-layer
systems at v = 1 with real spin, ' we will explore the
consequences of the mixing of charge and pseudospin de-
grees of &eedom and discuss the rich variety of phase
transitions controlled by temperature, layer separation,
layer charge imbalance, and in the companion paper
we explore the effects of tunneling between layers, and
magnetic-field tilt angles. The present section will be de-
voted to development of a physical picture of the rather
counterintuitive concept of spontaneous phase coherence
between the layers, which in the magnetic analogy corre-
sponds to spontaneous pseudospin magnetization. Tech-
nical details of the microscopic calculations on which this
picture is based will be presented in the subsequent sec-
tions.

It is helpful to begin study of the pseudospin anal-
ogy by reminding ourselves of the unusual properties of
a single-layer system at v = 1 in the limit of zero Zee-
man splitting (for the real spins). ~2' s In the presence
of Coulomb repulsion between the particles, Hund's rule
would suggest that the system could lower its interac-
tion energy by maximizing its total spin since states with
maximum total spin are symmetric under spin exchange
and hence the spatial wave function is necessarily fully
antisymmetric. In an ordinary ferromagnet the Hund's
rule tendency to maximize the total spin is partially
counteracted by the increase in kinetic energy (due to
the Pauli principle) that accompanies spin polarization.
In the lowest Landau level, however, the kinetic energy
has been quenched by the magnetic Geld and the sys-
tem will spontaneously develop 100% polarization. An
explicit microscopic wave function believed to exactly
describe the ground state of N electrons at v = 1 is
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operator S = P. i s, which is itself fully symmetric
under spin exchange. Since the exact ground state (at
S = S = N/2) is a single Slater (Vandermonde) deter-
minant, the two-particle distribution function for these
states is readily computed

g(lr —r I) = 1 —e I
—'I'/

Here and in the rest of the paper we set the magnetic
length E to unity. One clearly sees, in this expression, the
exchange hole which surrounds each particle and lowers
its Coulomb energy by an amount

tion. Suppose, for example, we considered the ferromag-
netic state ]4~) in which every electron has the spinor

This state is an exact ground state of the Hamiltonian,
but has inde6nite S; that is, it is made up of a linear
combination of all the degenerate S eigenstates. The
mean value of S is zero

1 82
E = — d'r —[g(r) —1]2' r

= e'g~/2-64 K gB (T), (4)

but

N
(+NISI+~) = —[cos(~)x+»n(v )y] (1O)

where the dielectric function of the semiconductor envi-
ronment is implicit, B (T) indicates the magnetic field in
tesla, and the numerical estimate in kelvins is for the case
of GaAs. For excited states, the spin wave function is not
fully symmetric and thus the spatial wave function is not
fully antisymmetric. There is then a finite amplitude for
particles of opposite spin to approach each other closely.
The low-lying excited states are magnons and just as for
the ferromagnetic Heisenberg model on a lattice, the ex-
act single magnon excitations for this (itinerant) magnet
can be found. They are labeled by a conserved momen-
tum k and have the form

e I[s ]'le Nl/2
2

This state can be represented as a coherent superposition
of the eigenstates of S (obeying S lm) = mlm)). For
large N, we have, to a good approximation,

EV /2

m= —X/2

e N e ™V'm

showing that the spin is fully aligned, but now lies in
the xy plane. Fluctuations in S, while nonzero, are
relatively small (in the limit of large N)

where

~ik. rq 8—j ~ 2
j=l

is the Fourier transform of the local spin lowering opera-
tor and the overbar indicates projection onto the spatial
wave functions of the lowest Landau level. The disper-
sion of these excitations is siinilar (at long wavelengths)
to those of the Heisenberg model on a lattice and is given
b 19,20

ur(k) = V(q) exp( —
lql /2) [1 —cos(z q x k)],

d q 2

(2vr) 2

Such a state has a coherence which is analogous to that
in the BCS state of a superconductor (with S' playing
the role of number operator). There is a definite phase
relationship between states with different values of S .
Notice that this is not a direct consequence of the dy-
namics, but merely a result of our choice of linear combi-
nation of the degenerate basis vectors. That is, there are
no terms in the Coulomb Hamiltonian which Hip spins
and yet in the ground state there can be a definite phase
relationship between amplitudes for different numbers of
fhpped spins.

We turn now &om the application of these ideas to
single-layer systems with real spin to the analogous ideas
for double-layer systems described by pseudospin. We
will ignore real spin, assuming it to be &ozen out by the
Zeeman energy, although this is not necessarily a valid
assumption at low B 6elds. The spinors

where V(q) is the Fourier transform of the electron-
electron interaction. For large wave vectors one can show
that this excitation crosses over &om being a collective
spin wave mode to a single-particle-type excitation con-
sisting of a magnetic exciton which is a bound state of a
spin-Bipped particle-hole pair.

In the discussion above, we have focused on the ground
state which has definite total S and have examined a ba-
sis in which S is a good quantum number. It is con-
venient for later use, however, to recall that since the
Hamiltonian is invariant under spin rotations, we could
have chosen the spin quantization axis along any direc-

Ng —Ng ——2S . (14)

One's first reaction upon thinking about pseudospin is
that it is a perfectly sensible concept as long as it is an

(') (ol~

describe states in which the electron is in the upper or
the lower layer, respectively. Thus the layer number dif-
ference operator is simply the z component of the total
pseudospin
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Ising-like variable; i.e., each electron is either in the up-
per layer or in the lower, but not both. However, it is
a fundamental feature of quantum mechanics that it is
perfectly sensible to talk about states in which there is a
coherent superposition of two amplitudes and the layer
index is therefore uncertain. For certain filling factors
the ground state spontaneously develops interlayer coher-
ence and the electron pseudospin condenses into a state

dye (16)

without seriously modifying the good correlations built
into the wave function. [For the SU(2) invariant case, this
wave function is in fact exact. For the XY symmetry
case, which applies when the intralayer and interlayer
interactions are not identical, this wave function is the
precise analog of the BCS wave function projected onto
a state of definite particle number and is a good starting
approximation. ]

Even though the total number of electrons in a given
layer is a good quantum number, the dynamics will en-
force a definite phase relationship among states with dif-
ferent S (layer charge difference) due to a spontaneously
broken U(l) symmetry corresponding to rotations in
pseudospin space about the z axis. This is quite anal-
ogous to what happens in superconductors. For finite
layer separation, the charging energy will limit the fluc-
tuations in Q and modified correlations will have to be
built into the wave function as discussed in Sec. VI.

The above discussion for v = 1 is, of course, somewhat
oversimplified for general filling factors. Hund's rule,
which suggests that the ground state should have the
maximum total spin quantum number consistent with the
Pauli exclusion principle, does not always apply to two-
dimensional electrons in the strong magnetic-field limit.
In particular it is known both &orn theoretical work '

and &om experimental work that at some filling fac-
tors incompressible ground states can occur which are
spin singlets. We focus our discussion here on the case
v = 1 where the consequences of spontaneous interlayer
coherence are likely to be mast easily observable. At

magnetized in the hy plane. Such a state has (Ng Ng) —=
0, which reduces the charging energy of the double-layer
system. Such a state also has good exchange energy be-
cause, if two electrons of the same pseudospin orienta-
tion (phase &p) approach each other, the spatial part of
the wave function must vanish. It is this exchange effect
that gives rise to the finite pseudospin stiffness which po-
larizes the pseudospins. Of course, in the absence of tun-
neling, Q—:Nt —N~ is a good quantum number, while
our variational wave function 4~ has N / fluctuations
in. Q . In analogy with coherent BCS states, however,
this is not important to the physics (usually); it is sim-
ply mathematically convenient not to project 4~ onto a
state of de6nite Q . Of course it is perfectly possible to
da so using

III. SPIN-CHARGE RELATION

A. Review of projection
onto the lowest Landau level

A convenient formulation of quantum mechanics
within the subspace of the lowest Landau level (LLL)
was developed by Girvin and Jach and was exploited
by Girvin, MacDonald, and Platzman in the magnetoro-
ton theory of collective excitations of the incompress-
ible states responsible for the &actional quantum Hall
effect. Here we briefly discuss the part of this formal-
ism that is most relevant to the present paper.

We first consider the one-body case and choose the
symmetric gauge. The single-particle eigenfunctions
of kinetic energy and angular momentum in the LLL
are 6 2

(27r2~m!)'&' 4 ) ' (17)

where m is a non-negative integer and z = (h + iy)/E.
From (17) it is clear that any wave function in the LLL
can be written in the form

&(z) = &(z) e

where f (z) is an analytic function of z, so the subspace
in the LLL is isomorphic ta the Hilbert space of analytic
functions. ' " Following Bargmann, 9 2 we define the
inner product of two analytic functions as

where

lz!
dp(z)—:(2vr)

' dhdy e (20)

Now we can define bosonic ladder operators that con-
nect P to P ~i (and which act on the polynomial part
of P only):

(21a)

this filling factor there is ample evidence that Hund's
rule does give the correct answer for the spin quantum
number of the ground state. We believe that much of
the physics we discuss will occur at any filling factor for
which the corresponding spin system has an incompress-
ible ground state which is not a spin singlet. In particu-
lar, the ground state for v = 1/m for any odd integer m
is believed to have 8 = N/2 for any physically realistic
interaction. The ground-state orbital wave functions at
these filling factors are well approximated by the simple
Jastrow wave functions discovered by Laughlin ' and
we will present some results for m = 3 and m = 5 based
on these trial wave functions.
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so that

G p~ = ~m+1+t

ay = ~my

(»~'g) = (a»~)

(f, a&) = (a f, 9)

(22a)

(22b)

(22c)

(22d)

of the magnetic translation group (see Fig. 2). In fact qq
translates the particle a distance E2z x q. This means
that different wave-vector components of the charge den-
sity do not commute. It is from here that the nontrivial
dynamics arises even though the kinetic energy is totally
quenched in the LLL subspace.

This formalism is readily generalized to the case of
many particles with spin, as we will show next. In a
system with area A and N particles the projected charge
and spin density operators are

All operators that have nonzero matrix elements only
within the LLL can be expressed in terms of a and at. It
is essential to notice that the adjoint of at is not z'/~2
but a = ~28/Bz, because z' connects states in the LLL
to higher Landau levels. Actually a is the projection
of z'/~2 onto the LLL as seen clearly in the following
expression:

) e ' &q(&)A, (27a)

(27b)

N

) e ' q-q(i) SP,

So we find

0
z —2 )

OZ

where qq(i) is the lnagnetic translation operator for the
ith particle and S," is the pth component of the spin
operator for the ith particle. %'e immediately find that
unlike the unprojected operators, the projected spin and
charge density operators do not commute:

where the overbar indicates projecton onto the LLL.
Since z* and z do not commute, when we need to project
an operator which is a combination of z' and z, we must
first normal order z*'s to the left of z's and then replace
z* by z'. With this rule in mind and (23), we can easily
project onto the LLL any operator that involves space
coordinates only.

For example, the one-body density operator in momen-
tum space is

1 - 1—iq r ——(q z+qz )

1 S—2qz —&q ze 2 e q

[Pl„S"]= e
A

xS&+ sin
~

~ g 0.
Fk Aq)l2) (28)

B. Spin-charge relation
within the lowest Landau level

This implies that within the LLL, the dynamics of spin
and charge are entangled, i.e., when you rotate spin,
charge gets moved. As a consequence of that, spin tex-
tures carry charge, as we will soon see.

where A is the area of the system and q = q~+iq&. Hence We have argued above that in the SU(2) invariant case
(i.e., when d/8 = 0), the ground state at v = 1/m has

Pq = (24) z x ( —q)

8 t'—xq ———q z (25)

is a unitary operator satisfying the closed Lie algebra 4 = 27t-—
4p

2 qAIc
'Tqrtc = &q+A: &' (26a)

qAk
[qq~ qg) = 2E 7q+g sill

2
(26b) :xq

where q A k—:E (q x k) ~ z. We also have qqql, 7 qr
e'q ". This is a familiar feature of the group of trans-
lations in a magnetic field, because q A k is exactly the
phase generated by the Aux in the parallelogram gener-
ated by qE and kS . Hence the 7's form a representation

FIG. 2. Illustration of magnetic translations and phase fac-
tors. When an electron travels around a parallelograln (gen-
erated by 7qql, q qr I, ) it picks up a phase P = 2m —= q A k,
where C is the Bux enclosed in the parallelogram and Co is
the magnetic Qux quantum.
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its pseudospin fully polarized spontaneously. At these
filling factors the interaction energy is minimized in such
a state. For the same reason, we might expect that the
low-lying excited states will be spin textures in which the
local spin alignment varies slowly with position. To be
explicit, we define the following as a spin texture state:

spin is nonzero)

opg = —
( e„„e 4 ) 0"0q sin . (36)

Since 0 is a slowly varying function and 0~ is negligible
when q is large, we can make the approximation

mr =e (29) kAq kAq
e 4 sin

2 2
Here lvjo) is the S' = N/2 member of the ground-state
spin multiplet given in Eq. (1) and the operator 0 is a
nonuniform spin rotation which reorients the local spin
direction from z to m(r) (m is a unit vector). We limit
ourselves to small tilts away from the z direction so that

N

0=) A(r~) S~ =) e 4 0"S",

where A(r) = z x m(r) is the angle over which a spin
is rotated. [Note that 0'(r) = 0, 0 (r) = —m" (r), and
0"(r) = m (r)]. We will later argue that our final result
requires only that 0 is slowly varying in space and not
that 0 is small. However, the assumption is convenient
at present since it allows us to use a simple expression
for 0 and also to expand 0 as a small quantity. Project-
ing 0 onto the LLL ensures that iv)) has no projection
on higher Landau levels, as required in the strong per-

pendicular magnetic field limit. The extra factor e 4 in
Eq. (30) implies a nonstandard definition for the Fourier
components of 01'(r), which is adopted as a convenience.

We can now calculate the excess charge density in a .

spin texture state:

bp~ = (@ l

'
P ~

'
l4'o) —(@olpxl@o)

Expanding in powers of 0 gives

1
p = i (go I [0, p&] l@o) —

2
(go I [0, [0,pal] l@o) +

It is easy to check that the first term is zero. Using (2S)
we obtain

Substituting this into (32) and keeping only the second-
order term we obtain

I+ —el —Ii I +Is I

e 4

s q

x sin (@ol[S"„,S~,]l@o).
kAq

(34)

At this point we use our assumption that l@o) is a state
with uniform spin density so that the expectation value
in Eq. (34) is nonzero only when p = k —q. Using

N
Z I&-el

[S~ x, SI", ~] = ——e e„„&) S~,
j=1

(35)

we obtain (using the fact that only the z component of

Substituting into (36) we obtain

v 1
b'pl, = —— e„„) 0"01, (k A q)Sz.

q

e„„) (iq 0") A [i(k —q) 0„]
~„„) (V'0")~ A (V'0")x ~

q

e„„((V'0")A (V'0"))x.8' (3s)

Here we have used the fact that N/A = v/(2vr). Fourier
transforming back to real space, we obtain

bp(r) = ——e„„[V0"(r) A 9'0"(r)].
8m

(39)

Expressing bp in terms of m instead of 0, we finally
obtain

bp(r) = ——e„„m(r) [8~m(r) x B„m(r)]
8m

(40)

j = ——e ~ e &, m (r)Bpm (r)8~m'(r). (41)
8m

Using the fact that m is a unit vector, it is straightfor-
ward to verify that 8~j" = 0. We note that the fact
that the expression for the topological current is not par-
ity invariant is a direct reflection of the lack of parity
symmetry in the presence of the external magnetic field.

Thus we have shown that for spin states with S = 1V/2
the physical charge density is v times the topological
charge density, in the long-wavelength limit. This re-
markable result was first obtained by Sondhi et al. within
the context of a Chem-Simons effective Geld theory de-
scription of spin textures. The present derivation gives
a microscopic proof of their result. The total extra charge
carried by the spin texture is exactly the Pontryagian in.-
dex:

d r e„„xn(r) . [B„xn(r) x O„xn(r)], (42)
8m

which is exactly v times the Pontryagian index density, or
topological charge density. i2 s In Eq. (40) we have used
the fact that 0 is small to replace i, by rn. The final
result depends on V'A instead of 0 and it is clear that
the expansion in (32) is actually an expansion in terms of
VA rather than 0. Hence our Gnal result is valid as long
as A is slowly varying so that V'A is small (compared to
g

—1) 12,32

The density in Eq. (40) can be viewed as the time-
like component of a conserved (divergenceless) topologi-
cal three current
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which is an integer multiple of v because it is the num-
ber of times a unit sphere is wrapped around by the or-
der parameter, i.e., it is the winding number of the spin
texture. 2 For v = 1/m and m = 3, 5 elementary spin-
textures carry the same &actional charge as the quasi-
particles discovered by Laughlin for spinless electrons.
As we discuss below, the fact that the charges are the
same follows &om very general considerations. Actually
the spin texture states we have defined must contain pre-
cisely the same number of particles as lgo) since the spin-
rotation operator does not change the total electron num-
ber. However, the spin density may contain a number of
well-separated textures with well-defined nonzero topo-
logical charge densities and hence well localized charges;
only the net charge in the spin-texture states defined
above will be zero. The system clearly also has states
with locally nonzero net charge in the spin textures.

The fact that spin textures carry charge can also be un-
derstood from the following very different point of view.
In the Hartree-Fock picture the electrons "see" a very
strong exchange field which locally aligns the spins fer-
romagnetically to produce the spin texture. As an elec-
tron propagates through this (slowly spatially varying)
exchange Geld, its spin adiabatically follows the local ori-
entation of the exchange Geld. A consequence of the
tilting of the spin is that when an electron moves along
a closed path that surrounds the area I', the spin con-
tributes a Berry's phase to the path integral:

d r e„ xn(r) . [O„xxx(r) x 8 xn(r)] .pv

This extra phase is exactly equivalent to having an
Aharonov-Bohm phase due to additional magnetic fIux
inside I'. In our system, the Hall conductance is not
zero:

is exactly soluble in this limit. We assume, for the sake
of convenience, that the spins are almost aligned in the
I direction and that they vary slowly in space, i.e., Oq is
negligible when qE & 1. The interaction, after projection
onto the LLL, is

2

V= —) Vq(p p —We 2),
g

(45)

z= W, le* Iv, e-'
]I

(@,1[v, oil&, ) ——W, l[o, [o, vl]ly, ) +
2

(46)

Since 0 = 0, the leading term vanishes. The second-
order term gives

1sz = —
2

(y, l[o, [o, v)]l

=-4 ) v, (y. l[o, [o, p„p „]]I (47)

The commutators in Eq. (47) can be evaluated using

Ik l~

[p„, O) = e 4 ) ~I, (j) ) 0" 8"
2

= —) e 4 0" S" ~g ~(j) sin (48)

Substituting this into the above expression, we obtain for
small q

where VA, = J'd r V(r)e ' ' T.he expectation value of
the energy is

ve
Oxy = )

h,
(44) $E= ) VA, ) (0 0 +0"0" ) (qAk) h(k)—

which means that additional fIux 4 gives additional
charge Q = eve/40. 4 This is the same mechanism that
causes Laughlin quasiparticles to carry quantized &ac-
tional charge when cr „ is quantized. Combining (43)
and (44) tells us that the additional charge density is
given by Eq. (40).s4

) [(iq)0* (—iq)0* + (iq)0" (—iq)0" ]

d r [(V'0 ) + (V0") ] = —' d r(V'xn)
2

(49)

IV. EFFECTIVE ACTION

A.. SU(2}-invariant interactions

The spin stiffness p„ implicitly defined above, is related
to the pair-correlation function of l@o) by

p, = dkk VIhk (50)
In this section we calculate the effective action of a

smooth spin texture for SU(2)-invariant (i.e. , d/E = 0)
electron-electron interactions. The considerations in this
section apply to both a single-layer system with zero Zee-
man energy and to a pseudospin-polarized double-layer
system in which the two layers are spatially coincident
so that the interactions between layers and within layers
are the same. In the double-layer case this limit can of
course never be achieved experimentally, but it is a con-
venient place to begin the analysis since the ground state

where the pair-correlation function h(k)
(v/2vr) I d r(g(r) —1) exp( —ik r). For v = 1, lgo) is
known analytically and the pair-correlation function can
be evaluated analytically; h(k) = —exp( —

I
k

I /2) .
In this calculation we have kept the lowest-order gradi-

ent terms only. The physical origin of the stifFness is the
loss of exchange and correlation energy when the spin
orientation varies with position. For the Coulomb in-
teraction, p, = e /(16+2meE) (e /el)2. 49 x 10 at
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v = 1. For v = 1/3 and v = 1/5 we have evaluated
p, numerically using hypernetted-chain-approximation
correlation functions and find po = (e2/el) 9.23 x 10
and p, = (e /eI) 2.34 x 10 4, respectively. For v = 1
this is exactly the coeKcient of the gradient term which
Sondhi et al, . obtained by 6tting the known2 ' long-
wavelength spin-wave spectrum, but here we obtain it
Rom a first prin-ciples calculation. The classical model
defined by Eq. (49) is called the 0(3) nonlinear sigma
model and has been studied in great detail. We note in
passing that for the SU(2) invariant case, the spin stifF-
ness p, found here is exact. Quantum fiuctuation cor-
rections to the Hartree-Fock approximation afFect only
higher gradient terms in the action.

Now let us see what happens at higher order in O. The

third term is

E~'& = 2') V, 3, (y. l[o, [o, [o,p„p „l]]l@,). (51)

We have an odd number of powers of S or S" combined
together, but the state is polarized in the z direction,
so the expectation value must be zero. In general, odd
order terms are zero by symmetry. The next nonzero
term appears at fourth order:

E& & = -') v„', (@,—l[o, [o, [o, [o,p~p ~]l]]1@0) (52)

The nested commutators can be expanded as

[0, [0, [0, [0,pi, p i]]]]= pq[o, [0, [0, [0,P I ]]]]+ 4[o, Pq][o, [0, [0,p I ]]]+ 6[0, [0, Pa]] [0, [0,P g]]

+4[o, [o, [o,p„]1][o,P „]+[o, [o, [o, [o, P„]]]]p

We remark that for v = 1 the first and last terms (with
k g 0) give no contribution to E~4&, since the ground
state is annihilated by pi, . (There are no nonuniform
density, S = N/2 states since we have a full Landau
level. ) The third order term contains the Hartree inter-
action between the charges of the spin-textures as can be
recognized after the following manipulations:

8) v, (@,l[o, [o,p„]l[o,[o,p „]]ly,)

quantum equation of motion is

„„Hl[ ' s," V]l@)
dm~ 4~ lql& dS"

4

dt v dt

= —
q (@ol[0,[e ' S," Vl]l@.)

„, &@oI[0 [0 vl]l&o)

4m h=z sn" ~™
=

8 ).V~(@.I[0, [0,p ]]I@.)(@.l[o, [o,p „]]ly,)

1

1
2

d rd r' V(r —r')bp(r)hp(r'),

where t& p = s e;~ (c&;m x c&~ m) .m is the topological charge
density. In the 6rst step above we have used the fact that
l@o) is an approxiinate eigenstate of [0, [0,p i,]], since
0 is zero and even combinations of the spin operators
S and S" (i.e., S S, S S", etc.) commute with S'.
(For v = 1 this maneuver is exact. ) Thus the third term
in Eq. (53) contains the direct Couloinb energy term. If
we had a short-range interaction, other terms would give
contributions of the same importance; however, because
of the long-range of the Coulomb interaction, i.e., because
V~ 1/k as k -+ 0, one can show that this term is the
dominant fourth-order term in the spin-texture energy.
We take this to be the next leading term in the spin-
texture energy functional.

So far we have calculated the most relevant terms of
the static energy of a spin texture. The dynamics can
be obtained by studying the equation of motion. The

where E[m] is the energy functional of the spin texture,

E[m] = —' d r(V'm)2
2

+ — d rd r'V r —r' pg pp'.

If we include only the leading gradient term in the energy
functional, an approximation which is always valid for
su8iciently slowly varying spin textures, we obtain

dm~ 4~poq'
ZXXDq

dt hv
(57)

The equation of motion has spin-wave solutions in which
the magnetization precesses around the i direction with
wave vector q and frequency he@ = (4mpoq2/v). This is
precisely the energy of the long-wavelength spin waves
of the system. ' This equation of motion immediately
leads to the following effective Lagrangian:

L = — d rA[m(r)] Btm(r) —E[m],
4m

where A is the vector potential of a unit magnetic
monopole 's2 in the spin space, i.e. , V'~ x A = m. [For
spins oriented close to the z direction, as in the above dis-
cussions, A = (1/2)( —m„, m, 0).] The first term simply
contributes to the action a geometric phase proportional
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to the solid angle traced out by the spin vector during its
motion. This is exactly Berry's phase for the spin and
appears at the adiabatic level as expected.

We have now derived all the terms in the e6ective La-
grangian of Sondhi et al. &om a first-principles calcu-
lation.

B. EKective action for symmetry-breaking
interaction

In this section we derive an e6'ective action suitable for
double-layer systems using the pseudospin analogy dis-
cussed in Sec. II. We assume that terms in the Hamil-
tonian where electrons are scattered &om layer to layer
by interactions can be neglected and that the two wells
are identical. We define

Vo (VA + VR)1
2

which appear in the energy functional will be altered
by quantum Huctuations and the explicit expressions we
derive below are accurate only when the pseudospin-
dependent interactions are weak, i.e., only when the lay-
ers are close together. In Sec. VIII we will discuss esti-
mates obtained for the quantum Quctuation corrections
to these coefBcients &om Rnite-size exact diagonalization
and many-body perturbation theory calculations.

It is convenient here to take the ground state l@p) to
be spin polarized along the x direction. We first calcu-
late the energy change associated with small oscillations
of the spin texture away &om the x direction. The lead-
ing term vanishes just as in the SU(2) invariant case.
To understand qualitatively the physics contained in the
pseudospin-dependent term in the Hamiltonian we focus
erst on the second-order term

bE» = —) v;(@ l2[o, s„][0,s „]

+s'„[o,lo, s'„]]+[o, [o, s „]]s'„I@,). (63)
IV~:——(V~" —

VA, )2
(60) The first term on the right-hand side of Eq. (63) yields

exactly (for v = 1)
where V&+ is the Fourier transform with respect to the
planar coordinate of the (intralayer) interaction poten-
tial between a pair of electrons in the same layer and
V& is Fourier transform of the (interlayer) interaction
potential between a pair of electrons in opposite lay-
ers. If we neglect the finite thickness of the layers,
V& = 2me /k and VP = exp( kd)V& —The inte. raction
Hamiltonian can then be separated into a pseudospin-
independent part with interaction V and a pseudospin-
dependent part. The pseudospin dependent term in the
Hamiltonian is

(61)

Since V&+ & V&+, this term produces an easy-plane rather
than an Ising anisotropy. The pseudospin symmetry of
the Hamiltonian is reduced from SU(2) to U(1) by this
term. In addition, this term changes the quantum Buc-
tuations in the system since it does not commute with
the order parameter

—2) .e(@ol[»sk]l@o)wel[o s-k]l&o)

) Vi, e ~ 0"„0"„
k

P2
k 2

242 ) Vl,'e 2 mmmm' q

N
d rd r'V'(r —r')m'(r)m'(r'), (64)

P~ J d~r(m*j~ (65)

where V'(r) is the Fourier transform of V&'e ~ . This is
exactly the Hartree-like charging energy. In the limit of
a smooth spin texture, using the gradient expansion, this
term becomes a local mass term, which is the capacitive
charging energy. That is,

[VsB, s"] g 0, (62) where

where p = x, y.
The pseudospin-texture energy due to the pseudospin-

independent term in the Hamiltonian can be calculated
as discussed in Sec. IVA. In this section we calculate
the contribution of the pseudospin-dependent term in the
Hamiltonian to the spin-texture energy.

In calculating the contribution of the pseudospin-
dependent term to the spin-texture energy we approx-
imate the ground state by the S = 1V'/2 total pseudospin
eigenstate which is the ground state in the limit of zero
layer separation. We argue that the form of the energy
functional we derive must remain valid even when quan-
tum Quctuations due to the pseudospin-dependent terms
in the Hamiltonian are present. However, the coeKcients

2

PH = d2rV'(r).

We see immediately from this term that the symmetry-
breaking interactions favor equal population of the two
layers, or in pseudospin language they favor spin textures
where the pseudospin orientation is in the x-y plane.

The right-hand side of Eq. (63) can, after a straightfor-
ward but lengthy and tedious calculation, be expressed in
terms of the two-point correlations of iv/0). The calcula-
tions are similar to those in Ref. 7 and involve commuta-
tors of magnetic translation operators and of pseudospin
operators. The following identity enters the calculation
at several points:
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u'

pAq+ ~p.v sin
2 A 2 (67)

(68)

where

In the limit of slowly varying spin textures we obtain the
following result for the contribution of the symmetry-
breaking term to the energy of the spin texture:

&sa(m] = f ~'~()) (m*)' + &Iml + —'(&m')'

cient of the mass term vanishes. We can understand this
result in the pseudospin language by noting that in this
limit the symmetry-breaking interaction is proportional
to P,.(S,. )2, which (for spin 2) still commutes with all
components of the total spin operator and does not, de-
spite appearances, destroy the SU(2) symxnetry of the
Hamiltonian. That is to say, an (apparently) syxnmetry-
breaking interaction that is purely local does not actually
break the symmetry.

Prom another point of view we can understand this
result by noting that in ~go) no two particles can be at
the same position and therefore they will not experience
a local interaction. This property of ~@o) and the fact
that P vanishes for local V& can be confirmed &om the
following identity satisfied by h(k):

p', = dkV'(k) h(k) k
0

(69) dkkh(k) = —v.
0

(73)

and P = P~ + P„, with

P„, = dkkVi, h(k).
8m2 0

(70)

6 d d Q|[m] = — [qfm' m'. (71)

The total mass term is given by

p = pal+ p„, = dk V'(0) —V'(k) kh(k).
8m 2

The functional C[xxx] is nonanalytic in the wave vector
due to the long-range nature of the Coulomb interaction

It is important to observe that in the limit of small layer
separations V&' approaches me d, which is local. Because
there is no contribution to P from this local term, the
mass coefFicient ends up being proportional to the d2

rather than proportional to d at small d, as would be ex-
pected based on naive considerations of the capacitance
energy.

Including both the SU(2) invariant contribution de-
fined in Eq. (49) and the syxnxnetry-breaking contribu-
tions found above, the total (static) energy functional for
a spin texture (ignoring for the moment the long-range
Coulomb interaction terms among the charged defects)
is given by

a e(m] = / rt~r(p (m*) +c(rn] + (vm*)
2

Notice that V~ & V~, but that the intralayer interaction
contains an exchange term which reduces the eKect of V~.
Also note that in the limit where the symmetry-breaking
interaction is local, i.e., the limit where V& is independent
of k, the exchange-correlation contribution to the coeK- where

+ (Vm )*+(Vm")' ), (74)

0.050

0.040

0.030

0.020

0.010

FIG. 3. Axxisotropy mass (ixx unit of
e /eP) and easy-plane spin stifFness (in unit
of e /eE) as a function of layer separation for
v = 1. These results do not include quan-
tum Buctuations which are important at fi-

nite layer separation.
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FIG. 4. Anisotropy mass and easy-plane
spin stiffness as a function of layer separation
for u = 1/3. These results do not include the
dependence of quantum Huctuations on the
layer separation.
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and

p~ = dkVq h(k)k
32% Q

p~ = dkVPh(k)k
32% Q

(75)

(76)

ergy functional. We also show that a gradient expansion
of this energy functional gives exactly the result we ob-
tained in Sec. IV B.

We work in the Landau gauge A = (0, Bx, 0). The
one-body orbital wave functions in the LLL in this gauge
are

This result is easy to understand. The contribution to
the exchange-correlation energy which is dependent on
the a polarization of the pseudospin includes the Hartree
energy which favors m = 0 and the exchange correla-
tion within the layers. The exchange-correlation energy
within each layer increases superlinearly p ~ with the
layer density so this term favors rn, P 0. As discussed
above, the Hartree energy is always larger for constant
spin densities. The term proportional to (V'm') in the
energy density captures the reduction of the exchange-
correlation energy &om within each layer when the den-
sity in the layer is not constant and therefore p~ is de-
pendent only on the intralayer interaction. (p& = p, at
all layer separations. Because of the presence of the mass
term, neither this gradient term nor the C[rn] term is im-
portant at long wavelengths and so will be neglected. ) On
the other hand, pseudospin order in the x-y plane repre-
sents interlayer phase coherence. As discussed earlier, an
interlayer phase relationship that changes as a function
of position results in a loss of interlayer correlation en-
ergy so that p~ depends only on interlayer interactions.
In Figs. 3 and 4 we illustrate the dependence of P and
p~ on layer separation calculated &om the above expres-
sions for v = 1 and v = 1/3, respectively. We emphasize
that these results are not expected to be accurate at large
layer separations. We will compare these results with es-
timates &om exact diagonalization calculations in Sec.
VIII.

C. Hartree-Pock picture of spin textures
and gradient expansion of the energy functional

In this section we develop a Hartree-Fock picture to
describe spin textures and derive the corresponding en-

(77)

where X = k„S is the guiding center.
A particular class of single Slater determinants at v =

1 in this gauge can be written in the form

( ) + ~t „(),;,(x)
~0)

m'(x) = cos8(x),
m (x) = sin i9(x) cosy(x),
m" (x) = sin8(x) sin&p(x). (79)

~@) is not the most general spin texture, because rn does
not depend on y. As a consequence there is no spatial
variation in charge density.

It is straightforward to evaluate the energy of ~@). For
the following discussion we include the term in the Hamil-
tonian which allows electrons to tunnel &om layer to layer
and whose consequences will be explored in detail in a
subsequent paper. The Hamiltonian in this representa-
tion is

(78)

where ~0) is the fermion vacuum, Cxtt
&

creates an elec-
tron in the upper (lower) layer in orbit @x, respectively.
In this state each Landau gauge orbital is occupied by a
single electron whose pseudospin orientation is specified
by the polar angles 8(X) and P(X). Each Landau gauge
orbital is localized within 8 of its guiding center. We
are interested in states for which 8(X) and P(X) vary
slowly on the magnetic length energy scale so that ~@)
describes a spin texture in which
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A 1v=- )
Xy, Xg ) X3 ) X4

CJy CJg t t
X,X,X,X, +X, ,+X, ,+X

where o =g, j, is the layer index,

H=T+V,
T = t —) (Cxt&cx~ + Cxt&cx~))

X

(80)

8X . 8X
(@lTlg) = 2—t ) cos sin cos y(X)

X
=-t ) m. (X)

X
tLy

2m/2
dz m*(z)

d r m (r).2~e2

(s2)

(83)

(s4)

Vtt V44 V& Vtl V4t

Vx, x,x,x, = drqdr2 V rq —r2

(rl )4 x (r2) 4x (rl )@x (r2).

Hence we have

(sl.)

In the last step we allow the possibility that m depends
on y as well. We see this result agrees exactly with the
tunneling energy we obtained previously. The contribu-
tion &om interactions can also be evaluated using Wick's
theorem:

(qlvly) = )- v"" ((ct c ...)(Ct c .) (Ct c )(ct c
Xy, Xg )Xg)X4

) (—E (Xq —X2) + [D (Xq —X2) —D (Xq —X2) —E (Xq —X2)] m'(Xq)m'(X2)
Xy,X2

(X] X2) [m (X&)m (X2) + m" (%)m"(X2)]j (85)

m" (zg) m" (z2) = [m" (zg)] + m (zg) (z2 —zg )

/8
xl m(z)

l(Oz

1 2+—m" (zg)(z2 —zg)
2

( 82
2m"(zi) I+" .

)
(s6)

Replacing the summation over guiding centers by inte-
grations, we easily recover Eq. (74). [The coefficients of
the gradient terms are proportional to the second mo-
ments of the exchange integrals Px X2E(X).] In this
formulation we see explicitly that the leading gradient
corrections are adequate as long as the pseudospin orien-
tation changes slowly on the scale of Z.

In this equation we have absorbed the Hartree energy
of the system for equal layer densities into the zero
of energy. The quantities D(X) = Vx+yyx+yy and
E(X):—Vx+y yyx+y are the direct and exchange two-

body integrals for both intralayer and interlayer inter-
actions. The above equation has clear physical content.
The 6rst term in the anal form of the equation is the ex-
change energy in the absence of pseudospin polarization.
The second term is the Hartree charging energy including
an exchange correction. The third term is the exchange
energy due to interlayer coherence, which is the source
of the loss of exchange energy when m and m" change.
We now make a gradient expansion by writing

D. Hubbard-Stratonovich transformation approach
to the efFective action

In Sec. IVB above, we derived the effective action by
calculating the energy functional for spin textures. The
dynamical term in the effective action was determined by
requiring that the Lagrangian implies the correct equa-
tion of motion for the spin textures. In this section we
brieQy sketch an alternate route for deriving the same
effective action. The basic idea is the familiar Hubbard-
Stratonovich (HS) transformation. We introduce auxil-
iary 6elds to decouple the interaction and integrate out
the ferrnionic degrees of freedom to obtain the effective
action of the auxiliary Gelds. The auxiliary fields are
essentially the order parameters.

It is inconvenient to project onto the lowest Landau
level until the end of the calculation so we work with the
full Hamiltonian which has the form

0 =Ho+V (87)

where

1 6
~o = ) . I, —-&(r~)

2m c
2

(ss)

Vp VpV=
2 ) pqp q

———Vo) Sq. S q
——) pqp q.

q
'

q

is the kinetic energy of the particles in the presence of
the external magnetic Geld. This approach is more easily
implemented if we have a delta-function-like interaction
V(r) = Voh(r) and so we discuss this case ffrst:
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The advantage of a b-function interaction is that it can
be expressed in terms of spin operators, which makes
it possible to decouple the interaction in terms of spin
auxiliary Gelds. Written in the above particular form, we
will find that the saddle point of the auxiliary Gelds cor-
responds to the Hartree-Fock mean-Geld Hamiltonian.
The partition function is

l~( )) =" "I~.), (97)

to find ltl)'(r)) and E(r). It is now possible to take the
strong magnetic-Geld limit. It is both plausible and eas-
ily checked that in this case l@(r)) is nothing but our
familiar spin-texture state

z(p) = T (s-~" p(p)), (90)
where

I 4p) is the fully polarized state in the z direction
and

where 0(r) = ) S, A(r, r;), (98)

S(p) = T.e-f'v(. ) (91) where A(r, r) = z x m(r, r) and m(r, r) is a unit vector
in the direction of h.

Now let us look at Berry's phase term
V(r) =e o ~e o (92)

T is the (imaginary) time ordering operator. Now we
can introduce a vector auxiliary field h(r, r) and a scalar
auxiliary field ())(r, r) to decouple V:

id7 = 1 —(4'(r)I4(r + dr))
= 1 —(&(r)I" ""'e ' "I+(r))

1 (tII(r) let&r 0(r)dr z[O(r) —sr Os(r)]dr
I
@(r) )

Z(p) —f tthttps h f s s(, ','s'+ —', r')

PHoT ——foP dr f d r( —S h —pt))) } (93)
(99)

= —i&e(r) Ia.o(r) + -'[o(r), ~-0(r)] l@(r)&«

= i —dr d r A(m(r, r)) . (9 m(r, r).
2

H(r) = Ho —f d~r S(r) h(r, r) + const (94)

in imaginary time. Since there is always a large one-
body gap for H(r) while the collective modes of h are
gapless [which means H(r) is slowly varying], we can use
the adiabatic (or Born-Oppenheimer) approximation to
evaluate the propagator

—pH(r) i'd[I'j —
0 E(&)~&

)

where p[l'] is Berry's phase determined by

After the HS decoupling, we Gnd that the fermionic
Hamiltonian becomes quadratic so we can (at least in
principle) carry out the trace over the ferinion degrees of
&eedom and hence obtain the effective action in terms
of the auxiliary fields h and (t). In doing that, however,
we still need to make approximations. We notice that
the direction fluctuations of h are massless [due to bro-
ken SU(2) symmetry], while the fluctuations of P are
massive. 42 It is therefore a good approximation to as-
sume that (tt is frozen to be a constant in space and time
so it only contributes a chemical potential-like term in the
fermion Hamiltonian and is hence unimportant. Thus we
will concentrate on the fiuctuations of h.

In computing the trace we notice that the trace is over
nothing but the propagator of a system governed by the
time-dependent Hamiltonian

Here p = 1/(2m B) is the density of electrons. Hence we
Gnd that Berry's phase term is exactly the dynamical
(time-dependent) term we obtained previously

ip=i — d~ d rA m7. , r 8 m7. , r.2
(100)

Now let us calculate E(r):

E(r) =(@(r)IH(r)l@(r)) =(@pie ' "H(r)e' "I@p)
1—= (hliplH —i[0, H] ——[0, [0,H]] + . I@p)
2

2
d rh m+ pE d—r (V'h") . (V'm")

8
+ n ~ ~ (101)

S@[P]= ip[I']+ dr d r h ——h. m
0 4Vp 2

+ pP(tth )(tto—ss) ).s1 2

8
(102)

The first term is just the gain of energy by polarizing the
spins in the direction of the external Geld. The second
term comes from the nonlocality induced by the projec-
tion to the LLL, so the spins cannot take full advantage
of the external field if its direction is changing in space.
This is exactly the physics that is responsible for the
stiffness. Hence the effective action is

(96)

where I'k(r)) is the ground state of H(r) and E(7) is
the ground-state energy. In order to proceed, we need

h = pVpn, (103)

where n is a constant unit vector. At this point the one-

Here h = Ihl. We find the action has its minimum when
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body Hamiltonian given by h is exactly the Hartree-Fock
Hamiltonian. The fluctuations of the magnitude of h are
massive and we can integrate them out to obtain the
nonlinear sigma model

sz]m] = ip]I'] + —p. dv. f d*r (Urn),
2 0

(104)

where the stifFness p, = p I. Vo/4 = Vo/(16vr I. ) is ex-
actly what we obtained Rom the spin-texture calcula-
tions.

The above discussion was for the case of short-range
interactions. To generalize to the finite-range-interaction
case we separate a b-function-like part &om the interac-
tion, follow the same procedures as illustrated above, and
treat the remaining part of the interaction as a perturba-
tion. Note that non-b-function-like interactions are not
necessarily SU(2) invariant. At the first order in this per-
turbation theory [where ~iII(~)) is unaffected], we recover
all the results obtained in previous subsections.

FIG. 5. Illustration of a skyrmion on a sphere.

V. CHARGED OBJECTS IN THE SYSTEM

A. Skyrmions

We start by briefly reviewing and commenting on re-
sults for charged excitations obtained by Sondhi et al.
for a single-layer system of spin 1/2 particles with no Zee-
man coupling. These results can be directly taken over to
the double-layer system with d/l = 0 [which is therefore
SU(2) invariant]. In this case one Ands, ' as discussed
in Sec. VI and mentioned previously, that the double-
layer system with spontaneous interlayer phase coherence
supports neutral gapless spin-wave excitations which dis-
perse quadratically in the long-wavelength limit. This
property of spin waves is characteristic of isotropic fer-
romagnetism. However, in contrast to the case of quan-
tum Heisenberg ferromagnets on a lattice, quantum Hall
systems also possess charge degrees of &eedom and are
more analogous to itinerant electron ferromagnets. For
example, after a spin is flipped, it can be scattered to
other orbital states and carry charge throughout the sys-
tem. In addition to the gapless spin-wave excitations,
there are gapfut charged excitations. Only charged ex-
citations can contribute to the conductivity so that the
low-temperature transport coeKcients will be activated
with an activation energy which is half the charge gap.
Some of the low-energy charged excitations can be gener-
ated &om the topologically nontrivial spin con6gurations
discussed below.

We have seen in Sec. III that the physical charge den-
sity of the system at v = 1/m is 1/m of the topological
charge density. As a consequence of this the topolog-
ical solitoiis, i.e., skyrmions, carry 1/m units of physi-
cal charge (see Fig. 5).is i2 Inside a skyrmion the spins
wrap around the unit order-parameter sphere exactly
once. In the SU(2) invariant case with Coulomb inter-
actions, Sondhi et al. have shown that skyrmions are the
lowest-energy charged excitations of the system at v =
1. This is not surprising because for the skyrmion spin
configuration, the spins are nearly parallel locally, so the

exchange energy is only slightly reduced. In contrast, for
ordinary single-particle excitations (see Fig. 6), an added
electron has its spin opposite to the others and has no
exchange energy. As pointed out earlier, in the SU(2)
invariant limit we know the exact spin stiffness. Hence
the exact energy of a single (large scale) skyrmion can be
obtained

E, = 4vrp, . (105)

For the case of a system with Coulomb interactions at
v = 1, we obtain &om the nonlinear sigma model energy
expression

E, =—1 g 2

(106)

It is important to realize that since the total particle
number is Gxed in our derivation of the nonlinear sigma
model energy expression, E, actually gives the energy
to introduce an isolated skyrmion or antiskyrmion into
the bulk of the system and maintain charge neutrality by
adding or subtracting charge &om the edge of the system.
(For related careful discussions of quasiparticle energies
in the &actional quantum Hall effect see Refs. 44 and
45.) This energy must be subtracted off if we wish to
calculate e~, the energy to add (+) or subtract (—) 1/m
electrons &om the system at v = 1/m in the form of a
skyrmion or antiskyrmion spin texture. It follows that

~~ = +v((v) + E, , (107)

where ((v) is the energy per electron in the incompress-
ible ground state at v = 1/m. [For the Coulomb inter-

FIG. 6. Illustration of localized quasiparticle and quasihole
excitations at v = 1.
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action case ((1) = —ger/8(e2/E) = —0.6266(e2/E) and4s

((1/3) = —0.4100(e //). j The chemical potential for v )
1/m is me+, while the chemical potential for v ( 1/m
is —me . For v = 1 it follows &om the above that

(—1/4) gvr/2(e /E) and ~ = (3/4) ger/2(e /E)
The energies of the localized quasiparticle excitations
of Fig. 6 cannot be reliably calculated from the nonlin-
ear sigma model energy expression, but for v = 1 the
microscopic energy can be calculated analytically. For
these excitations e+ ——0 (the spin-reversed added elec-
tron has no exchange energy) and e = +7r/2(e /E)
In the absence of Zeeman coupling it follows that the
lowest-energy particles and holes are both formed &om
skyrmion spin textures. The lowest-energy particle-hole
excitation is a skyrmion-antiskyrmion pair which has
energy 2E, . This is only one-half of that of the or-
dinary particle-hole pair in the case of the Coulomb
interaction. These results receive unequivocal support
&om numerical calculations.

Using our result for the spin stiffness we can extend
this analysis to the case of v = 1/3. At this filling
factor E, = 0.0116(e /l), e+ = —0.1251(e //), and

= 0.1483(e //). We find that the minimum particle-
hole energy 2E, = 0.0232(e2/l) is close to the value of
0.024(ez//) estimated by Sondhi et al. , using the single-
mode approximation for the spin-wave stiffness. In the
limit of large Zeeman energy at this filling factor both the
localized quasihole and quasiparticle excitations will be
completely spin polarized. The quasiparticle and quasi-
hole energies in this limit have been estimated ' 4 to
have the values e~ = —0.120(e2//) and e = 0.2337.
Again the skyrmion and antiskyrmion states possible at
zero Zeeman coupling have lower energy, although only
barely so in the quasiparticle case. The particle-hole
creation energy 2E, for v = 1/3 is approximately four
times larger than in the large Zeeman coupling limit.
This is consistent with results &om the finite-size exact-
diagonalization study of Chakraborty et al. who found
that in the absence of Zeeman coupling, quasiparticle en-
ergies at v = 1/3 could be reduced by Hipping a single
spin.

Another consequence of skyrmions being the lowest-
energy charged excitation is that in finite-size systems
on a sphere, the total spin of the ground state changes
suddenly from 2 to zero or one-half (for odd and even
N, respectively) when one changes the particle nuxnber
&om N to N + 1, where N is the Landau level degen-
eracy without spin. ' 2 (We have verified that the same
property holds for v = 1/3 in agreement with the anal-
ysis of the preceding paragraph. ) This is because when
a skyrmion is put on a sphere, the spin configuration is
like a hedgehog and it is plausible that the total spin is
essentially zero. i2 (As we discuss below, the total angu-
lar momentum J is precisely zero. ) Note, however, that
the system is still ferromagnetic in the sense that it is
not a local singlet and its Zeeman susceptibility still
diverges.

In this case the topological charge density is uniformly
distributed on the sphere and the skyrmion is un&us-
trated. The situation is very different for a system with
rectangular geometry with periodic boundary conditions,

i.e, the geometry of a torus. In this case the skyrmion is
&ustrated and hence squeezed by the finite-size effect, so
its size is much smaller than the system size. This can be
understood by looking at the effect of periodic boundary
conditions on the energy of a skyrmion. We know the
gradient energy term is scale invariant and for the ideal
skyrmion solution, the energy is minimized to be 4mp, .
However, an ideal solution does not satisfy the boundary
conditions. In a rectangle a skyrmion has to be distorted
near the boundary so the energy from the stiffness term
will increase. It is obvious that the smaller the size of the
skyrmion, the smaller the energy cost due to the bound-
ary effect. However, the skyrmion cannot be too small
because it costs too much Coulomb energy (which wants
the skyrmion to be as large as possible so that the excess
charge will be distributed as uniformly as possible). The
optimal size of a skyrmion on a rectangle is determined
by a competition between stiffness and Coulomb energies
and as a consequence the total spin S of the ground state
of the N + 1 particle system is size dependent.

We can estimate the difFerence between (N + 1)/2 and
S (i.e. , the number of spins Hipped in the ground state)
in the following way. Keeping the two leading terms, the
energy of a spin texture at v = 1 is

where p is the topological charge density and V is the
Coulomb interaction. The energy of a skyrmion with
linear size A && Z in a system with linear size B is

E(A) = 4~p, + A
~

—
~

+ B(A)
qR)

(109)

where A and B are positive constants with units of en-
ergy. The first term in Eq. (109) is the usual energy of an
un&ustrated, infinite-size skyrmion and the last two are
finite-size corrections from the two terms in Eq. (108),
respectively. Minimizing E with respect to A gives

A oc B~E~. (110)

The number of spins fIipped in a skyrmion with size A

and long distance cutoff B is

DS oc A2 ln
~

—
~

oc Ns ln N,
/B) x

gA)

where we used the fact that N oc Bz. From Eq. (111)we
see that as N becomes large, the number of Hipped spins
in the optimal skyrmion state gets large, but is always
small compared to N so that the ground state is almost
fully polarized.

Skyrmion spin textures produce an excitation energy
which is independent of the texture size as long as the
size is large compared to microscopic lengths E and small
compared to the system size. This leads to dramatic
Gnite-size effects which are typified by the qualitative
differences between ground-state spin quantum numbers
for electrons in a rectangle and on a sphere, where the
state is unpolarized. For the case of a square with peri-

E = —p, d2r (7'xxx)~ + — d rd r' V(r —r')p(r)p(r'),
2

'
2

(108)
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odic boundary conditions (i.e. , a torus), a crude estimate
gives the coefficient in front of N3 ln N in Eq. (111)to be
0.26. In Fig. 7 we compare this estimate with results &om
finite-size exact diagonalization calculations for square
boundary conditions and find qualitative agreement.

Using the composite fermion theory, Jain and Wu
gave an alternative explanation of the fact that the total
spin goes to zero for an N+ 1 electron system on a sphere;
however, their approach does not shed any light on the
nature of the spin correlations. We do not, at present,
see how our results on a torus can be easily understood
within the composite fermion formalism. This would,
however, be an interesting avenue to pursue. Neverthe-
less, the quantitative agreement with the ground-state
energy on the sphere and the qualitative agreement for
the polarization on the torus lend strong weight to the
skyrmion picture.

We note in passing that Jain and Wu i found for the
case of higher Landau levels that the addition of a single
electron does not destroy the ferromagnetic state by pro-
duction of a skyrmion. Wu and Sondhi have computed
the skyrmion energy analytically and confirm this result
as being due to a change in the spin stifFness in higher
Landau levels.

We close this discussion by noting that it is possible to
write down simple microscopic variational wave functions
for the skyrmion, both in the plane and on the sphere.
Consider the following state in the plane:

(112)

where 4& is defined in Eq. (2), () refers to the spinor
for the mth particle, and A is a fixed length scale. This
is a skyrmion because it has its spin purely down at the
origin (where z = 0) and has spin purely up at infinity
(where z » A). The paraineter A is simply the size
scale of the skyrmion. ' Notice that in the limit A

0 (where the continuum efFective action is invalid, but
this microscopic wave function is still sensible) we recover
a fully spin-polarized filled Landau level with a charge-

1 Laughlin quasihole at the origin. Hence the number
of Bipped spins interpolates continuously &om zero to
infinity as A increases.

In order to analyze the skyrmion wave function in Eq.
(112), we use the Laughlin plasma analogy. In this anal-
ogy the norm of vpp, Try I f D[z]iiII[z]i2 is viewed as the
partition function of a Coulomb gas. In order to compute
the density distribution we simply need to take a trace
over the spin

g D z 2 Q)j n Iz; —zjl+ p gg 1n(Ized l +~ ) 4 Eg I& I

This partition function describes the usual logarithmi-
cally interacting Coulomb gas with uniform background
charge plus a spatially varying impurity background
charge Apb(r)

b,Pb(r) = V' V—(r—) =—
~(„z + p2)2 '

V(r) = —1n(r + A ).
2

For large enough scale size A && E, local neutrality
of the plasma implies that the excess electron num-
ber density is precisely Apb(r), so that Eq. (115) is in
agreement with the standard result for the topological
density.

For a complete microscopic analytic solution valid for
arbitrary A, we use the fact that the proposed many-body
wave function is nothing but a Slater determinant of the
single particle states P (z),

The electron number density is then

5.0

40

+
Z'.

4.0

3.0

2.0

FIG. 7. The number of spins Hipped in the
ground state versus the system size (Landau
level degeneracy) when a single electron is
added to the v = 1 incompressible state on
a torus. These results demonstrate that the
ground state contains a single skyrmion spin
texture whose size is determined by the com-
petition between minimizing the frustration
required by the boundary condition and the
Coulomb energy.
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1
2' '

is the kinetic angular momentum. One can show that
L = A+SA (where 0 = —') is the generator of rotations

l~l

for the system, i.e.,
which yields

1 1 g& [x[~
Dn( l(z) = —

~

— dnn e
27r (2

x(iv)'+ A ) —1 f. (118)

[L,X~] = ie p~X~,

where X is any vector. We also have

(121)

(122)

Similarly, the spin density distribution S (r) can be ob-
tained and it also agrees with that for the standard
skyrmion in the large A limit. We have also computed
the skyrmion creation energy &om the spin-dependent
pair correlation functions of the plasma following the
same procedure as in Ref. 45. Figure 8 shows a plot
of this energy as a function of scale size A and shows
that the microscopic formula gives the correct asymp-
totic value of one-half the quasihole energy for the large-
A limit, in which the continuum field theoretic picture
holds exactly. As the core size decreases, the skyrmion
energy increases due to the increasing Coulomb charging
energy. However, it does not diverge as the naive extrap-
olation of the field theoretic expression would. Finally,
we note that by replacing (&) by (&„),we can generate a
skyrmion with a Pontryagin index n.

The skyrmion wave function has a particularly simple
form on a sphere. On a sphere with radius B = S / E

where S is an integer or a half integer, the number of
a Bux quanta is N, = 2S. The single-particle kinetic
energy is5

L+ = uB„,
I = VO„,

1L' = —(u0„—vO„).
2

(123)
(124)

(125)

The LLL wave functions are simply homogeneous poly-
nomials of u and v of degree 2S. The filled LLL single
Slater determinant is just

tlat v~
—the Vq (126)

where N = N, + 1. The single antiskyrmion (that carries
charge —1) wave function is simply

so the eigenvalues of ~A~2 have the form (n + S)(n +
S + 1) —S2, where n is an integer. For n = 0, one
obtains the LLL energy T = zu and the degeneracy is

2S+1 = N, +1. If we use the Dirac gauge A = ~&/cot 8,
everything can be easily expressed in terms of spinor co-
ordinates u = cos 2 exp(i&2), v = sin 2 exp( —i~2). In this
representation

where

T = —cu, iAi /S, (119) iv —1 (
k=1

N —1

(uiv j uj vi ) ) (127)

0.9

A = r x [—iV'+ eA(r)] (120) where we have explicitly put in the fact that the total
number of particles is now N —1. The spin configuration
of @, is that of a hedgehog (with spins pointing inside
toward the center of the sphere) since the ratio of iugi to
~vi,

~

varies as cot(e/2). This state is neither an eigenstate
of St t nor an eigenstate of I t ~. It is, however, a singlet
of the total angular momentum J:

J = &to~+ Stot;. (128)
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Physically this means the state ~@,) is invariant under
a spin rotation followed by an identical space rotation,
which is clear &om the uniform nature of the hedgehog
spin configuratien.

If we project g, onto the subspace of St q
——0 (or 2

if we have an odd number of particles), we automatically
get Lq t ——0 (or z~). So the projected state will be in-
variant under beth spin and space rotation. This state
should have good overlap with the exact ground state.

The skyrmion (that carries charge +1) wave function
has a similar form:

FIG. 8. Microscopic skyrmion energy vs the scale size A.

The trial wave function interpolates continuously between a
spin-polarized quasihole at A = 0 and a smooth skyrmion spin
texture for A —+ oo.

iV'+1 ( ~
iv+1

(u;v, —u, v, ).
i=i

(129)
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The spin configuration of this state is exactly the opposite
of vP „i.e., it is like a hedgehog with all spins pointing
outward.

B. Merons

When d/8 g 0, the R component of the order param-
eter is massive and the system has U(l) symmetry. In
this case, there is another class of topologically stable
charged objects, merons. ' ' As shown in the follow-
ing, merons (see Fig. 9) carry one half unit of topological
charge and hences~ 1/2m units of electron charge. Far
away &om the core of a meron the order parameter lies
in the (massless) XY plane and forms a vortex configu-
ration with + vorticity, while inside the core region the

order parameter smoothly rotates either up or down out
of the XY plane. Hence there are four types of merons.
The energy of a single meron diverges logarithmically
with the system size with a coefBcient proportional to the
interlayer spin stiffness. The interaction between merons
has a contribution from the stiffness energy which is also
logarithmic, attractive for opposite vorticity pairs and re-
pulsive for same vorticity pairs. These properties are ex-
actly the same as the vortices in the classical XY model.
In order to determine the sign of the charge carried by a
meron, one has to specify both its vorticity and the spin
con6guration in the core region. Merons will also have
a long-range I/r interaction due to their charges which
is attractive for oppositely charged merons and repulsive
for like-charged merons.

The fact that merons carry topological charge one-half
can be seen by the following argument. Imagine a vortex
in the spin system. If an electron circles the vortex at a
large distance, its spin rotates through 2m. This induces
a Berry phase of exp(i2vrS) = —1, which is equivalent
to that induced by a charge moving around one-half of a
flux quantum. Since 0 „=e2/mh, the vortex picks up
charge 1/2m. The topological charge of a meron can also
be understood by considering a variational function for
the meron spin texture

(b)

D1 = 1 —7D p cosp) 1 —I T sing)m T

(130)

The local topological charge density calculated &om bp =
e;~(8;nx x B~rn) rn can be expressed in the form

1 dm"(")=4., d, (131)

(c)

and the total charge is

Q = f d*r bp(r) = —m*(oo) —m*(0) .

For a meron, the spin points up or down at the core cen-
ter and tilts away from the z direction as the distance
&om the core center increases. The fc and y components
of m must vanish at the location of the vortex to prevent
a divergence of the gradient energy. Hence we must have
m'(0) = +1. At asymptotically large distances from the
origin, the spins point purely radially in the x-y plane.
Thus the topological charge is + 2 depending on the po-
larity of core spin. The variational function mentioned
above corresponds to a vortex with positive vorticity. In
order to make a vortex with negative vorticity (antivor-
tex), we need to apply the space-inversion operation to
the vortex solution. Since topological charge is a pseudo-
scalar quantity, it is odd with respect to parity. Hence
the general result for the topological charge of the four
meron types may be summarized by the following for-
mula:

FIG. 9. Illustration of merons (vortices). The spin config-
uration in the core region tips smoothly out of the XY plane
making this object essentially one-half of a skyrmion.

Q = —m'(oo) —m'(0) n„, (133)

where n„ is the vortex winding number. The formu-
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las derived above for the meron charge do not rely for
their validity on the variational ansatz assumed. in Eq.
(130). They are quite general and follow from the fact
that a meron topologically has half the spin winding of
a skyrmion. The meron charge of +1/2 is a topological
invariant.

Finite-energy excitations can be formed by pairs of
merons with opposite vorticity. It seems likely that un-
der appropriate circumstances the lowest-energy charged
excitations of the system will consist of a bound pair of
merons. (A skyrmion can be viewed as a closely bound
pair of merons with the same charge and opposite vortic-
ity and a meron can be viewed as half a skyrmion. ) The
energy of a pair of merons with opposite vorticity (but
like charge) separated by a distance R is given by

2

E „=2E + + 2vrp@in(B/R )4B
where E, is the core energy of an isolated meron B is
the core radius of an isolated meron, and the expression
should be applicable only when B )) B,. Minimizing
this expression with respect to B gives a meron sepa-
ration B* = e2/8vrp@. Using the expression for the p~
derived in Sec. IV 8, this gives R* = 6E for d/E l.
Quantum corrections are expected to reduce p@ so this
expression should give a lower bound on the meron sepa-
ration. This very attractive picture of the lowest-energy
charge carriers in the systexn (see Fig. 10) will only apply
when the meron separation is larger than the meron core
size (which is expected to be E) and its energy is lower
than the energy of a conventional quasiparticle excita-
tion where a charge is added. with pseudospin directed
in opposition to the local pseudospin order. It is clear
that we should expect the meron core size to increase
as d/I approaches zero and the mass term in the energy
expression becomes small since there is only a small en-

ergy cost for pseudospins to point out of the xy plane.
Hence the picture is not likely to apply for very small
d/E. Fixrther work which estimates xneron core energies
and radii will be necessary to substantiate this picture
and is currently in progress. We note in passing that the
above description of charged vortex antivortex pairs can
also be used mutati8 mutandis for neutral vortex antivor-
tex pairs. These will have a conserved momentum and
the neutral collective mode (discussed in Sec. VI) will
cross over &om spin waves to such quasiexcitons at large
wave vectors in analogy to what occurs in the single-layer
case.2

As in the case of skyrmions, we can write down ex-
plicit microscopic variational wave functions for vortices
(merons). We start with the simplest example. A meron

with vorticity +1 and charge —
2 that has the smallest

possible core size:

M

I~+i,--, ) =
I
~c' g+ ~c'+xg I 10).

rn =0
(135)

Here ~0) is the ferxnion vacuum, ct
& &

creates an electron
in the upper (lower) layer in the angular xnomentum m
state in the LLL, and M is the angular momentum quan-
tum number corresponding to the edge. The vorticity is
+1 because far away the spin wave function is essentially

&e—'&'t
x(4) = ~ I

(136)

where P is the polar angle. The charge is —
2 because we

have created a hole in the center of the lower layer (m =
0 $ is unoccupied). Since the spin is pointing up at the
center, this agrees with the spin-charge relation derived
earlier. From the spin-charge relation we know we can
change the sign of the charge of a meron by changing the
direction of spins in the core region without changing
the vorticity. This can be seen explicitly &om the wave
function

~@+x,+~) =co„~ ~c g+ c +,„ l~0) (137)
m=O

M

I@+i.,—,) = (a-c' g+ t-c'+~g)10). (138)

This meron has charge —
2 and we have assumed k ) 0.

Here a and b are parameters that satisfy

This state has charge +2 because we have put in an
electron in the m = 0 state in the lower layer. Obviously
what we did (in terms of the spin-texture language) is
to Hip the spins in the core region to the down direc-
tion without changing the vorticity of the meron at long
distances. In this construction, one sees that in a sense,
the merons are like kactionally charged mid-gap states,
which can be empty or occupied.

A meron with vorticity —1 is readily obtained by sim-

ply interchanging the labels m and m+1 in the subscripts
in Eqs. (135) and (137). Invariance under pseudospin
reversal guarantees the equality of the energies of corre-
sponding + vorticity merons. However, the two charge
states for a given vorticity are not necessarily degenerate,
just as Laughlin quasiholes and quasiparticles are in gen-
eral nondegenerate. (However, for the special case v = 1
particle-hole symmetry guarantees degeneracy. )

A general wave function that describes a meron with
vorticity k has the form

+l~
I

(139)

FIG. 10. Illustration of a meron pair with opposite vortic-
ity and like charge. We propose that under appropriate cir-
cumstances these objects can form the lowest-energy charged
excitations in the system.

where $0 is a constant. By adjusting the asymptotic
behavior of a and 6 (in particular their ratio), Eq.
(138) can also describe skyrmions and other charged ob-
jects, while adjusting these coefBcients in the core region
one can modify the spin configuration there. Since (138)
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~EA,. pk lnM, (140)

is a single Slater determinant, we can calculate its en-

ergy using the original Hamiltonian directly without us-
ing the effective energy functional derived earlier. After
subtracting the energy of the fully spin-polarized. state,
we can show that the vortex energy diverges logarithmi-
cally with the system size as would be expected for an
2CY system:

p~ = p~ ——p„and the collective mode &equency reduces
to the result obtained previously for the spin-wave collec-
tive mode of isotropic ferromagnets. (ucM = 4vrq p, /v. )
The collective mode corresponds to a spin precession
whose elliptic&ty increases as the long-wavelength limit
is approached. The presence of the mass term (P g 0)
changes the collective mode dispersion at long wave-
lengths &om quadratic to linear. In the limit of small
q

4m 4—2P pa q.

) (
)i2l+1 E

I,=O

(141) We can solve Eq. (144) for the frequency and wave-
vector-dependent linear response to bias potential be-
tween the two wells. The result is

implying

2AEI, —p~k lnM,
2

(142)

2'+ 1 Ep@=) (—1) v, .
4m

L=O

Here the e& are Haldane's pseudopotential parameters
for the interlayer interaction and we have neglected
terms that are finite. If we use the energy functional,
we find the divergent part of the vortex energy is

47lq p~/p
~CM

(147)

s-(q ~) = ) .I(@-IS;I@')I'~(~ —(@-—@ )) (148)

It is interesting to compare this with formally exact re-
lations for this response function, which can be obtained
&om the microscopic Hamiltonian of double-layer sys-
tems. We first note that y is related to the dynamic
structure factor

One can easily show that this expression of p~ agrees
with previous expression exactly. The present expression
in terms of pseudopotential parameters may be more use-
ful in finite-size numerical calculations.

by
1

s„(q, (u) = ——Imp„(q, (u + irI) (149)

VI. COLLECTIVE MODES
AND PSEUDOSPIN RESPONSE FUNCTIONS

Here l4„) is an exact eigenstate of the double-layer sys-
tem. Our result for y„(q, u) thus implies that at long
wavelengths

In this section we combine the equation of motion for
the spin textures [Eq. (55)] and the spin-texture energy
functional [Eq. (74)] to calculate the pseudospin linear
responses ' i functions for d/I g 0. We take the pseu-
dospin of the system to be polarized in the x direction
and consider the linear response to a time- and space-
dependent Zeeman field in the y-z plane. Fourier trans-
forming with respect to both time and space we find that

4
i~ ——'{2p+q2P—~) l (m„l ( —h, l

( —„(q p~) i(u ) (m, ) — ( hs )
(144)

where h„and 6 are the Fourier coeKcients of the pseu-
dospin Inagnetic field at &equency u and wave vect;or
q. Physically 6 correspond. s to a time- and space-
dependent bias potential between the two wells, while
h„could arise &om a space- and time-dependent inter-
layer tunneling amplitude. We see immediately that the
response is singular when

s*.(q ~) =—,~(~ —~cM(q)).
2 2 +qp~ (150)

Some &equency moments of this structure factor can
be related to ground-state correlation functions of the
double-layer system. The first moment gives the oscilla-
tor strength. From Eq. (150) we find that

2K 2
fez (q& M) = d&&szz (q& &) q pE.

0 P
(151)

This result agrees with results for this moment; calcu-
lated. previously 2 6 directly from the microscopic Hamil-
toniaii as we can confirm using Eq. (76). We see that
the oscillator strength vanishes like q as expected for an
ordinary superHuid; however, the coeKcient is propor-
tional to p@ and hence is nonuniversal. [The remaining
oscillator strength is found in a high-&equency collective
mode lying below u by an amount proportional to p@,
as shown below in Eq. (191).]

The zeroth moment of the dynamic structure factor
gives the static structure factor

2
2 2 ~ ~~ 2 2= ~cM =

l l
2p+ q P&] q P&.

v )
(145)

Here cocM is the &equency of a long-wavelength collec-
tive mode of the system For the d. /E = 0 case, P = 0,

s„(q) = du)s„(q, (u) = (4 lS S'l4' )
0

q pE
(2P + q'p~)

(152)
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We note that the static structure factor vanishes linearly
with q as q goes to zero. This property illustrates a
qualitative difFerence between the ground state of the
double-layer system at d/E g 0 and the ground state in
the rI/E = 0 limit for which s, (q, u) approaches a con-
stant as q goes to zero. This property is analogous to
what happens in a repulsively interacting Bose gas such
as He in which the structure factor vanishes linearly with
q. According to Feynman's single-mode approximation
picture, this is required in order to achieve a linearly dis-
persing Goldstone mode. The proper structure factor
can be included to improve the variational ground-state
wave function by means of the Jastrow ansatz

( e'vi'2 l
@ = exp —) —8' S' ~; & ~

@v, (153)
1 2

where A is a variational parameter. The incompressible
mmn states with n g m, discussed in Sec. IX, have the
property that s„(q) q at long wavelengths. This
property holds for the ground state whenever there is
an excitation gap and additional Jastrow factors are not
required to capture the correct long length scale fluctua-
tions.

For d/E g 0 the mass term suppresses long length scale
fluctuations in S, which measures the difference of the
density in the two layers. The —1 moment of s„(q, ur) is
proportional to the static response function

exact in the limit of extremely smooth spin textures.
Here we generalize our discussion in order to obtain an
approximation for the full spectrum of collective modes.
The calculations are identical to those detailed in Sec.
IV, except that we do not take the long-wavelength limit.
Here we report results only for the case of experimental
interest v = 1, where the expressions take a somewhat
simpler form. For small m and m„ it is straightforward
to integrate out the massive m' 6eld since the different
momentum components decouple at the Gaussian level

e «~ I = Dm exp — m —~ —q
~~,q

xu)„m" (~„,q)/4vr + D, (q) ~m'(~„, q) ~

+D.(q) Im" (~- q) I'), (157)

We can read off the collective mode &equency &om this
expression:

(ug = 8m. D, (k)D„(k), (159)

yielding

2

e[ j:) I 64 D + (q) I I ( q)l64vr D, q
ieeee ig

(158)

(154) wherex-(q, ~ = o) =
4~(2P + p&q )

Note that y„(q, (d) = 0) diverges in the small d/E limit
because of the broken SU(2) symmetry in the ground
state of the d/E = 0 system.

The collective mode dispersion can also be obtained
&om a Lagrangian formulation, which may be useful in
describing the thermodynamics of the system. The par-
tition function can be expressed by

D, (k) = —
( V, (k)e

d q+ Va(q) exp( —
~q~ /2)

&e(q) e»( —lql'i2) e'"')
(2~)' (160)

S = Dme-

where the Euclidean action is

(155) 1 d2k
Dw(~) = — &~(q) exp(-lql'/2)(1 —""")

8~ (2~)2

(161)
P

8 ]m] = de dee —i—A(m) B,m +E]m]).
0 4'

(1M)

The massive m Beld is coupled to the massless Geld
through the time derivative term and the constraint
~rn~ = 1. For simplicity, we assume that the pseu-
dospins are aligned along the x direction or we concen-
trate on a local patch of the spin texture, where the pseu-
dospins are almost aligned along the x direction. Using
the constraint, we can express m in terms of m" and
m . We only keep terms quadratic in m" and m'. The
monopole vector potential is given in a convenient gauge
by A (0, —m, m")/2. Previously we took the long-
wavelength limit to obtain the local action in real space
since we were interested in results which would become

This spectrum agrees exactly with the dispersion relation
in Refs. 8 and 7, where the excitation energy for the sin-
gle magnon state was obtained using the time-dependent
Hartree-Fock approximation and using a single-mode ap-
proximation combined with the Bogoliubov transforma-
tion. In the long-wavelength limit the dispersion relation
reduces to the result discussed above.

VII. KOSTERLITZ- THOULESS
PHASE TRANSITION

AND SPIN-CHANNEL SUPERFLUIDITY

The linearly dispersing gapless mode discussed in the
preceding section and the absence of gapless charged ex-
citations suggest that the system should show superfluid
behavior in the pseudospin channel as has been noted
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previously. 6'5 To make this suggestion more concrete we
evaluate the linear response of the system to opposing
electric fields in the two layers. Combining Eq. (147)
with the continuity equation for the z component of pseu-
dospin we find that

e'(ug„(q, (u) 4vre'p~(u/i, h'v
&zz

'cq 4) —(dCM
(162)

This conductivity gives the difference between oppositely
directed charge currents which How in the two layers in
response to oppositely directed electric fields. (Note that
no net current will be induced by such electric fields. )
In the long-wavelength limit this leads to a &equency-
dependent conductivity equivalent to that of a superHuid
with superQuid. density proportional to pE..

4Vre PE
0zz (d

xvh2~
(163)

PE ~~ (164)

where the factor of 2 arises &om the definition of J
as the di8'erence of the number currents in the two layers
and P is the projection of the pseudospin orientation onto
the z-y plane. P plays the same role as the phase of the
superconducting order parameter in a two-dimensional
superQuid and pseudospin channel superQuidity will be
coincident with pseudospin easy-plane ferromagnetism.
Likewise, as we discuss further below and in the Ap-

Note that by the Kronig-Kramers relation this conduc-
tivity must have a real part which is proportional to a b

function at zero &equency. We remark that the super-
Huid property requires not only a gap for charged exci-
tations and the linearly dispersing collective mode but
also a total oscillator strength which vanishes as q at
long wavelengths. For the conductivity associated with
the response to electric fields in the same direction in
the two layers, the total oscillator strength associated
with intraLandau-level excitations vanishes as q and
the collective mode has a gap at long wavelengths. These
properties lead to a 0(q, u) which vanishes as q2 in the
long-wavelength limit leading to the quantum Hall effect
rather than to superQuidity.

The above analysis is dependent on our analysis of
the response functions of the double-layer system, which
does not include thermal Quctuations. At finite temper-
atures both meron and pseudospin collective mode ther-
mal Quctuations have to be accounted for. As in other
two-dimensional superQuids, the linear response conduc-
tivity is still expected to vanish below a finite temper-
ature. As we have discussed previously the low-energy
excitations of the d.ouble-layer system consist of highly
elliptical precessions of the spin about the direction of
the local order parameter. It follows from a continuity
equation and the equation of motion for the spin textures
that the conserved number'current corresponding to the
z component of the pseudospin is related to the pseu-
dospin by the usual minimal coupling prescription (see
the Appendix for further discussion of this result)

pendix, the divergent superQuid conductivity implies zero
pseudospin Hall resistivity below the Kosterlitz-Thouless
(KT) temperature.

In this system the KT phase transition, which sep-
arates the superQuid and normal states, is expected to
be associated with the unbinding of meron pairs of op-
posite charge and opposite vorticity. In order to ana-
lyze the KT transition, it is better to work in real space,
since the KT transition is controlled by the large-distance
physics and the short-distance details can be electively
taken into account by the vortex core energy. In the limit
of a large inass term (PI2 )) p~) fiuctuations in m, will
be small. After integrating out the massive field and fi-
nite &equency Huctuations in a Gaussian approximation,
we obtain an effective XY model

S,r = —pz f d r (V&P), (165)

where y is an angle denoting the direction of the spin in
the XY plane. We know that this model undergoes a
Kosterlitz- Thouless phase transition associated with the
unbinding of bound vortex pairs at approximately

7r
Tc = pE.

2
(166)

For a 2D XY model, corrections to this expression for
T arise &om finite-temperature spin-wave and vortex-
antivortex polarization renormalizations of the effective
spin stiH'ness at long distances. The magnitude of the cor-
rections depends on details of the short-distance physics.
For the 2D nearest-neighbor-coupling XY model on a
square lattice whose short-distance physics we believe
to be similar to that of double-layer systems

T, 0.90PE. (167)

(We note however that the double-layer system possesses
charged excitations whose energies are larger but of the
same order as the meron core energies. ) In the present
case T, should be further reduced, especially as d/E goes
to zero, because of Huctuations out of the fc-y plane.
However, numerical studies of the anisotropic O(3) model
on a square lattice demonstrate that these corrections
are not very important except in the limit of extremely
weak anisotropy. For example, T is reduced by a less
than a factor of 2 compared to Eq. (167) even for pa-
rameters which correspond to p~P/P 30. Comparing
with Fig. 3 we see that; such weak anisotropies occur in
double-layer systems only for d/8 ( 0.3, a regime which
is not experimentally accessible. (Quantum fiuctuations
only increase the anisotropy by decreasing p&.) In the
following section we provide a quantitative estimate of
the temperature scale expected for T by combining Eq.
(167) with estimates of p~, which include the effect of
quantum Huctuations. As we discuss there, the princi-
pal source of uncertainty in the T estimate comes &om
attempting to estimate pE.

It should be noted that the U(1) symmetry responsi-
ble for the XY model physics and the KT transition is
robust under application of a bias voltage, which induces
a charge imbalance between the layers. Within the pseu-
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dospin picture, the spins simply tilt slightly out of the
XY plane in the positive or negative z direction. This
will reduce the component of the spin in the XY plane
and hence may lower the KT temperature slightly, but it
will not (for weak imbalance) destroy the ordering tran-
sition. This is in sharp contrast to the behavior for mmn
states with m ) n, which require precise charge balance
for their existence. This point is discussed in more detail
in Sec. VIII below.

In an ordinary superconducting Glm, the linear re-
sponse conductivity is infinite below the KT transition
temperature. More precisely the voltage-current relation-
ship obeys

A A E E
P~y Pxx P~y P~~

E E A A
~my P~~ P»

y

22

(169)

&~,") R K A A. ) (P)
Here the numerical subscripts label the two layers of the
double-layer system. (Note that this phenomenology re-
flects the fact that the transport coefricients for the sum
and difFerences of the currents or electric fields decouple. )

In general there are four independent transport coefIi-
cients, allowing for contributions to both dissipative and
Hall electric Gelds due to currents flowing in the same
layer, p and p „, and the interlayer or drag resistiv-
ities coming &om currents flowing in the opposite layer,
p and p „. The ratios of the electric-field sums and
difFerences to the current sums and differences are given
by p + p and p —p, respectively, for both dissipa-
tive and Hall fields. The matrix of conductivity coefIi-
cients may be related to the matrix of resistivity coef-
ficients by inverting Eq. (169). We have argued above
that the dissipative dc conductivity coefIicient for cur-
rent differences is infinite when T ( TK~. This implies
that both the Hall and dissipative resistivities are zero
for T & TKT, i.e., that p = p and p„= p„. Be-
low the Kosterlitz-Thouless temperature there are only
two independent dc linear transport coefIicients. More-

(168)

where the exponent p(T) = 1 for T ) TKT and p(T) ) 3
for T ( TKT. The exponent has a universal jump and
changes discontinuously from 1 to 3 at the transition.
The critical current is zero, i.e., there is always a finite
voltage for any Gnite current. At any finite temperature
Bogoliubov quasiparticles are present; however, these do
not produce dissipation because the current is carried by
the superfluid and the voltage is (essentially) zero. The
superfluid shorts out the normal fluid and so there is
no electric field to produce motion of the normal fluid.
The present problem is richer because of the existence of
two layers in which the current can flow and because of
the possible presence of a Hall voltage in the presence of
currents. It is instructive to define phenomenological
transport coeKcients (for the case of two identical layers)
as follows:

A A E E ~ ~( p~ py p py ('2i)

over we know a great deal about these two transport
coeKcients because of the quantum Hall efFect. When
identical electric Gelds exist in each layer the total Hall
conductance is nearly exactly quantized at low temper-
atures (o+„+o „ve /h) an.d the dissipative conduc-
tance is activated [o +0. oo exp( —4/2k~T)j. Here
ao is a nonuniversal constant and 4 is the gap for mak-
ing charged particle-hole pairs; these charged objects are
probably the meron pairs discussed previously. In terms
of the linear resistivity matrix of Eq. (169) we conclude
that for low temperatures

o.o exp( —4/2kgy T)
pox —pox (170)

(171)

Note that this implies the occurrence of remarkable cross-
talk phenomena. ' For example, if current is injected
in the fc direction in one layer but no current flows in
the other layer, a quantized Hall field whose value corre-
sponds to the density per layer will appear in both layers.

Ho has recently considered the question of the sta-
bility of current flow in the spin channel. He finds that
the existence of oppositely directed electric fields in each
layer induces phase twists which can be relieved only by
steady nucleation of topological defects in close analogy
with textures induced in superfluid He. We agree that
such effects will occur at finite current densities; how-
ever, these results disagree with our findings above that
the linear response 0 ~ is infinite and p» is zero. We
believe that this discrepancy has two origins: the finite
easy-plane anisotropy is essential to the analysis of this
problem and the fact that there are subtleties associated
with the question of the existence of uniform current car-
rying states in the lowest Landau level. (This latter point
is discussed in detail in the Appendix. ) Without easy
plane anisotropy, the SU(2) symmetry prevents the X'Y
order necessary for superfluidity. However, since even
with easy plane anisotropy, the L Y order is only alge-
braic, the critical current density is zero as discussed
above. For any finite current density there will indeed
be dissipation due to generation of topological defects.

VIII. EXACT DIAGONALIZATION STUDIES

In this section we discuss some microscopically based
investigations of the properties of double-layer systems
at v = 1. We start by discussing some studies us-
ing the finite-size exact diagonalization in the spheri-
cal geometry. As we have emphasized previously at
d/E = 0, where intralayer and interlayer Coulomb po-
tentials are the same, the electron-electron interaction
term in the Hamiltonian is invariant under rotations in
pseudospin space. Eigenstates of the Hamiltonian H can
be simultaneous eigenstates of any one component of the
total pseudospin operator. States with pseudospin quan-
tum number S will have degeneracy 2S+1. (As discussed
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in Sec. II the ground state at v = 1 is a pseudospin eigen-
state with 8 = N/2 where N is the number of electrons. )
At finite layer separations, the interlayer interactions will
be weaker than intralayer interactions and the broken
symmetry in the ground state is reduced Rom SU(2) to
U(1). Microscopically this corresponds to the fact that in
the ground state, electrons within the same layer will be
more strongly correlated than electrons in different layers
in order to minimize the total Coulomb energy. For suf-
ficiently widely separated layers we will provide evidence
that the ground state no longer has broken symmetry.
This problem has been studied before through examina-
tion of the ground-state wave function, and a ground-
state level crossing was found to occur in the vicinity of
d/I. = 1.5. In this section we will discuss another attempt
to estimate the layer separation at which this quantum
phase transition takes place. In addition we will discuss
rough estimates obtained for the charge gap and for the
parameters of the spin-texture energy functional.

The model we consider consists of two two-dimensional
electron systems separated by a distance d. For the sake
of definiteness the spread of the electron wave function
in the perpendicular direction in each layer is neglected.
(Such effects are easily accounted for if the geometry of
a particular sample is known; we assume that it will nor-
mally be possible to define an effective layer separation
for each sample. ) We start by considering the case of
greatest interest where each layer has the same number
of electrons and define the zero of energy by placing neu-
tralizing nonresponding background charge backgrounds
on each layer. We parametrize the intralayer and inter-
layer interactions in terms of the Haldane pseudopoten-
tial parameters for this model. Calculations were per-
formed for N =4,6,8,10 at a variety of layer separations.

We first discuss finite-size estimates of the chemical
potential dependence at v = 1. For a finite system of
electrons on the surface of a sphere the chemical potential
jump is expected to occur when N = N, b

——Ny+1. Here
N, b is the number of orbitals per Landau level when Ny
Bux quanta pass through the surface of the sphere. The
chemical potential discontinuity is given by the limit as
N+ oo of

Ap = E(Ny, N + 1) g E(Ny, N —1) —2E(Ny, N),

(172)

where N4, ——N —1. In Fig. 11, the finite-size estimate
of Lp for the v = 1 state is shown as a function of layer
separation d for N = 8 and N = 10. Lp, decreases
continuously as d increases. The finite-size corrections
can be crudely inferred &om comparisons of results for
N = 8 and N = 10. For a system size increase &om
N = 8 to N = 10, Lp increases slightly for d ( 1.58 and
decreases substantially for d & 1.5E. In all likelihood this
result indicates that in the thermodynamic limit (N =
oo), there is no chemical potential discontinuity for d
1.5E. For layer separations larger than this, it seems likely
that the properties of the double-layer system should be
similar to those of two isolated layers with Landau level
filling factor v = 1/2, which are of great interest in their
own right. The existence of an intermediate state, best
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FIG. 11. Chemical potential discontinuity Ep, as a function
of layer separation d for v = 1. The results are for system sizes
of eight and ten electrons. The + mark shows the value of Qp,
at d = 0 and N = oo according to the skyrmion theory.

d
M = lim lim —(1/N) E(Ny, N)~—

tmo 1V~oo dt
(173)

and the magnetic susceptibility is defined by

d
y = lim lim —(1/N) E(Ny, N)~ (174)

viewed as a quantum disordered easy-plane ferromagnet,
is an interesting speculative possibility.

We have argued that the charged objects, at least away
from d jg = 0, consist of meron pairs with opposite vor-
ticity. Since we expect the meron core energy and the
pseudospin stifFness to both vanish when the order pa-
rameter vanishes, we expect that the chemical potential
discontinuity should vanish at the critical layer separa-
tion where the zero-temperature phase transition to a
disordered state occurs. Thus these results also provide
an estimate of the layer separation at which the quan-
tum phase transition takes place. We can get an es-
timate of the finite-size errors in these results at small
d/E = 0, where the value of the chemical potential dis-
continuity is known exactly for v = 1. At v = 1 and
d/8 = 0, the ground-state many-body wave function is a
single Slater determinant so that there are no quantum
fIuctuation corrections to the Hartree-Fock value for the
spin stiffness given in Sec. IV. The chemical potential
discontinuity is therefore given exactly for N = oo by
Ap, = (e /E)(vr/8) ~ . This value is marked by an as-
terisk in Fig. 11 and compares well with the finite-size
estimates.

To get further insight into the system, we have at-
tempted to estimate the dependence of the ground-state
order parameter M and the easy-plane pseudospin mag-
netic susceptibility y on d/E for v = 1. We normalize
the order parameter so that it has the value 1 at d/E =0.
The order parameter is defined by
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at a critical layer separation consistent with the estimate
obtained by looking at the charge gap. The finite-size
susceptibility estimate becomes large near where the or-
der parameter vanishes as expected.

The order parameter is an important parameter which
will appear in the spin-texture energy functional in the
presence of interlayer tunneling as discussed in Ref. 13.
We discuss here attempts to estimate parameters P and
p@. Figure 16 shows the dependence on the layer sep-
aration of the increase in the ground-state energy when
one and two electrons are transferred &om one layer to
another. According to the spin-texture energy functional
this energy should be given, in the limit of large systems,
by

LN 2

b,E = P(d/E)I. 2m.
N (176)

The finite-size exact diagonalization calculations were
performed for d/E = 0.5, d/8 = 1.0, and d/E = 1.5 and
the values of PE2/(e2//) inferred by coinparing with Eq.
(176) were 5.1 x 10 s, 1.7x 10 2, and 4.0x 10 2, respec-
tively. These values compared to 2 0 x 10 ) 4 0 x 10
and 6.0 x 10 2, respectively, for the Hartree approxima-
tion and 7.3 x 10, 2.2 x 10, and 3.8 x 10 for the
Hartree-Fock approximation results derived earlier. The
quadratic dependence derived in the Hartree-Fock ap-
proximation is apparent in the exact diagonalization re-
sults. The exact diagonalization estimates for P demon-
strate that quantum Buctuation corrections to this quan-
tity are quite small and that the Hartree-Fock results
shown in Fig. 3 are quite accurate. An important as-
pect associated with the broken symmetry in the ground
state at v = 1 is the fact that the chemical potential
discontinuity is not strongly irdiuenced by the transfer of
charge &om one layer to the other. In the presence of a
bias potential the ground-state pseudospin is tilted out
of the x-y plane, but the system still has a broken U(l)
symmetry. This situation contrasts with the case of the
double-layer quantum Hall effect which occurs at total

E(k) = kE—/2Ppa.
4m

Reading off the velocity &om Fig. 17 and using the
value of P obtained above from the exact diagonaliza-
tion calculation, we estimate that for d/I = 0.5, p@ =
1.5 x 10 2(e2//) compared to the Hartree-Fock value

p@ = 1.22 x 10 2. For d// = 1.0 the linear dispersion
of the collective mode is less evident and it is more diffi-
cult to estimate the velocity accurately. We have chosen
to estimate the velocity &om the energy at the small-
est finite-size system wave vector as indicated in Fig. 18,
from which we obtain p~ --3.3 x 10 s(e2/l) coinpared to
the Hartree-Fock value p~ ——4.22 x 10 . At this value it
is evident that quantum Quctuations are decreasing the
value of p~ as the critical layer separation is approached.

To obtain a rough quantitative estimate of the layer
separation dependence of the Kosterlitz-Thouless tran-
sition temperature, we calculate the leading order cor-
rections to the Hartree-Fock ground-state energy as a
function of parallel magnetic field B~~. The renormal-
ized spin stiffness pR& is related to the dependence of the
ground-state energy on field by the following equation:

Rp"x= d, E~(&)l~ o

where E~ is ground-state energy per area and q

(178)

Landau level filling factor vT ——1/2 where the cheini-
cal potential discontinuity occurs only near equal layer
densities.

In Figs. 17 and 18 we show the dependence of the low-
est excitation energy on wave vector for a finite system of
electrons on a torus with periodic boundary conditions
for d/E = 0.5 and d/E = 1.0, respectively. At d/E = 0.5
clear indications of the linearly dispersing collective mode
are evident. The velocity of the linearly dispersing collec-
tive mode is related to the parameters of the spin-texture
energy by
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FIG. 16. Dependence of the ground-state energy level on
d// for one and two electrons transferred between wells.

FIG. 17. Wave-vector dependence of low-energy excited
states for v = 1, d/f. = 0.5, and N = 10. These results can be
used to estimate the quantum renormalized spin stiffness.
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FIG. 18. Wave-vector dependence of low-energy excited
states for v = 1, d/E = 1.0, and N = 10. These results can be
used to estimate the quantum renormalized spin stiffness.

FIG. 19. Estimate of Kosterlitz-Thouless transition tem-
perature for B = 4.364 T so that e /Eks 106 K. These
estimates include quantum renormalizations of the spin stiff-
ness and corrections to the XY model due to finite anisotropy
strength.

dB~~/E2Bp. Given pg and the fact that the mass term
is not strongly inQuenced by quantum Quctuations, we
can estimate the effect of Quctuations in m' on the
transition temperature by using results &om numerical
simulations of the classical O(3) easy-plane nonlinear
sigma model. We find" the dependence of TKT on d/I. ,
which is illustrated in Fig. 19. As the layer separation
approaches zero, U(1) symmetry is enhanced to O(3) and
Quctuations of m eventually become suKciently impor-
tant that TKT decreases and approaches zero. On the
other hand, for layer separation close to the critical one,
phase coherence between the layers is destroyed only by
quantum Quctuations. Our results for TKT are in good
agreement with the d/8 dependence of the temperatures
at which features in the dissipative resistance of double-
layer systems have been seen" by Lay et al. These fea-
tures might be associated with the vanishing charge gap
expected to occur in parallel with the KT transition.

IX. CHERN-SIMONS-LANDAU-GINZBURG
THEORY

A useful alternative way of understanding the physics
of the quantized Hall effect is based on the concept of

I

composite bosons. Much of the physics of the single-
layer quantum Hall effect can be described in terms of
the Chem-Simons-Landau-Ginzburg (CSLG) theory. si'
One starts with the observation that the problem at odd
denominator Blling &action can be mapped exactly to
a problem of bosons with an odd number of statistical
Qux tubes attached to them. At the mean-Beld level, the
statistical Qux cancels the external magnetic field and
one obtains a boson superQuid. Treating the Quctua-
tions above this mean Beld within the random-phase ap-
proximation restores the gap and one obtains an incom-
pressible bosonic liquid. Both Laughlin's wave function
and the long-wavelength algebraic off-diagonal long-order
correlation function can be derived explicitly &om the
CSLG theory.

The CSLG formulation of the single-layer quantum
Hall system has been extended both to the case involving
electron spin and to the double-layer case 6' by
a number of authors. The Chem-Simons theory of the
double-layer system based on the fermionic representa-
tion has also been constructed. In the case of double-
layer systems, there is both a statistical gauge interaction
of the composite bosons within the layers and between
the layers. The action for this problem is given by

1 (1 1
l:~ = P (i' + A —a )P~ —

~

—7' + A —may —nag
~ P~ + —e""~ a B„a~

2m* (i
d'I ~pg(*) &A(* —u) ~pg(u) + (t-+4) — d'9 ~pg(*) &E(~ —v) ~pg(u),

2
(179)

where (1'—+$) indicates the first four corresponding terms
with up and down labels interchanged. Here I, is an odd
integer. In the absence of tunneling, the particles in the
two different layers are distinguishable, the relative phase
winding between them can be either 0 or m, therefore, the
integer n can be either even or odd. At the mean Beld

I

level, the equations of motion are given by

V' x a (x) = 2vrp (z), A = ma~+nag (180)

When the electron densities of both layers are equal, we
see that the the filling factor has to be v = 2/(m+ n) for
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these equations to be satisfied.
From this CSLG formulation Halperin's wave function

for the (mmn) state can be derived in a fashion similar to
the single-layer case. ' ' One can decompose the com-
plex boson field in terms of the amplitude and the phase
part

limit. One example is the analog of the oK-diagonal
long-range order correlation function first introduced by
Girvin and MacDonald for the single-layer case. Prom
'(182) one easily obtains

(
is+(m) —is+(y))

~ ]

—(m+n)

P (z) = Qp+ hp e's ( ). (181)
(

is (x) is—(y))
~ ]

—(~—n)
(187)

The Chem-Simons gauge field induces a long-ranged log-
arithmic density-density interaction, giving rise to the
following e8ective Hamiltonian at the quadratic level:

Similarly, one can obtain the static density correlation
function in the long-wavelength limit (for m g n)

pH = — ) — [(m + n')vr (q) vr (—q)
2 m* ( q

+4mnmg(q) 7'(—q)] + q t) (q) t) (—q), (182)

where m is proportional to the density hp (x) and is the
conjugate variable of the phase, i.e.,

[t)-(q) ~- (q')] = -i h- h(q+ q') (183)

This Hamiltonian is a direct sum of harmonic oscillator
Hamiltonians for each wave vector q. By forming the sum
and the differences of these operators, one can easily diag-
onalize the Hamiltonian and find the ground-state wave
function in terms of its dependence on the generalized
coordinates (densities) m

(~+ ~+,)=,(~; ~,) = . (188)

We therefore conclude that the CSLG theory correctly
gives the static properties of the double-layer systems in
the long-wavelength limit and they agree extremely well
with the results of the microscopic calculations based
on Halperin's wave function. At the level of the static
correlation functions, the degree of agreement is simi-
lar to the single-layer case. ' However, there is some
discrepancy in the collective mode spectrum between
the CSLG theory and the microscopic theory obtained
using the projected single-mode approximation (SMA).
Within the CSLG theory, the collective mode spectrum
can be obtained by studying the Gaussian Quctuations of
the bose order parameter and one obtains the following
spectrum for the in-phase and the out-of-phase collective
modes:

1 ) 2z(m+ n)4'0 vrq exp

m —n
+ =~c) &—=~c )m+n (189)

2~(m —n)+ 2 Fq 7l q 0

Q
(184)

One can express the density operators in terms of the
ordinary first quantized coordinates of the particles

in the long-wavelength limit. One sees that the in-phase
mode agrees exactly with the prediction of Kohn's the-
orem, since the in-phase magnetic translation is a good
symmetry. The out-of-phase mode agrees exactly with
the SMA spectrum obtained using the full density oper
ator p

sr+ = ) e" '+e" ' —2Pq

(pq[H, p q]) m —n

(pqp q) 'm+ n' (190)

(185)

7r
q

and obtain the first quantized wave function

e (*' *') = ~*"-*']-~*"-*"~™
igj
x ~~t —*'.~"e--' ~-.' ~ '~'. (186)

This is nothing but Halperin's wave function for the
(mmn) state expressed in terms of the composite bo-
son variables. One can easily perform a singular gauge
transformation back to the original electron coordinates
and find explicitly Halperin's wave function expressed in
terms of the original electrons.

From the effective Hamiltonian (182) one can also de-
rive all static correlation functions in the long-wavelength

d2
(u+ ——her„(u = Ru, — q V h (q)

27r 2 (191)

for the inter-Landau-level transition modes. From a mi-
croscopic point of view, this discrepancy should be re-
solved. However, one can also take a phenornenologi-
cal point of view and fix the mode frequencies obtained

This result is not surprising, since this SMA formula in-
volves only the static correlation functions of the full den-
sity operator and these are obtained correctly within the
CSLG theory, as shown above. The drawback of the
CSLG theory lies in the fact that there is no sensible
way of obtaining the projected density operators. In the
limit of large Landau level spacing, the SMA using the
full density operator is not adequate and the projected
operators must be used. Explicitly projecting onto tran-
sitions &om the N = 0 to the N = 1 Landau levels, one
obtains
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within the CSLG theory as parameters fitted to the pro-
jected SMA calculations.

It is clear for the case m = n that the above formula-
tion breaks down. The true wave function is not simply
given by Eq. (184), which lacks all correlations in the vr

channel. Instead one must build in a Jastrow correla-
tion of the form discussed in Sec. VI in order to obtain
the correct linear dispersion of the long-wavelength spin
Huctuations.

For the special case of the (mmm) states, the SU(2)
symmetry of the problem has been exploited by Lee and
Kane, and they formulated a slightly different version
of the Chem-Simons theory that is very useful for uncov-
ering the spin-charge connection. Their original motiva-
tion was to understand the spin unpolarized quantum
Hall efFect. However, with a simple change &om spin
to pseudospin, one can easily apply this formalism to
double-layer systems [in the zero-separation limit where
the SU(2) symmetry is preserved]. In the case of the
(mmm) states, one only needs to introduce a single gauge
field, and the action is given by

(192)

4- = V'p+ ~p- 4 z. , 44 = z.z. = 1 (194)

Here P is a complex number of unit magnitude and z
represents the spinor variable and is related to the unit
vector order parameter xn defined previously by rn =
Zp 0 pg/ Zg/ ~

Performing the standard duality transformation, one
obtains the following efI'ective action in the dual repre-
sentation

C~ = pt (iB, + A' —~o)y.
1 (1 & 1

~

—. V+ A —ma
~ Q + —e""~ a"g„~~

2m (i 4vr

(*) v. (*- u) sp. (u).
1

In this case, the mean-Geld equations are given by
V' x a(x) = 2vrp (x), A = ma (193)

and one sees easily that these equations are satisfied when
the filling fraction is v = 1/m. We now decompose the
bose Gelds in the form

8=2 r7b (J"+ J')+ (Oo b )2p

~(Jo + Jo) e 0 hbp lnl* y~ 27r(Jo + Jo) e 8 ' hbp'
27K IpI

4m m* v v
1——(e p 8 bbp) Vo(x —y)(e p 8 bbp ) — [iOz i

+ (z Bz ) ],m* (195)

where bb = 6 + 2 A and the gauge field b~ is defined
by

From (196) and (199) we see that it carries charge Eve,
depending on the sign of the vorticity. A skyrmion exci-
tation hasJ„=e„„pO bp

with J~ being the three current of the Quid,

(196)
Jo= —e PO bbp (200)

1
e~-.~-(&~~&)

2vri

is the vortex three current, and

1J = . ep~pB~(z~Bpz~)
2vri

(197)

(198)

and it also has charge Eve, depending on the sign of the
skyrmion number. This is the equation in the Chern-
Simons theory relating the spin and charge, which was
first noted by Sondhi et al. We see that this relation
is exactly the same as the one obtained in Eq. (40) from
a microscopic calculation. One can also form a bound
state between these objects so that the net charge is zero

Jtg CXP

v
(199)

is the skyrmion three current. Note that the word vortex
in this context refers to vortices in the bosonic Chern-
Simons field and should not be confused with vortices in
the spin field discussed in the other sections in terms of
the pseudospin XY ferromagnet analogy.

From this dual action, several important results fol-
low. First of all, one sees that there is a long-ranged log-
arithmic interaction of the topological density with itself
pq ~(r) = Jo+Jo ——e P 8 bbp. Inthe low-energy sector,
the only excitations which can be created are those which
have no net topological charge, i.e., jd rpt, ~(r) = 0.
Therefore, these elementary excitations can be classified
into three categories. A vortex excitation has

Jo = —Jo (201)

In this case, the vorticity cancels the skyrmion number
exactly and these objects are neutral.

The statistics of various spin textures can also be
worked out explicitly &om the dual action, following an
approach used by Lee and Zhang in the case of the
CSLG theory for the single-layer quantum Hall efI'ect.
From Eq. (195), one sees that the first term 27rb (J"+J')
couples the skyrmion density Jo to the dual gauge Geld
b . The coupling to the averaged Rux (b ) gives the
dynamics of the spin degrees of &eedom discussed be-
low. There is also a coupling to the Quctuating part bbp,
which is given by Eq. (200). Therefore, this gives rise
to a statistical interaction between the skyrmion density
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and the skyrmion current of the usual form X. SUMMARY

v d xd yJO~ J' y.
)» —y[2

(202)

Kr = ap (z.a,z.) ——[laz. l'+ (z.az.)'I
2

iJ„—(i o„z ) (203)

From this equation we see that a skyrmion with one unit
of skyrmion number carries statistics v and a meron,
which carries a half unit of skyrmion number and a half
unit of the skyrmion current, has fractional statistics v/4.
In particular for v = 1, skyrmions are fermions, while the
merons are quartons having quarter statistics. This can
also be seen &om the fact that a skyrmion is a bound
state of two merons, the bound state of two quartons is a
fermion, while the bound state of two semions is a boson.

Another important consequence of the dual action in
Eq. (195) is the form of the efFective spin action. In terms
of the |P fields, it is given by

We have presented here a theory of the spontaneous de-
velopment of interlayer phase coherence in double-layer
quantum Hall systems at various filling factors. Us-
ing a pseudospin language we have shown that the sys-
tem is equivalent to an easy plane itinerant ferromag-
net with an unusual spin-charge connection. There is
a zero-temperature phase transition to a quantum dis-
ordered phase if the layer separation exceeds a critical
value d ) d*. For 0 & d ( d', the system is predicted
to exhibit a finite-temperature Kosterlitz-Thouless tran-
sition, in the absence of interlayer tunneling. Our theory
is expected to apply to any filling factor at which there
is an incompressible state which is not a pseudospin sin-
glet. Here, however, we have concentrated primarily on
the case of filling factor v = 1.

In a companion paper we will discuss the phase tran-
sitions that occur in the presence of tunneling and par-
allel magnetic field. We will also make contact with the
recent experiments of Murphy et at. , i which appear to
have observed one of these phase transitions.

Without the last term, which couples the spin and charge
degrees of freedom, this action can be transformed into
the angular variables rn = zo.z and its form agrees ex-
actly with the efFective spin action in Eq. (58) derived
earlier &om the microscopic calculation. The microscopic
calculation was carried out with the assumption that the
charge degrees of &eedom is massive. Under this assump-
tion, integrating out the charge degrees of &eedom in Eq.
(203) will only produce a long-ranged Coulomb interac-
tion between the topological density. However, strictly
speaking, this assumption is true only at zero temper-
ature. Eq. (203) is more generally valid even at finite
temperature where the charge degrees of &eedom is gap-
less. The effect of the gapless charge degrees of &ee-
dom on the spin dynamics and the Kosterlitz-Thouless
transition is still to be explored. At this level, the coef-
ficient K = p/m' derived from the Chem-Simons the-
ory depends on the mass of the electron rather than
the Coulomb interaction as it should. This is a gen-
eral feature encountered in all Chem-Simons theories.
One can view this coeKcient as a parameter and argue
that higher-order corrections will bring it into agreement
with microscopic theories. The coeFicient of the time-
dependent term is independent of the mass and agrees
exactly with the result of microscopic calculations. At
zero temperature, the charge degrees of keedom have a
gap; integrating them out would only give rise to a higher
derivative coupling between the spin variables. There-
fore, at least for zero temperature, the effective spin ac-
tion given here is suKcient.

Finally we note that, as the layer separation exceeds
the critical value d', quantum disordering will cause
merons to proliferate. The path integral configurations
for the meron world lines are very similar to those of the
vortices which disorder the 3D XY model. However, the
universality class of the transition is different because of
the coupling to the Chem-Simons field.
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The (static) efFective action we have derived for the
case of easy plane anisotropy has as its leading gradient
term

@El&@I'~- (A1)

The phase y describes the local spinor orientation

( e—i'/2 )
(A2)

and the charge conjugate to y(r) is S (r), which gives
the local (physical) charge difFerence between the layers.
In order to study the gauge symmetry in this problem, it
is convenient to introduce charge and pseudospin gauge
fields

Ag ——Ag 6 Ag, (A3)
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(r) (x t ~ (A4)

However, a gauge change

A ;A +2—Vy (A5)

modi6es the wave function

where Ag and Ag are the electromagnetic vector poten-
tials in each of the layers. The order parameter p is
gauge neutral with respect to A+ since it corresponds to
the condensation of a (physical) charge-neutral operator

the true unprojected current operator has no matrix el-
ements within the LLL. It is purely ofF diagonal, taking,
for example, the N = 0 Landau level into the N = 1
Landau level. Hence it would appear to be impossible
to have low-energy currents at zero wave vector, despite
our previous derivation using the fact that the projected
densities do not commute. The resolution of this paradox
can be seen in the following simple example.

Consider the SU(2) invariant v = 1 case and let the
ground state be fully polarized up. Restricting H to the
LLL, this state is an exact eigenstate. The exact single-
magnon excited states

(AB)

which means that the action has the usual minimal cou-
pling form

(A7)

and the pseudospin current is given (for A = 0) by

(AS)

which is identical to the result derived in Eq. (164) us-
ing the equation of motion for the projected density. As
mentioned previously in Eq. (151), the superfiuid mode
has oscillator strength proportional to q as expected for
an ordinary superQuid. However, the coefEcient is pro-
portional to p~ and hence nonuniversal.

The minimal coupling argument given above is quite
correct; however, there are remarkably confusing sub-
tleties lurking just beneath the surface. For V'P equal to
a constant, Eq. (AS) implies the existence of a uniform
zero wave-vector current in the LLL. This is paradoxical,
as we now discuss.

The question of the form of the current operator in
the LLL is a subtle one which has been considered by
several authors. ' The difFiculty lies in the fact that

(A9)

are labeled by a conserved momentum due to the fact
that they are gauge neutral (with respect to A+). They
correspond to spin-Hip magnetoexcitons and have a ve-
locity

(A1O)

[where V(ri —rq) is the particle interactionj and hence
would seem to have a Gnite pseudospin current at q =
~ = 0. If we use the true unprojected current opera-
tor, then we must take care to include LL mixing in 4g.
First-order perturbation theory shows that such mixing
is small and proportional to l~V'V~/Ru, . However, the
current

(A11)

has matrix elements connecting adjacent Landau levels
proportional to Eu, so that Landau level mixing, though
small, gives a crucial contribution to the current, inde-
pendent of the smallness of the mass m. Carrying out the
perturbation theory in detail yields results in complete
agreement (to first order in I~VV~/Ru, ) with the mini-
mal coupling considerations and the equations of motion
methods discussed above.
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