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In heavily 6-doped semiconductor superlattices, the quantizing local space charge potential V'(z,r)
varies with the position r parallel to the layers, due to the statistical two-dimensional (2D) configura-
tion of dopants. Assuming linear screening, the probability distribution of this fluctuating potential
profile is analyzed using a Monte Carlo technique. As a first approximation of the resulting electronic
structure, the 1D quantum problem corresponding to each sampled z profile is solved independently,
assuming constant electron and hole quasi-Fermi levels throughout the sample. The subband en-
ergy fluctuations, the local wave functions, and the resulting luminescence spectra are calculated for
different models. The simulated lateral fluctuations of the band edges are strongly non-Gaussian
in the vicinity of the doping layers, leading to an exponential low-energy tail in the luminescence.
The recombination of carriers populating tail states is drastically suppressed due to increased con-
finement in the model, which includes the local perturbation of the wave functions. The theoretical
results are compared with electroluminescence spectra of a 6-doped GaAs n-i-p-i superlattice. Both
the expected non-Gaussian tail and the wave-function shrinkage of the tail states are confirmed by
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the experiments. Quantitative agreement is achieved without using fitting parameters.

I. INTRODUCTION

The band tails, which are the origin of the experimen-
tally observed broadening of the luminescence spectra of
doped semiconductors, can be described by the semiclas-
sical Kane model! as a first approximation. Using linear
screening, the probability distribution of the fluctuating
potential created by the random configuration of impuri-
ties is calculated and the density of states (DOS) of the
pure crystal is assumed to be shifted rigidly at each point
according to the local value of this fluctuating potential.
The average DOS is then obtained by a convolution of
the unperturbed DOS with the potential probability dis-
tribution. No further distortion of the local DOS or the
electronic wave functions is taken into account in this
model. The corresponding broadening of the lumines-
cence spectra is also traced back to the local shifts of the
one-particle energy spectra in the conduction (CB) and
valence bands (VB).

Unger has pointed out? that the local potential is not
the quantity directly relevant for the luminescence line
shape. He introduced effective band edges, the spatial
variation of which is smoother than that of the band
edges, as an elementary quantum correction to the semi-
classical picture. He used this smoothened potential to
calculate the statistical broadening of the luminescence
spectra.

A more systematic way to include quantum effects is
provided by diagrammatic methods in the framework of
multiple-scattering theory. Serre and Ghazali® applied
Klauder’s fifth approximation to calculate the broadened
DOS and the disturbed electronic Green’s function in a
doped semiconductor. However, the necessity to perform
a configuration average over different impurity arrange-
ments forces drastic approximations in this method. The
complex influence of the random potential is replaced by
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an energy and wave-vector-dependent, but homogeneous
effective medium. Thus the spatial fluctuations of the
doping density, which are responsible for the deep tails
of the broadened DOS, are not accounted for. In princi-
ple, it is possible to include them in a self-consistent way,*
but this method is extremely computer-time consuming
for realistic cases.

Over a long period, the study of luminescence in n-i-
p-i-doped superlattices was focused on the experimen-
tal verification of the predicted blueshift of the spon-
taneous recombination spectrum with increasing excita-
tion, which is due to a corresponding variation of the
effective band gap.® This demonstrated the specific tun-
ability of the mobile carrier concentration in these sys-
tems.

An attempt to gain a detailed theoretical understand-
ing of the luminescence line shape in systems with
doped layers of finite thickness has been made® using
the Hartree approximation for the electronic states, ne-
glecting potential fluctuations completely. The compar-
ison with experiment showed that the fluctuations were
strong enough to obscure the multisubband structure of
the spectra.

The first step towards a realistic description of the lu-
minescence line shape has been the application of a semi-
classical Kane-like method to the quasi-two-dimensional
electronic structure of doped superlattices.” Although no
quantum effects of the fluctuations have been included,
a surprisingly good overall agreement with experiments
has been found. However, the Gaussian potential fluctu-
ations assumed in this paper could not reproduce the ex-
ponential form of the measured low-energy luminescence
tail. Additionally, significant deviations of its decay rate
were observed, which have been traced back to the en-
hanced confinement of deep tail states.

The analysis of experimental luminescence spectra and
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their simulation in the past has been complicated con-
siderably by using doped superlattices with finite n- and
p-doped layer thickness. In these systems the quanti-
zation of energy levels has been too small compared to
the fluctuation width induced by the random impurity
arrangement and thus many subbands had to be consid-
ered simultaneously. Actually, the situation was rather
similar to a doped bulk semiconductor with properties
that depend periodically on the z coordinate on a meso-
scopic length scale.

In order to realize the situation of a two-dimensional
(2D) system, which is disturbed by an additional random
potential, the energy difference Ae;o between the ground
state and first excited subband should be large compared
to the fluctuation width. At the same time, the electron
density should be sufficiently high to keep the typical
fluctuation below the A€o limit and to justify the linear
screening approximation.

These conditions can be fulfilled best in heavily §-
doped superlattices. Beyond that, the simple geometry
of é6-doped n-i-p-i structures is favorable from a theoret-
ical point of view.

In this paper, we study doping-induced disorder effects
on the electronic states and on the luminescence spectra
of a é-doped n-i-p-i superlattice with only one relevant
electron and heavy hole subband. We use a simulation
method which includes quantum effects in a transparent
way and uses a realistic statistics for the potential fluc-
tuations. The details of the theory are given in Sec. III.
The results are compared to electroluminescence mea-
surements in Sec. IV. In Sec. II we briefly outline the
experimental procedure.

II. EXPERIMENT

Our experimental investigations of the luminescence
are based on the electrical tunability of n-i-p-i-doped
superlattices.® This can be achieved by applying selective
contacts for the lateral injection of electrons and holes
into the n and p layers, respectively, by an external bias
voltage. The separation between the quasi-Fermi levels
corresponds to the external potential eU,, applied be-
tween the selective contacts, ®, — ®, =~ eUyp, if the
gradient of ®,, and ®, parallel to the layers is small
enough to be neglected. This fact is especially useful
for a comparison with theoretical calculations. When a
forward bias is applied to these contacts, the injected
electrons and holes, though spatially separated, can re-
combine radiatively by tunneling through the potential
barrier resulting in electroluminescence (EL) whose up-
per half maximum energy is expected at

hw1/2 = Q'n - Qp ~ eUnp. (1)

Compared with photoluminescence, electroluminescence
experiments have several important advantages. For ex-
ample, the quasi—Fermi levels ®,, and &, are independent
from the growth direction z. Thus the emitted photon
spectrum is nearly constant for each layer and there is
no contribution to the luminescence from the substrate.
Beyond that, information about the fraction of radiative
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FIG. 1. Schematic of the §-n-i-p-¢ device used for EL mea-
surements. The én-i-dn-i and the dp-i-dp-i regions, which
result from the shadow growth, form the built-in selective
contacts for the dn and dp layers.

recombinations can be obtained by correlating the emit-
ted optical power P, to the injection current I,.

In the past, it has been difficult to apply high-quality
contacts selectively to the n- and p-type layers of the
sample. Recently, it has become possible to achieve
excellent selective contacts to molecular-beam epitax-
ial (MBE) grown n-i-p-i structures by a shadow mask
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FIG. 2. Measured EL spectra for the GaAs §-n-i-p-i sam-
ple at T = 50 K. The corresponding applied bias voltage is
shown alongside the spectra.
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regrowth technique.l® Our sample consists of 20 peri-
ods of alternating én, i, dp, and ¢ layers. The nomi-

nal design parameters are N(Dz) = 6 x 10'?2 cm™2 and

Nf) = 8 x 102 cm™2 for the two-dimensional doping
concentrations. The thickness of the undoped i layers
was d; = 14 nm. Highly selective, interdigital, lateral
n and p contacts were built in during the MBE growth
through the shadow mask. Ohmic metal contacts were
applied to the dn-i-6n-i and dp-i-6p-i regions using stan-
dard photolithography. Figure 1 shows schematically the
n-i-p-i device structure for our EL measurements.

In Fig. 2 we report the EL spectra of a GaAs
6-n-i-p-i-doped superlattice for a set of applied bias volt-
ages as indicated. The spectra were obtained with a typ-
ical setup, using a liquid-nitrogen-cooled germanium de-
tector, because of the strongly redshifted luminescence of
the n-i-p-i structure at low applied voltage. The spectra
were corrected to the response of the optical system. Ob-
viously, the observed EL spectra compare at least qual-
itatively with the behavior expected from Eq. (1). At
a high applied voltage and, therefore, high current, the
series resistance lateral to the layers becomes significant,
resulting in a reduced blueshift.

For a later detailed comparison with theory we want to
point out the low-energy exponential decay of all spectra
and the excitation-independent decay constant.

III. THEORY

A. The concept

We start with the average state of the system ob-
tained by distributing the donor and acceptor charge ho-
mogeneously within the respective doping layers, thus
neglecting any statistical potential fluctuations (2D jel-
lium model). Solving the Hartree equations for this case
at finite sheet electron and hole densities #(?) and p(®
yields a self-consistent 1D potential profile U(z) and the
mean z-dependent charge density distributions 7(®(z)
and 5 (z) of electrons and holes.?

The homogeneous doping charge considered above is
only the average part of the real distribution, which is
a random array of point charges within each layer. The
second, remaining part contains — by definition — the
doping density fluctuations. Its influence on the mean
electron distribution of the jellium system is now ana-
lyzed in a second step.

Starting with the mean mobile charge density 7(®)(z)
and ﬁ(3)(z), the screening properties of the real system
can be determined. Using the linear screening approx-
imation we calculate the effective perturbing potential
AU(z,r) produced by the fluctuating part of the doping
density. By definition, the lateral average (AU(z,r)),
is zero for all values of z. This irregular perturbation of
the electron gas breaks the translational invariance of the
jellium system parallel to the layers.

In principle, only a génuine 3D quantum theory can
solve our problem in a completely satisfactory way. How-
ever, if the lateral variation of AU(z,r) is considered
to be smooth compared to the mean profile U(z) in
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growth direction, it appears natural to solve the quantum
problem corresponding to the total potential U(z,r) =
U(z) + AU(z,r) locally and independently at each lat-
eral position r, assuming again translational invariance
in each case.

In reality, of course, the supposition of smoothness is
violated in the immediate vicinity of each impurity. On
the other hand, the extreme numerical effort connected
with models accounting also for lateral confinement ef-
fects may justify the local approximation studied in this
paper.

If the local 1D Schrédinger equations for electrons and
holes are solved and the optical transition rates are calcu-
lated (assuming constant quasi-Fermi levels throughout
the sample), the subband edges, occupation densities, z
wave functions, and luminescence spectra are obtained
as functions of the position r parallel to the layers. Af-
terwards their probability distributions or macroscopic
averages can be calculated. In practice, the sampling
of different positions r is replaced by an averaging over
different impurity configurations ¢ at the fixed position
r=20.

To give a preliminary impression of the main physical
effects covered by our approximation, Fig. 3 schemati-
cally shows three examples of the local band structure
and corresponding luminescence for a compensated sys-
tem (Np = N4) at T = 0 K. For the sake of clarity
in this figure we disregard the influence of the random
acceptor distribution. Also, only one electron and hole
subband is considered.

Position ro corresponds to the mean configuration
[U(z,r9) = U(z)], as described by the jellium model.
In our compensated model system the 2D mobile carrier
densities are equal in this case [n(®)(rg) = p(®(ro)]. Be-
cause of the identical Fermi wave vectors of electrons and
holes, the high-energy flank of the boxlike luminescence
spectrum coincides with the difference A®,,, between the
quasi-Fermi levels.

Position r; lies in a zone of enhanced donor concen-
tration, a donor cluster. The attractive potential of the
excess donors is reflected in a local reduction of the po-
tential [U(z,r1) < U(z)] in the n-layer region, whereas
the potential remains unaltered at the p layer by defini-
tion. Therefore the local classical band gap E.,(r;) is
lower than in the mean case (ECU).

As the local value €!(r;) of the subband edge refers to
the minimum of the potential well U(z = 0,r;), which
has been shifted towards the band gap, the same shift
follows in zeroth order for €§!(r;) on an absolute energy
scale. Consequently, the local occupation density n(?)(r;)
of the electron subband increases and thus n(®(r;) >
P (ry).

At the same time the steeper increase of U(z,r;) causes
a narrowing of the potential well in z direction, which
enhances the quantization effect on the electronic states.
As a first result, the eigenvalue €§!(r;) increases, partly
compensating the reduction of the bottom of the well,
so that the effective shift of the subband edge is smaller
than that of the conduction band edge.

As a second consequence of the enhanced confinement,
the electron wave function becomes more localized in z
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FIG. 3. Local band edge
profiles, corresponding quan-
tum states, and luminescence
for different positions r paral-
lel to the layers. Position rg
refers to the average case (jel-
lium model), r; to a donor clus-
ter, and r2 to a void of donors.

Luminescence

The local excitation level of the
conduction band is defined as
¢ = ¢, — U(z = 0,r).

hw hww

direction and the electron-hole overlap is decreased.

The smallest photon energy that can be emitted is
Fwmin(r1) = Eep(r1) + €§(r1) + €8P, As the reduction
of the first term overcompensates the increase of the sec-
ond, the low-energy edge of the luminescence spectrum
is redshifted (compared to the nominal case ro). The
high-energy edge is now slightly below A®,,, because of
n®(ry) # p®(r;). This follows directly from k conser-
vation being assumed for all calculations of luminescence
spectra in this paper. Additionally the intensity is di-
minished due to the overlap effect. In conclusion, the
luminescence from donor clusters is weak and redshifted.

Position ry corresponds to a void of donors. There, of
course, all aspects behave contrary to the cluster case.
Especially, the lack of donors reflects in a rise of the bot-
tom of the n layer and in a widening of the well shape,
which weakens the quantization. Again, quantum me-
chanics results in an attenuation of the fluctuations (the
rise of the subband edge is smaller than that of the con-
duction band edge). The z wave function is slightly less
localized. The luminescence from donor voids is more
intensive and blueshifted.

It is easy to visualize that averaging over random donor
and acceptor distributions yields luminescence spectra
with tails extending to lower energies than in the jel-
lium model. However, as strongly redshifted recombi-
nation processes exhibit reduced transition probabilities,
one expects tails in the luminescence spectra that decay
significantly faster than in a model without locally vary-
ing wave functions.

In the following we will provide a more detailed and
sound theoretical formulation of the ideas outlined in this

hw

section. In particular we will present different models of
increasing degree of sophistication.

B. Local equations

Assume the local configuration of impurities ¢ is given
by the positions r, ; and r, ; of donors and acceptors in
the n and p layers. For simplicity, we use the same mi-
croscopic donor arrangement for all n layers (and analo-
gously for the p layers), thus conserving the 2d; period-
icity in z direction. This leads to a well defined parity
of the quantum states discussed later on. As a further
consequence, only a half period of the system (the re-
gion between an n layer at z = 0 and the neighboring p
layer at z = d;) has to be considered. The screened po-
tential fluctuations in this region are almost totally due
to the two adjacent doping layers, because of the small
screening lengths.

Within a linear screening model, the resulting local
perturbation of the band edge z profile is

AU(Z’ E) = Z AUgon(z’ r",i) + Z AU;)CC(Z - di,l’p,j) ’
icé jeé

(2)

where AU®(z— 29, o) denotes the screened potential of a

single impurity located at position Ro = (zg,ro). Conse-

quently, the effective quantizing potential acting on the
electron/hole gas is

U(z,8) =U(z) + AU(z,8) . (3)
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By definition, we set U(z = 0) = 0.
In the case of electrons (el), we have to solve the
Schrodinger equation
R 9? . N
—.Eg + [U(Z, C) — AU(Z =0, c)]] <pu1(z,c)
= (@)pp(2,8) . (4)

The constant term —AU (z = 0, &) assures that the eigen-
value €2!(¢) of the uth electron subband refers to the bot-
tom of the conduction band quantum well (compare Fig.
3). Therefore, on an absolute energy scale, the subband
edge is at

E2(e) = AU(z = 0,8) + €2() . (5)

Analogous equations hold for the heavy (hh) and light
(1h) holes.

Due to the assumption of lateral translation invariance,
the total local wave function reads
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with aq = h2/2m:1. Note that in our local model the
plane wave part e’*’* of the total wave function extends
only over a finite region of the z and y directions.

The luminescence intensity as a function of photon en-
ergy is given by

I(hw,8) % 3

|Pe1,h|2 Z l (ela ll'vé l h’ v, E); |2
h=lh,hh pnv

X Zyy (hw, 8, @, T, 6)
(8)

where P} is the matrix element of the momentum op-
erator in the bulk system,

(el, €| hyv,é), = / dz o5} (2,E) h(2,¢) (9)

is the local overlap matrix element, and Z,,, the com-
bined optical density of states. Using the Fermi function

1

el =\ _ O—1/2, el =\ oiker

\Iluk(Rv C) - Q <pu (Z, C) € (6) f((l:, T) = m (10)
and the local dispersion relation reads
Ezl(k’ ¢)=AU(z=0,¢) + 521(5) + aa k?, (7) the latter can be written as
J
- _ O(AE,, (hw)) - el -

Z v ’Qn’ Ta =~ 7 el — v — X'n

v (Aw ®,,T,¢) 4 (ce + an) f|E; @)+ a0+ on AE,, (hw,é) — ®,,,T

EBMe) + [ —22— §) —
x f [ L (€) + (Ot'31 - ah) AFE,, (hw,¢) QP,T] , (11)

with the kinetic part of the recombination energy
AE,, (hw, &) = hw — [Ee, (€) + €2(8) + €2(2)] . (12)

Note that we measure the hole energy €”(¢) relative to the
valence band maximum (bottom of the p-layer quantum
well) in such a manner that it increases in the direction
away from the gap. For the definition of the classical
band gap

E.(¢) = EJ — [U(z = d,&) — U(z = 0,&)] (13)

g

see Fig. 3. The quantities ®, and ®, are the quasi-Fermi
levels, which are constant throughout the sample.

The above formulas have to be evaluated separately
for each of the Ncons sampled impurity configurations é.
Then the macroscopically visible luminescence spectrum
is simply given by

T(hw) = Nclmf > 1(hw,o). (14)

The probabiliy distribution of an arbitrary locally fluc-
tuating quantity z(¢) is defined through

P(z) = Nclo,,f > bz - 2() (15)

In this paper we apply this formula to the local subband

[

edges E¢!, EP and the local band edge extrema AU (z=
0), AU(z = d).

As mentioned in Sec. III A, it is necessary to perform a
self-consistent Hartree calculation before simulating the
fluctuations, in order to obtain the averaged state and
screening properties of the system. We denote the cor-
responding electronic eigenvalues by EZ‘ and the z wave
functions by ¢f‘1(z). Analogous symbols are used for the
averaged hole states.

The density profile of the electrons is then given by

70 (2) =3 nu(@a, T) [222)|° (16)

with the 2D subband occupation density
Ry (@0, T) —/dEm—;le(E—‘el)f(E—Q T)
H ny - 7Th2 " n .
(17)
C. Screened impurity potential

Considering the 2D nature of the electron/hole gas
(strong quantization) and the inhomogeneous mobile
charge distributions 73 (z) and 5 (z), it seems to be
essential to use a quantum-mechanical screening approx-
imation like the random-phase approximation (RPA).
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However, beyond the fact that the ordinary RPA only
yields matrix elements of the screened potential instead
of the potential itself, it has been demonstratsd!! that (at
least in our standard system) the RPA can be replaced
by the semiclassical (and isotropical) Thomas-Fermi the-
ory without significant changes in the results. This is due
to the large mobile charge density at the doping layers,
which causes screening lengths significantly smaller than
the intrinsic layer thickness d;.

The inverse quadratic screening length L2 of the elec-
tron gas is calculated at the position of the donors, at
z = 0, according to

31/3e2m* 1/3
L72 = el =(3) — .
= () [ = 0)] (18)
Similarly, for the hole gas we use
31/3e2ppx 1/3
L2 = (2 _=""8h \ |53)(, — (. . 19
p (7f4/3h26,-€0) [p (Z i)] ( )

Within the isotropic Thomas-Fermi approximation the
screened potential of a point charge has the analytical
Yukawa form. Therefore a donor at position (z = 0,r,;)
produces the following potential z profile along the r = 0
axis:

— /22 12
e2 e 22+4|rpni|?2/Ln

AU, (z,rn;) = — 20
d ( ’ ) ) 47('6,.60 /zz + ]rnilz ( )
For an acceptor at position (z = d;,rp;) we obtain
e2 e~V (z=di)?+irp;|?/Lp
AU&?CC(Z —d;,r ,') =+ .
195 Pd 4me,€q \/(z _ di)2 + |rp.1'|2
(21)

It should be emphasized that these are the effective
potentials due to complete impurity point charges. As
already discussed in the Introduction, the actual perturb-
ing charge distribution is an array of point charges minus
the average part (homogeneously charged plate), which
defined the unperturbed system. Thus, if the total ran-
dom potential AU(z,r) of the whole n and p layer were
calculated using the above single impurity potentials, its
lateral average would not be zero as required.

D. Simulation of local potential profile

Due to the short screening lengths in our system, the
fluctuating part AU(z,r = 0) of the total potential is
dominated by a relatively small number of impurities
close to the axis r = O (this has been demonstrated in
Ref. 11). Therefore the impurity configuration é can be
restricted to the M nearest donors and the N nearest
acceptors. For the system parameters studied in this pa-
per, the potential probability distributions converge for
M,N > 50.

As the screening is isotropic parallel to the layers, only
the lateral distances r,;,rp; of the impurities from the
axis are necessary to calculate their total perturbing 2
profile:

¢ = {rni,Tp;j | ni, pj nearest neighbors tor =0} .  (22)

If the 2D doping density in the n layer is Np, the
probability to find the nearest donor neighbor at distance
Tn1, the second nearest donor at distance 7,.,..., is

M
P(Tp1,Tn2y - oy TaM) = e~ Nomriy H (2rNprya;) . (23)

=1

A random list of increasing distances r,; (correspond-
ing to the ith nearest donor neighbor), which satisfies the
probability distribution Eq. (23), can be generated using
the following recursive algorithm:

Tno =0,

;= r2 + ! In !
Tni = ni—1 wNp 1—2 )’

where the 2; are random numbers equally distributed in
the interval [0, 1].

The same can be done for the N acceptor neighbors.
Then the resulting local perturbation of the band edge z
profile AU(z,¢) can be calculated using Eq. (2) together
with Eq. (20) and Eq. (21).

Repeating the procedure for a sufficiently large number
Neont of configurations ¢, we obtain a statistically inde-
pendent ensemble of z profiles equivalently to sampling
randomly the lateral positions within the layers.

In order to fulfill the zero-mean condition, we first cal-
culate the average z perturbation of the ensemble:

(24)

(AU(2)), = ﬁ > AU (25)

In a second step we subtract this function from each in-
dividual local perturbation:

AU (2,8) = AU(z,8) — (AU(2)); . (26)

The new ensemble has the required property:

! AU'(2,8) = 0. (27)

O ~
conf z

E. The models

If the luminescence spectra are calculated for each lo-
cal impurity configuration and finally added up, the av-
erage spectrum represents the complex result of various,
qualitatively different effects such as fluctuations of the
wave functions, the energy levels, occupation numbers,
and band edges. It is therefore instructive to compare
the results with other approximations, in order to isolate
the single fluctuation effects as far as possible.

In this paper we study a series of four models, labeled
A - D, in which certain quantities are kept fixed at their
mean values.
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1. Model A

The theory of this model has been described in detail
in the preceding part of the paper. It is the most real-
istic approximation, where all the quantities, which are
relevant for the luminescence, are fluctuating.

2. Model B

Here the simulation works exactely as in model A,
with the exception that the wave functions <pf}(z, €¢) and
¢! (2,€) are held constant:

0 (2,8) > B5(z), ©k(2,6) > Ph(z). (28)

Therefore the comparison with approximation A gives
direct information about the importance of the
localization-delocalization effect on the spectral tail.

3. Model C

Here we additionally fix the eigenvalues €¢!(¢) and
h(z.
€. (¢):
€lE) o e, @) v e, (29)
This means that we now have a Kane-like, semiclassical
model, where the fluctuation of the subband edges follows
rigidly that of the band edges. The comparison with
model B demonstrates the quantum-mechanical damping
effect on the fluctuations. It should be noted, as the band
edges are varying relative to the constant quasi-Fermi
levels, the occupation densities of the subbands are still
functions of the lateral position.

4. Model D

This is the most naive approach to calculate the broad-
ening of the luminescence. It differs from model C by dis-
regarding the readjustments of the carrier densities and
Fermi energies. In this model, the quasi-Fermi levels are
not constant but fluctuate for different configurations ac-
cording to

3, =+ &, +AU(z=0,&), ®, > &, — AU(z = d;, ).

(30)
Here, the only fluctuating quantity in the expression
for the luminescence spectrum is the classical band gap
E.,(¢), which controls the energy onset of the spectrum.
As the shape of the boxlike spectrum is unaltered, the
average luminescence is simply a convolution of the nom-
inal spectrum with the probability distribution function
of E¢,(¢). The comparison with model C demonstrates
the influence of mobile charge density fluctuations and
the relevance of the concept of spatially constant quasi-
Fermi levels.

IV. RESULTS AND DISCUSSION
A. The 2D jellium model
We consider two different excitation levels A®,,, of the

experimentally investigated system at the temperature
T = 50 K. Table I shows for the jellium system (without
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TABLE I.

Parameters for the jellium model.

| A®n,=1170meV | A®,, = 1400 meV

F 0.14 0.48
V mod (meV) 540 384
E.., (meV) 974 1130
®,, (meV) 129 189
€! (meV) 98 89
€! (meV) 222 189
@, (meV) 77 83
&b (meV) 60 55
&> (meV) 100 86
L, (nm) 4.6 3.8
L, (nm) 1.4 1.3

any fluctuations) the corresponding filling factor F =
7 /N ]Sz ), the modulation amplitude of the sawtooth-
shaped z profile of the band edges Up,oq, the classical
band gap E.,, the quasi-Fermi levels ®,,, ®,, the subband
edges €;,, and the screening lengths L,, L.

For both excitation levels, only the ground state sub-
bands of the electrons and heavy holes are significantly
occupied. This situation of course may change if fluctu-
ations are considered.

Analyzing the screening properties we find that the
screening lengths are smaller than the intrinsic layer
thickness of the sample. Due to the exponential decay
of the Yukawa potential, the donor fluctuations have al-
most no influence on the p layer and vice versa. Thus
the local quantum states should be uncorrelated in both
layers.

The following theoretical results refer to the lower ex-
citation ®,, = 1170 meV. However, the qualitative fea-
tures remain valid also for the higher excitation level.

B. Band edge fluctuations

Figure 4 shows the lateral probability distributions of
the fluctuating part AU(z,r) of the potential or band

Probability (arb.units)

T~

-300 -200 -100 0 100 200

Energy (meV)

FIG. 4. Probability distributions of the local band edge
at different values of z.
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edge at the doping layers (z = 0 and z = d;) and at
z = d;/4. The mean value of all these distributions is
zero, as required.

A comparison of P[AU(z = 0,r)] with P[AU(z =
d;/4,r)] demonstrates that the width of the band edge
fluctuations depends strongly on the distance from the
doping layers. This is quantitatively reflected in the stan-
dard deviation Av(z/L;) of the considered probability
distributions as a function of z, which can be calculated
using the Holtsmark method.” The contribution of the n
layer is given by

Aot /L 2 el R i -
o(e/Ln) = 5o/ N / 2T ()

The standard deviations obtained in the Monte Carlo
simulation agree with the formula above. Obviously the
fluctuation width is an exponentially decreasing function
of the dimensionless distance z/Ls and diverges logarith-
mically at the layer position z = 0. The width at half
maximum, however, remains finite at z = 0, because the
distribution function takes on a highly asymmetric shape
near the layers, with a tail extending far into the band
gap. In contrast to that, at z = d;/4 the probability
distribution is quasi-Gaussian (suppression of higher sta-
tistical moments).

This difference in the shape can be understood consid-
ering the number of impurities effectively contributing to
the fluctuations. Due to the finite range of the screened
impurity potentials, only the nearest neighbors to a given
point of the r = 0 axis are relevant, as already discussed.

Within the layer the influence of the first neighbor is
much larger than that of the second. If, in the extreme
case, the screening length L, were small compared to the
mean interimpurity distance 7;;, we could use the first-
nearest-neighbor distribution function, which is known
to be extremely asymmetric. It should be noted that the
asymmetry is indeed more pronounced for P[AU(z =
d;, r)], because of the small hole screening length.

At sufficiently large distance from the doping layers,
the contributions of the M nearest dopants are compa-
rable. If M is large, the central limit theorem predicts a
Gaussian probability distribution function, which is ade-
quately characterized by its second moment.

We conclude that the Gaussian or second moment ap-
proximation is not sufficient to describe the potential
fluctuations in the vicinity of the doping layers.

C. Fluctuation of energy levels

The distribution functions in Fig. 5 describe the fluc-
tuating conduction band edge P[U(z = 0)], as well as
the levels of the electronic ground state P[e§!] and first
excited state P[e$!] on an absolute energy scale (the ref-
erence point of which is the average conduction band
edge). It is remarkable that the mean energy of the sub-
band levels agrees surprisingly well with the value of the
jellium model, despite the nonlinear quantization effects
involved.

Most important, the width of the level distributions is
significantly smaller than that of the band edge, demon-
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FIG. 5. Probability distributions of the CB minimum
P[U(z = 0)], the electronic ground state level P[e{'], and the
first excited level P[ef']. The dashed lines correspond to a
first order perturbational calculation.

strating directly the quantum-mechanical damping effect
on the fluctuations. Especially the low-energy tail, which
corresponds to the locally pulled down and narrowed =z
profiles at impurity clusters, is efficiently reduced by the
compensating quantization effect.

If we look at the statistics of the el; level in Fig. 5,
the difference in width and shape of the distribution is
even more pronounced. In this case P[e$!] can be well
approximated by a Gaussian function. The reason is,
of course, the reduced density of the el; electrons in the
region of strong potential fluctuations around the n layer.

In the case of the heavy holes (Fig. 6), the level distri-
bution P[e}?] is much closer to P[U(z = d;)]. This is due
to the large effective mass of these particles. They react
nearly like classical particles to the potential fluctuations,
i.e., they follow them almost rigidly. Only extremely nar-
row potential wells can cause a noticeable quantization
here.

The energy shift of the electronic subband levels
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o
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FIG. 6. Probability distributions of the VB maximum

P[U(z = d;)] and the heavy hole ground state level P[e5].
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Aec!(&) = €!(¢) — € is given with high accuracy by the
quantum-mechanical expectation value

Al = (7,(2) | AU(2,0) | 7 (2)) (32)

which is similar to first order perturbation theory. The
corresponding distribution functions are shown as dashed
lines in Fig. 5.

We conclude that the inclusion of quantum effects is
necessary for a realistic description of the locally fluc-
tuating density of states. The DOS could be easily ob-
tained from the above distributions by convolution with
the Heaviside step function.

D. Luminescence spectrum in the jellium model

To give an impression of the importance of the doping-
induced randomness on the luminescence, Fig. 8 includes
a comparison of an idealized spectrum, calculated in the
jellium model at an excitation level (A®,, = 1170 meV)
neglecting any fluctuations, with the corresponding ex-
perimental spectrum, measured at the voltage U,, =
1.2V. The high-energy wing is well described even in this
extremely simplified model, because it merely reflects the
thermal energy distribution of electrons and holes above
the quasi-Fermi levels, which is not significantly altered
by the disorder. However, the measured low-energy tail
is completely absent in the jellium system. Here, the
luminescence spectrum shows a sharp edge at the pho-
ton energy corresponding to the difference between the
electron and hole ground state levels.

E. Luminescence spectra of the disordered system

Figure 7 shows the calculated emission intensity as a
function of photon energy for our four simulation models.
Obviously the statistical broadening is considerable in
each of the studied approximations.

We start with the discussion of the simple semiclassical
convolution model D. As the width of the jellium model
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FIG. 7. Luminescence spectra of the disordered system
calculated for models A-D at excitation level A®,, =
1170 meV.
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spectrum Ahwje is small compared to the typical E.,
fluctuation, the result of the convolution is mainly an
energetic shift of the E,, distribution. Especially, the
luminescence photon energy exceeds the difference of the
quasi-Fermi levels considerably. This is in contrast to the
other models, which show a relatively sharp high-energy
wing at A®,,. Beyond that, the exponential low-energy
tail decays unrealistically slowly.

A similar decay rate is found in model C, which also
neglects any quantum effects completely. The regard of
spatially constant quasi-Fermi levels now leads to a phys-
ically reasonable high-energy wing, in agreement with the
more advanced approximations.

We now turn to the quantum models B and A. The
inclusion of the energetic quantization effect in model B
seems not to alter the exponential form of the tail, but
already leads to a significantly steeper slope compared
to the semiclassical approximations. It should be men-
tioned that in Ref. 11 an excellent agreement has been
demonstrated between the B spectrum and a model using
the method of first order perturbation theory (mentioned
above) and RPA screening.

Finally, the localization-delocalization effect in model
A causes an additional, dramatic suppression of the low-
energy luminescence tail, while conserving its exponential
shape.

In Ref. 7, the luminescence of n-i-p-i-doped super-
lattices has been calculated using Gaussian probability
distributions and without accounting for the local wave-
function changes. The resulting spectra showed a non-
exponential low-energy tail too, in contrast to the corre-
sponding experimental data. Additionally, the theoreti-
cal width of the spectra slightly exceeded the experimen-
tal one. Both problems can be solved, in principle, by
model A.

F. Comparison with experiment

In Fig. 8, the theoretical results of models A and B
are compared to the corresponding experimental data.
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FIG. 8. Luminescence spectra of the jellium system (J)

and of the disordered system (models A and B) at excita-
tion level A®,, = 1170 meV, compared to the experimental
spectrum at Unp = 1.2 V.
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FIG. 9. Luminescence spectra of the disordered system

(models A and B) at excitation level A®,, = 1400meV, com-
pared to the experimental spectrum at Unp = 1.6 V.

In Fig. 9, the analogous distributions are plotted for the
higher excitation level.

Obviously the agreement of the high-energy wing is
excellent in both cases. The low-energy tail of the exper-
imental spectra can be well described by an exponential
law, with a decay constant that is very close to the sim-
ulated value of model A.

The measured spectral widths slightly exceed the sim-
ulated ones. On the experimental side, this can be due to
an inhomogeneous spatial distribution of the excitation
level between the n and p contacts or to a nonuniform
doping density of different n and p layers. Theoretical
explanations could be the neglect of lateral quantum ef-
fects, or the breakdown of the one-band effective mass
approximation for states penetrating deeply into the po-
tential wells.

We are not able to observe different subband transi-
tions (such as elg-lhg or el;-hhg) in the CB-VB lumines-
cence for higher excitation levels, either in the experi-
ment, or in the theoretical calculations, which can be at-
tributed to the strong potential fluctuations. This stands
in contrast to the results published by Schubert et al.l2
even for higher doped samples.
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The situation is different for CB-intraband transitions
between different electron subbands, which can be ex-
perimentally investigated, for example, using resonant
inelastic Raman scattering. As the edges of the ground
and excited electron subbands react on local potential
fluctuations in a strongly correlated way, we expect a
relatively small statistical broadening of the energy dif-
ference €5' —eg!. Thus Raman spectroscopy may allow the
observation of different subbands even in strongly doped
6-n-i-p-i structures. Details concerning this point will be
published soon.!3

V. SUMMARY AND CONCLUSION

In this paper we have applied a Monte Carlo method
to calculate the probability distribution of the random
potential profile in §-n-i-p-i systems. We have also pre-
sented a simple, numerically tractable approximation to
include quantum effects on the density of states and lu-
minescence into the theory.

The potential fluctuations are extremely asymmetric
near the doping layers and Gaussian-like at the cen-
ter of the intrinsic layer. The local fluctuations of the
wave functions significantly influence the exponential
low-energy tail of the luminescence.

A comparison with experimental luminescence spectra
shows a good agreement of the line shape over a large
range of excitation levels, but deviates significantly from
calculations without taking into account the local wave-
function fluctuations. This clearly demonstrates the im-
portance of the quantum effects.

Our simulation method is a flexible tool for the theo-
retical analysis of disorder effects on the electron gas in
doped, quasi-2D semiconductor structures. It could be
applied easily to metal-oxide-semiconductor (MOS) sys-
tems, doped heterojunctions, or quantum wells.
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