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In heavily b'-doped semiconductor superlattices, the quantizing local space charge potential V(z, r)
varies with the position r parallel to the layers, due to the statistical two-dimensional (2D) configura-
tion of dopants. Assuming linear screening, the probability distribution of this Quctuating potential
profile is analyzed using a Monte Carlo technique. As a first approximation of the resulting electronic
structure, the 1D quantum problem corresponding to each sampled z profile is solved independently,
assuming constant electron and hole quasi-Fermi levels throughout the sample. The subband en-

ergy Buctuations, the local wave functions, and the resulting luminescence spectra are calculated for
di8'erent models. The simulated lateral Huctuations of the band edges are strongly non-Gaussian
in the vicinity of the doping layers, leading to an exponential 1ow-energy tail in the luminescence.
The recombination of carriers populating tail states is drastically suppressed due to increased con-
finement in the model, which includes the local perturbation of the wave functions. The theoretical
results are compared with electroluminescence spectra of a b-doped GaAs n-i-p-i superlattice. Both
the expected non-Gaussian tail and the wave-function shrinkage of the tail states are confirmed by
the experiments. Quantitative agreement is achieved without using fitting parameters.

I. INTKODU CTION

The band tails, which are the origin of the experimen-
tally observed broadening of the luminescence spectra of
doped semiconductors, can be described by the semiclas-
sical Kane model as a first approximation. Using linear
screening, the probability distribution of the fluctuating
potential created by the random configuration of impuri-
ties is calculated and the density of states (DOS) of the
pure crystal is assumed to be shifted rigidly at each point
according to the local value of this fluctuating potential.
The average DOS is then obtained by a convolution of
the unperturbed DOS with the potential probability dis-
tribution. No further distortion of the local DOS or the
electronic wave functions is taken into account in this
model. The corresponding broadening of the lumines-
cence spectra is also traced back to the local shifts of the
one-particle energy spectra in the conduction (CB) and
valence bands (VB).

Unger has pointed out that the local potential is not
the quantity directly relevant for the luminescence line
shape. He introduced effective band edges, the spatial
variation of which is smoother than that of the band
edges, as an elementary quantum correction to the semi-
classical picture. He used this smoothened potential to
calculate the statistical broadening of the luminescence
spectra.

A more systematic way to include quantum effects is
provided by diagrammatic methods in the framework of
multiple-scattering theory. Serre and Ghazali applied
Klauder's fifth approximation to calculate the broadened
DOS and the disturbed electronic Green's function in a
doped semiconductor. However, the necessity to perform
a configuration average over different impurity arrange-
ments forces drastic approximations in this method. The
complex influence of the random potential is replaced by

an energy and wave-vector-dependent, but homogeneous
effective medium. Thus the spatial fluctuations of the
doping density, which are responsible for the deep tails
of the broadened DOS, are not accounted for. In princi-
ple, it is possible to include them in a self-consistent way,
but this method is extremely computer-time consuming
for realistic cases.

Over a long period, the study of luminescence in n-i-
@-i-doped superlattices was focused on the experimen-
tal verification of the predicted blueshift of the spon-
taneous recombination spectrum with increasing excita-
tion, which is due to a corresponding variation of the
effective band gap. This demonstrated the specific tun-
ability of the mobile carrier concentration in these sys-
tems.

An attempt to gain a detailed theoretical understand-
ing of the luminescence line shape in systems with
doped layers of finite thickness has been made using
the Hartree approximation for the electronic states, ne-
glecting potential fluctuations completely. The compar-
ison with experiment showed that the fluctuations were
strong enough to obscure the multisubband structure of
the spectra.

The first step towards a realistic description of the lu-
minescence line shape has been the application of a semi-
classical Kane-like method to the quasi-two-dimensional
electronic structure of doped superlattices. Although no
quantum effects of the fluctuations have been included,
a surprisingly good overall agreement with experiments
has been found. However, the Gaussian potential fluctu-
ations assumed in this paper could not reproduce the ex-
ponential form of the measured low-energy luminescence
tail. Additionally, significant deviations of its decay rate
were observed, which have been traced back to the en-
hanced confinement of deep tail states.

The analysis of experimental luminescence spectra and
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regrowth technique. Our sample consists of 20 peri-
ods of alternating bn, i, bp, and i layers. The nomi-

(2)nal design parameters are N~ ——6 x 10 cm and

N& ——8 ~ 10&2 cm —2 for the two-dimensional doping
concentrations. The thickness of the undoped i layers
was d; = 14 nm. Highly selective, interdigital, lateral
n and p contacts were built in during the MBE growth
through the shadow mask. Ohmic metal contacts were
applied to the bn-i-bn-i and bp-i-bp-i regions using stan-
dard photolithography. Figure 1 shows schematically the
n-i-p-i device structure for our EL measurements.

In Fig. 2 we report the EL spectra of a GaAs
b-n-i-p-i-doped superlattice for a set of applied bias volt-
ages as indicated. The spectra were obtained with a typ-
ical setup, using a liquid-nitrogen-cooled germanium de-
tector, because of the strongly redshifted luminescence of
the n-i-p-i structure at low applied voltage. The spectra
were corrected to the response of the optical system. Ob-
viously, the observed EL spectra compare at least qual-
itatively with the behavior expected from Eq. (1). At
a high applied voltage and, therefore, high current, the
series resistance lateral to the layers becomes significant,
resulting in a reduced blueshift.

For a later detailed comparison with theory we want to
point out the low-energy exponential decay of all spectra
and the excitation-independent decay constant.

III. THEORY

A. The concept

We start with the average state of the system ob-
tained by distributing the donor and acceptor charge ho-
mogeneously within the respective doping layers, thus
neglecting any statistical potential fiuctuations (2D jel-
lium model). Solving the Hartree equations for this case
at finite sheet electron and hole densities n, ~ & and p~ ~

yields a self-consistent 1D potential profile U(z) and the
mean z-dependent charge density distributions n~ l(z)
and p~ l(z) of electrons and holes.

The homogeneous doping charge considered above is
only the average part of the real distribution, which is
a random array of point charges within each layer. The
second, remaining part contains by definition the
doping density Huctuations. Its inHuence on the mean
electron distribution of the jellium system is now ana-
lyzed in a second step.

Starting with the mean mobile charge density n~ l (z)
and p~ l(z), the screening properties of the real system
can be determined. Using the linear screening approx-
imation we calculate the effective perturbing potential
AU(z, r) produced by the fluctuating part of the doping
density. By definition, the lateral average (AU(z, r)),
is zero for all values of z. This irregular perturbation of
the electron gas breaks the translational invariance of the
jellium system parallel to the layers.

In principle, only a genuine 3D quantum theory can
solve our problem in a completely satisfactory way. How-
ever, if the lateral variation of AU(z, r) is considered
to be smooth compared to the mean profile U(z) in

growth direction, it appears natural to solve the quantum
problem corresponding to the total potential U(z, r)
U(z) + AU(z, r) locally and independently at each lat-
eral position r, assuming again translational invariance
in each case.

In reality, of course, the supposition of smoothness is
violated in the immediate vicinity of each impurity. On
the other hand, the extreme numerical effort connected
with models accounting also for lateral confinement ef-
fects may justify the local approximation studied in this
paper.

If the local 1D Schrodinger equations for electrons and
holes are solved and the optical transition rates are calcu-
lated (assuining constant quasi-Fermi levels throughout
the sample), the subband edges, occupation densities, z
wave functions, and luminescence spectra are obtained
as functions of the position r parallel to the layers. Af-
terwards their probability distributions or macroscopic
averages can be calculated. In practice, the sampling
of different positions r is replaced by an averaging over
different impurity configurations c at the fixed position
r=O.

To give a preliminary impression of the main physical
effects covered by our approximation, Fig. 3 schemati-
cally shows three examples of the local band structure
and corresponding luminescence for a compensated sys-
tem (ND = N~) at T = 0 K. For the sake of clarity
in this figure we disregard the inHuence of the random
acceptor distribution. Also, only one electron and hole
subband is considered.

Position ro corresponds to the mean configuration
[U(z, ro) = U(z)], as described by the jellium model.
In our compensated model system the 2D mobile carrier
densities are equal in this case [n~ l(ro) = @~2'(ro)]. Be-
cause of the identical Fermi wave vectors of electrons and
holes, the high-energy Hank of the boxlike luminescence
spectrum coincides with the difFerence LC „between the
quasi-Fermi levels.

Position ri lies in a zone of enhanced donor concen-
tration, a donor cluster. The attractive potential of the
excess donors is reHected in a local reduction of the po-
tential [U(z, ri) ( U(z)] in the n-layer region, whereas
the potential remains unaltered at the p layer by defini-
tion. Therefore the local classical band gap E „(ri) is
lower than in the mean case (E,„).

As the local value eo (ri) of the subband edge refers to
the minimum of the potential well U(z = 0, ri), which
has been shifted towards the band gap, the same shift
follows in zeroth order for eo (ri) on an absolute energy
scale. Consequently, the local occupation density n~ l(ri)
of the electron subband increases and thus n~ l(ri) )
&(2) (r, )

At the same time the steeper increase of U(z, ri) causes
a narrowing of the potential well in z direction, which
enhances the quantization effect on the electronic states.
As a first result, the eigenvalue eo'(ri) increases, partly
compensating the reduction of the bottom of the well,
so that the effective shift of the subband edge is smaller
than that of the conduction band edge.

As a second consequence of the enhanced confinement,
the electron wave function becomes more localized in z
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FIG. 3. Local band edge
profiles, corresponding quan-
tum states, and luminescence
for different positions r paral-
lel to the layers. Position ro
refers to the average case (jel-
lium model), rq to a donor clus-
ter, and r2 to a void of donors.
The local excitation level of the
conduction band is defined as

—U(z = O, r).

direction and the electron-hole overlap is decreased.
The smallest photon energy that can be emitted is

her;„(rq) = E (rq) + ep'(rq) + ep". As the reduction
of the first term overcompensates the increase of the sec-
ond, the low-energy edge of the luminescence spectrum
is redshifted (compared to the nominal case rp). The
high-energy edge is now slightly below A4 „,because of
nl )(rq) g p~ )(rq). This follows directly from k conser-
vation being assumed for all calculations of luminescence
spectra in this paper. Additionally the intensity is di-
minished due to the overlap efI'ect. In conclusion, the
luminescence from donor clusters is weak and redshifted.

Position r2 corresponds to a void of donors. There, of
course, all aspects behave contrary to the cluster case.
Especially, the lack of donors refIects in a rise of the bot-
tom of the n layer and in a widening of the well shape,
which weakens the quantization. Again, quantum me-
chanics results in an attenuation of the fluctuations (the
rise of the subband edge is smaller than that of the con-
duction band edge). The z wave function is slightly less
localized. The luminescence from donor voids is more
intensive and blueshifted.

It is easy to visualize that averaging over random donor
and acceptor distributions yields luminescence spectra
with tails extending to lower energies than in the jel-
lium model. However, as strongly redshifted recombi-
nation processes exhibit reduced transition probabilities,
one expects tails in the luminescence spectra that decay
significantly faster than in a model without locally vary-
ing wave functions.

In the following we will provide a more detailed and
sound theoretical formulation of the ideas outlined in this

section. In particular we will present different models of
increasing degree of sophistication.

B. Local equations

Assume the local configuration of impurities c is given
by the positions r; and r„j of donors and acceptors in
the n and p layers. For simplicity, we use the same mi-
croscopic donor arrangement for all n layers (and analo-
gously for the p layers), thus conserving the 2d; period-
icity in z direction. This leads to a well defined parity
of the quantum states discussed later on. As a further
consequence, only a half period of the system (the re-
gion between an n layer at z = 0 and the neighboring p
layer at z = d, ) has to be considered. The screened po-
tential fI.uctuations in this region are almost totally due
to the two adjacent doping layers, because of the small
screening lengths.

Within a linear screening model, the resulting local
perturbation of the band edge z profile is

AU(z, c) = ) h, U~ „(z,r„,) + ) b, U „(z—d;, r„,),

where AU (z —zp, rp) denotes the screened potential of a
single impurity located at position R,p

—(zp rp). Conse-
quently, the effective quantizing potential acting on the
electron/hole gas is

U(z, c) = U(z) + AU(z, c) .
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By definition, we set U(z = 0) = 0.
In the case of electrons (el), we have to solve the

Schrodinger equation

+ [U(z, c) —AU(z = 0, c)] p'„(z, c)
el

= ",'(c)~", (z c) . (4)

The constant term —AU(z = 0, c) assures that the eigen-
value e'i(c) of the pth electron subband refers to the bot-

P
tom of the conduction band quantum well (compare Fig.
3). Therefore, on an absolute energy scale, the subband
edge is at

with n, i = h /2m,*&. Note that in our local model the
plane wave part e' ' of the total wave function extends
only over a Rnite region of the x and y directions.

The luminescence intensity as a function of photon en-
ergy is given by

I(h~, c) oc — ) ~P,ii,
~ ) ] (el, p, , c

~

h, , ~, c)
h, =}h,?L}1 IJ D

x Z„(h(u, 4„,C „,T, c),
(8)

where P,}h is the matrix element of the momentum op-
erator in the bulk system,

E„'(c) = AU(z = 0, c) + e'„'(c) .
(el, p, , c~ h, v, c), = dz (p'„'(z, c) p"„(z,c)

Analogous equations hold for the heavy (hh) and light
(lh) holes.

Due to the assumption of lateral translation invariance,
the total local wave function reads

is the local overlap matrix element, and Z~ the com-
bined optical density of states. Using the Fermi function

C"„'„(R,c) = 0 '~ p'„'(z, c) e'"'

and the local dispersion relation reads

(6) 1
f(x T) =

yA, T + 1 (10)

E„'(k, c) = AU(z = 0, c) + e'„'(c) + n, i k (7) the latter can be written as

Z„„(h(u, C„,@„,T, c) = "" f E„'(c) +
~

'
i
AE„„(hu), c) —4„,T

0 (AE„„(h(u)) „(n, i

4~ o'e&+ ~h, (iiei+ o'h. )
x f E"(c)+

~ ~
AE„(h(u, c) —4„,T( riel + ~h )

with the kinetic part of the recombination energy

AE„„(h(u, c) = h~ —[E,„(c)+ e'„'(c) + e„"(c)]. (12)

Note that we measure the hole energy e„"(c)relative to the
valence band maximum (bottom of the p-layer quantum
well) in such a manner that it increases in the direction
away Rom the gap. For the definition of the classical
band gap

E,„(c)= E —[U(z = d, c) —U(z = 0, c)]

edges E', Eoh" and the local band edge extrema b, U(z =
0), AU z=d).

As mentioned in Sec. III A, it is necessary to perform a
self-consistent Hartree calculation before simulating the
Buctuations, in order to obtain the averaged state and
screening properties of the system. We denote the cor-
responding electronic eigenvalues by e'„and the z wave
functions by P' (z). Analogous symbols are used for the
averaged hole states.

The density profile of the electrons is then given by

see Fig. 3. The quantities 4 and 4„are the quasi-Fermi
levels, which are constant throughout the sample.

The above formulas have to be evaluated separately
for each of the N, „f sampled impurity configurations c.
Then the macroscopically visible luminescence spectrum
is simply given by

n~ 1(z) = ) n„(4„,T) y'„'(z) (16)

with the 2D subband occupation density

n„(C„,T) = dE ' 8(E —e'„')f(E —C, T) .vrI-'

I(h~) = ) I(h(u, c) .
&conf

(14) (17)

The probabiliy distribution of an arbitrary locally Buc-
tuating quantity x(c) is defined through

P(x) = ) S(x —x(c)) .
1

conf

In this paper we apply this formula to the local subband

C. Screened impurity potential

Considering the 2D nature of the electron/hole gas
(strong quantization) and the inhomogeneous mobile
charge distributions n~ 1(z) and pi i(z), it seems to be
essential to use a quantum-mechanical screening approx-
imation like the random-phase approximation (RPA).
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However, beyond the fact that the ordinary RPA only
yields matrix elements of the screened potential instead
of the potential itself, it has been demonstrat d that (at
least in our standard system) the RPA can be replaced
by the semiclassical (and isotropical) Thomas-Fermi the-
ory without significant changes in the results. This is due
to the large mobile charge density at the doping layers,
which causes screening lengths significantly smaller than
the intrinsic layer thickness d, .

The inverse quadratic screening length L of the elec-
tron gas is calculated at the position of the donors, at
z = 0, according to

/3/em, * ) - -i/s'
~

m&'&(z =0)
(m'4/sh e, eo j

Similarly, for the hole gas we use

31/3 2~v""
~

pl'l(z=d, )(vr4/sh e, eo j

(is)

2 —Qz~+Ir„, I2/6„
AU~ „(z,r„,) =-

4vre„eo
(20)

For an acceptor at position (z = d;, r„~.) we obtain

e
—i/'(~ —&') '+ I ~~. I'/r

AU „(z—d;, r„~.) =
4~& &o Q(z —d;) 2 + ~r„~2

(2S)

Within the isotropic Thomas-Fermi approximation the
screened potential of a point charge has the analytical
Yukawa form. Therefore a donor at position (z = 0, r„;)
produces the following potential z profile along the r = 0
axis:

c = (r„;,r„~ ~

ni, pj nearest neighbors to r = 0) . (22)

—Np( )
Ng)x—r~ (27rNDr„;) . (23)

A random list of increasing distances r; (correspond-
ing to the ith nearest donor neighbor), which satisfies the
probability distribution Eq. (23), can be generated using
the following recursive algorithm:

r p
——0,

(24)

(
ln/

HAND 1 —z;

where the z; are random numbers equally distributed in
the interval [0, 1[.

The same can be done for the N acceptor neighbors.
Then the resulting local perturbation of the band edge z
profile EU(z, c) can be calculated using Eq. (2) together
with Eq. (20) and Eq. (21).

Repeating the procedure for a sufIiciently large number
N, „p of configurations c, we obtain a statistically inde-
pendent ensemble of z profiles equivalently to sampling
randomly the lateral positions within the layers.

In order to fulfill the zero-mean condition, we first cal-
culate the average z perturbation of the ensemble:

{AU(z)), = ) AU(z, c) .
Nconf

(25)

If the 2D doping density in the n layer is ND, the
probability to find the nearest donor neighbor at distance
r i, the second nearest donor at distance r 2, . . ., is

It should be emphasized that these are the effective
potentials due to complete impurity point charges. As
already discussed in the Introduction, the actual perturb-
ing charge distribution is an array of point charges minus
the average part (homogeneously charged plate), which
defined the unperturbed system. Thus, if the total ran-
dom potential AU(z, r) of the whole n and p layer were
calculated using the above single impurity potentials, its
lateral average would not be zero as required.

b, U'(z, c) = KU(z, c) —(b,U(z)),- . (26)

The new ensemble has the required property:

) AU'(z, c) = 0.
Nconf

(27)

In a second step we subtract this function &om each in-
dividual local perturbation:

D. Simulation of local potential pro6le

Due to the short screening lengths in our system, the
fluctuating part b, U(z, r = 0) of the total potential is
dominated by a relatively small number of impurities
close to the axis r = 0 (this has been demonstrated in
Ref. ll). Therefore the impurity configuration c can be
restricted to the M nearest donors and the N nearest
acceptors. For the system parameters studied in this pa-
per, the potential probability distributions converge for
M, N ) 50.

As the screening is isotropic parallel to the layers, only
the lateral distances r „r„~ of the impurities &om the
axis are necessary to calculate their total perturbing z
profile:

E. The models

If the luminescence spectra are calculated for each lo-
cal impurity configuration and finally added up, the av-
erage spectrum represents the complex result of various,
qualitatively different effects such as fIuctuations of the
wave functions, the energy levels, occupation numbers,
and band edges. It is therefore instructive to compare
the results with other approximations, in order to isolate
the single fluctuation efFects as far as possible.

In this paper we study a series of four models, labeled
A —D, in which certain quantities are kept fixed at their
mean values.
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100

10

The situation is different for CB-intraband transitions
between different electron subbands, which can be ex-
perimentally investigated, for example, using resonant
inelastic Raman scattering. As the edges of the ground
and excited electron subbands react on local potential
Huctuations in a strongly correlated way, we expect a
relatively small statistical broadening of the energy dif-
ference 6y 60 ~ Thus Raman spectroscopy may allow the
observation of different subbands even in strongly doped
b-n-i-p-i structures. Details concerning this point will be
published soon.

10
1.15 1.2 1.25 1.3 1.35 1.4 1.45

V. SUMMARY AND CONCLUSION

Energy (eV)

FIG. 9. Luminescence spectra of the disordered system
(models A and B) at excitation level E4„„=1400meV, com-
pared to the experimental spectrum at U „=1.6 V.

In Fig. 9, the analogous distributions are plotted for the
higher excitation level.

Obviously the agreement of the high-energy wing is
excellent in both cases. The low-energy tail of the exper-
imental spectra can be well described by an exponential
law, with a decay constant that is very close to the sim-
ulated value of model A.

The measured spectral widths slightly exceed the sim-
ulated ones. On the experimental side, this can be due to
an inhomogeneous spatial distribution of the excitation
level between the n and p contacts or to a nonuniform
doping density of different n and p layers. Theoretical
explanations could be the neglect of lateral quantum ef-
fects, or the breakdown of the one-band effective mass
approximation for states penetrating deeply into the po-
tential wells.

We are not able to observe different subband transi-
tions (such as el'-lho or eli-hho) in the CB-VB lumines-
cence for higher excitation levels, either in the experi-
ment, or in the theoretical calculations, which can be at-
tributed to the strong potential fluctuations. This stands
in contrast to the results published by Schubert et al.
even for higher doped samples.

In this paper we have applied a Monte Carlo method
to calculate the probability distribution of the random
potential pro6le in b-n-i-p-i systems. We have also pre-
sented a simple, numerically tractable approximation to
include quantum effects on the density of states and lu-
minescence into the theory.

The potential Huctuations are extremely asymmetric
near the doping layers and Gaussian-like at the cen-
ter of the intrinsic layer. The local Huctuations of the
wave functions signi6cantly inHuence the exponential
low-energy tail of the luminescence.

A comparison with experimental luminescence spectra
shows a good agreement of the line shape over a large
range of excitation levels, but deviates significantly from
calculations without taking into account the local wave-
function fluctuations. This clearly demonstrates the im-
portance of the quantum effects.

Our simulation method is a Hexible tool for the theo-
retical analysis of disorder effects on the electron gas in
doped, quasi-2D semiconductor structures. It could be
applied easily to metal-oxide-semiconductor (MOS) sys-
tems, doped heterojunctions, or quantum wells.
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