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The Raman spectrum of the Bi~ phonon in the superconducting cuprate materials is investigated
theoretically in detail in both the normal and superconducting phases, and is contrasted with that
of the Aig phonon. A mechanism involving the charge-transfer Huctuation between the two oxygen
ions in the Cu02 plane coupled to the crystal field perpendicular to the plane is discussed and
the resulting electron-phonon coupling is evaluated. Depending on the symmetry of the phonon,
the weight of different parts of the Fermi surface in the coupling is different. This provides the
opportunity to obtain information on the superconducting gap function at certain parts of the
Fermi surface. The line shape of the phonon is then analyzed in detail both in the normal and
superconducting states. The Fano line shape is calculated in the normal state and the change of
the linewidth with temperature below T is investigated for a d 2 y2 pairing symmetry. Excellent
agreement is obtained for the B» phonon line shape in YBa&Cu307.

I. INTRODUCTION

As a result of the recent dispute as to whether the su-
perconducting gap in the high-T, materials is 8 or d type,
all experiments which can contribute to resolve that ques-
tion are of special importance. It was shown recently
that the study of the polarization dependence of elec-
tronic Raman scattering can address these questions and
can distinguish between the difFerent orientations (d 2

or d „) of the gap as well. This evidence can be made
more complete by including phonons and the effect of
the electron-phonon coupling, which is the subject of the
present paper.

The analysis of the line shape of optical phonons in
the high-T superconductors has been the focus of a
large body of investigation. ' Of the many Raman-active
modes in tetragonal superconductors, all the modes that
have been observed in the cuprate materials using in-
plane polarizations transform according the Aqg sym-
metry except one, which transforms according to B~g
symmetry. Since this phonon obeys its own selection
rules, the &equency of the mode can be unambiguously
assigned, which is in contrast with the earIy confusion of
the assignments of the separate Aqg modes.

In this paper the phonons involving the perpendicular
vibrations of the in-plane oxygens are investigated. The
displacements of the two oxygens O(2) and O(3) are in
phase for A~g symmetry and out of phase for B&g as is
shown on Fig. 1 for the case of YBa2Cu30y The cou-

pling of these phonons to the electrons in the plane has
an interesting feature; namely, a completely flat Cu02
plane taken out of the surrounding atomic environment
has mirror symmetry through the plane. Thus the linear
coupling between these phonons and the in-plane elec-
trons is absent. In a crystal, however, as pointed out by
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FIG. 1. The unit cell of the Cu02 plane in YBaqCu3Oy
is shown with the atomic displacements corresponding to the
phonons of his (a) and Bis (b) symmetry. A finite electric
field E perpendicular to the planes due to the asymmetric
environment (Y above, Ba below) is indicated. This induces
the respective charge-transfer Suctuations (bp) denoted by the
two way arrows.
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Barisic and Kupcic, that symmetry can be broken since
there is an electric Geld perpendicular to the plane due
to the surrounding ions forming an asymmetric environ-
ment. This is in contrast to the La compound, where only
the small tilting of the octahedra breaks the symmetry.
The perpendicular electric Geld in the 1:2:3material can
be responsible for the buckling of the Cu02 plane, i.e. ,
the slight separation of the planes formed by the Cu and
0 ions. This small distortion, however, cannot be re-
sponsible for the large electron-phonon coupling to be
discussed here.

Since the long-range charge, transfer fluctuations be-
tween unit cells are screened, only intracell charge trans-
fers must be considered. Let us denote the charge-
transfer fluctuations at O(2) and O(3) by hp and bp„
(see Fig. 1), respectively. A charge-transfer fluctuation
where bp —bp& g 0 is obviously coupled to the elec-
tric field and the crystal deforms in the form of the B~g
phonon; similarly bp + hp& g 0 is coupled to the A~g
phonon. The fluctuations of in-plane charges are either
due to the transfer (i) between the in-plane oxygens and
other ions, or (ii) between the two in-plane oxygens. The
fluctuations of the A~g symmetry bp = bp„can be a
consequence of the transfers between the in-plane copper
and oxygens. For B~g symmetry both (i) and (ii) may be
realized.

Considering the first possibility, the charge transfer in
1:2:3between the bridging oxygen O(4) and the O(3) is
a good candidate. As long as the nonbonding orbital of
O(4) parallel to the CuO chain has a partial electronic
density of states near the Fermi surface, the transfer
breaks x-y symmetry. That mechanism, which is sen-
sitive to the position of the electronic partial density of
states of the bridging oxygen relative to the Fermi energy,
has been worked out in detail, but the recently observed
Raman spectra are not consistent with the predicted d „
superconducting gap.

The second possibility does not depend on such details
of the electronic band structure, since only the conduc-
tion band plays a role. The charge-transfer fluctuation
Sp + 8p„= 0 between O(2) and O(3) involves espe-
cially those parts of the cylindrical Fermi surface which
are close to the k~ and A:& axes. Thus the influence of
the electron-phonon coupling on the electronic Raman
continuum depends strongly on whether a large super-
conducting gap opens at that part of the Fermi surface.
More precisely, the electronic contribution can be char-
acterized by the azimuthal quantum number m on the
cylindrical Fermi surface, ' and m = k2 corresponds to
Bqg symmetry, while out of the two (m = 0, m = +4)
channels of Azg symmetry only m = +4 is relevant since
the m = 0 mode describes charge fluctuations between
cells, which are screened by the long-range Coulomb in-
teraction. The difFerent Fermi surface areas probed by
Raman scattering in the Ai~ and Bjg geometry are illus-
trated in Fig. 2. [Ajg and Bqz transforms like cos(4$)
and cos(2$), respectively. ] Thus assuming a d ~ „~ type
superconducting gap the Biz mode probes the areas with
the largest gap, while the Aq~ averages the areas of both
the largest gap and the nodes. The most appropriate
tool in the Raman experiments to probe the electron-
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FIG. 2. The dashed line above the cylindrical Fermi sur-
face (F.S.) represents a d 2 v2 superconducting gap ~A(P) ~

cos (2P). The areas shaded by the vertical dotted lines mark
the regions of the Fermi surface which are probed by Raman
scattering in the Aqg (a) and in the Bq~ (b) geometries.

phonon coupling is to study the Fano interference which
is formed due to the simultaneous scattering of light on
the phonons and the electronic continuum (see, e.g. , Refs.
4 and 8). The fit of the Fano line shape provides informa-
tion not only on the coupling but also on the electronic
continuum influenced by the opening of the supercon-
ducting gap. The appearance of a sharper gap in Bjg
symmetry than in the Aqg provides a unique identifica-
tion of the gap of d 2 &2 type. It must be emphasized,
however, that these experiments are not sensitive to the
sign of the order parameter and therefore cannot dis-
tinguish between d-wave superconductivity and a very
highly anisotropic s type.

The present status of the relation between experiment
and theory can be summarized as follows. The vibra-
tion of the B~~ mode which appears at roughly 340 wave
numbers in all cuprate materials is connected with the
antisymmetric out-of-plane vibrations of the O(2) and
O(3) ions in the Cu-0 plane. s The net charge transfer
of this vibration in the unit cell is zero and thus the
long-range Coulomb forces are incapable of screening the
charge fluctuations. Consequently, the mode has a large
cross section for scattering incoming photons and thus
appears in Raman experiments as a large sharp signal
centered at frequency shifts corresponding to the energy
of the mode. Due to the strength and unambiguous iden-
tification of the mode, the Bqg phonon has been lavished
with attention. In particular, the spectral line shape of
the mode has been a subject of intense scrutiny both in
the normal and superconducting states of the cuprates.
In the normal state, the asymmetry of the line shape in-
dicates strong mixing of the phonon with the electronic
continuum and Gts to a Breit-Wigner or Fano line shape
have been made with great success. This has usually
led to the assertion that the electron-phonon coupling at
least for this mode is large. However, no estimates of
the coupling from a microscopic theory have been pre-
sented except for the theoretical suggestion by Barisic
and Kupcic. Further, the anomalous changes of the Big
phonon as the material enters into the superconduct-
ing state have also been exhaustively documented. ' '

The temperature dependences of the changes in the B'q~
phonon's line shape have been used to help determine
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the magnitude of the energy gap of the superconductor.
Recently, a theory of Raman scattering in d-wave super-
conductors has been presented, ' and while the general
features of the theory fit well with the experiment, no
detailed fit of the line shape could be made without fur-
ther knowledge of the mechanism and strength of the
electron-phonon coupling.

In the present paper we provide a detailed theory for
the behavior of the Bq~ phonon in both the normal and
superconducting states of the cuprate materials using the
mechanism suggested by Barisic et al. ' In particular, we
investigate the mechanism of electron-phonon coupling
resulting from crystal field effects and describe the Fano
line shape in the normal state. The theory is then gen-
eralized to the superconducting state and the line shape
is calculated in detail for a superconductor with dz2 y2

pairing.
The paper is organized as follows. In Sec. II we develop

the mechanism which leads to first-order electron-phonon
coupling due to the presence of the crystal field. Based on
the three-band model for the Cu02 plane the electron-
phonon coupling constant is evaluated. In Sec. III we

apply these results in order to fit the experimental data
in the normal state. Particular attention is paid to the
Fano resonance. Section IV is devoted to the behavior
of the phonon line shape in the superconducting state.
Here we show that the temperature dependence of the
spectrum is due to the change in the electronic response,
and the data are consistent with a d 2, y~ gap. Finally
our conclusions are given in Sec. V.

II. MECHANISM

In the first part of this section we define our model for
the electrons in the Cu02 plane. This allows us to intro-
duce notations used in the second part, where we develop
a microscopic theory of the coupling of these electrons to
the out-of-plane phonons due to the crystal field perpen-
dicular to the plane.

P g = —Pg, and we can choose P~z p~
——1 and P~p ])—1. For simplicity, we neglect direct 0-0 hopping.

The momentum representation is defined by the fol-
lowing formulas:

b g ikanb

k
(2)

and

1
a g = ) exp[ika(n+ h/2)]a~ g ~,

k

H'=) H„'.,

k, o.

where

H& ——sb& bk + fibk [a ~ t (k) a„,g ~t„—(k)]+H. )c

t (k) = 2t sin(ak /2).

Hk is then easily diagonalized as
'7

Hg ~ = ) Ep(k)dp ~ ~dp k ~,

where P assumes the values +, —,and 0 for the antibond-
ing, bonding, and nonbonding bands, respectively. The
corresponding electronic energies are Eo(k) = 0 and

E~(k) = s/2 + g(s/2)'+ ~'(k),

with

where a is the lattice constant, N is the number of Cu
sites, and n is x or y for 8 = (+1,0) and b = (0, +1),
respectively. In this representation the Hamiltonian in
Eq. (1) decouples for different momenta as

A. Model

Using the notations of Ref. 11 we consider the three-
band model for the Cu02 plane described by the follow-
ing Hamiltonian:

H =c) bt b„+t ) Pg(bt a„b +H.c.),
n, cr n, 8,cr

where b~ creates an electron with spin o at a copper
lattice site n, while a g annihilates an electron at one
of the neighboring oxygen sites n + 8/2 determined by
the unit vector b assuming the four values, (+1,0) and
(0, +1). An oxygen atom between the two copper atoms
at sites n and n + 6 is labeled by either (n, b) or (n +
h, —b). Moreover, s = Eg —Ez is the difference of the Cu
and 0 site energies, t is the Cu-0 hopping integral, and
Pg = +1 depending on whether the orbitals (with real
wave functions) have the same or opposite sign at the
overlap region. Assuming Cu d&2 y2 and 0 p orbitals

(b) (d+)
a = (e+, eo, e ) de

&") &d-)
(10)

where the column vectors of the transformation matrix
are given by

and

, (0l
ep ——— ty

"Et*i

(E~ )—2t~
E~+~ k t„)

(12)

In the last three equations we have dropped the k, o in-

0'(k) = t.'(k) + t„'(k).

The transformation between the original (a, b) and the
new (d) electronic operators is described by
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dices for clarity.
In the physically relevant situation for the Cu02 plane

the upper band is close to half filled. Since the three
bands do not overlap in the present model, we wiH con-
sider only a reduced one-band Hamiltonian describing
the upper band and neglect the bonding and nonbond-
ing bands. Then the reduced Hamiltonian is given by

unit vectors in the corresponding directions. Expansion
in the displacements up to first order leads to

(18)

where H,',.~, renormalizes the copper-oxygen site energy
difI'erence c only, while the term linear in u generates an
electron-phonon interaction

H„,d = ) E(k) d~ di, ,

with

E(k) = e/2+ d(e/2)'+ &'(k) (14)

H, i wh = e ) (E~uq(an)b b

n, cr

+E u (an)at „a„„
+Ewuw(an) an, y, ~a~, w, ~) ~

Furthermore, the expressions of the transformation from
d operators to a and 6 operators reduce to

bi, = Pi(k)di (15a)

a i, = P (k)di, (15b)

a„ k = Pw(k)di,

where

(15c)

Pg(k) = E(k)[E (k) + 0 (k)]

P.(k) = —it. (k)[E'(k) + 0'(k)] '~',

P„(k) = it„(k)[E'(k) + 0'(k)] '~'.

(16b)

(16c)

As we will see in the next subsection, this simple model
contains the most important ingredients in order to de-
scribe the electron-phonon coupling.

B. Electron-phonon coupling

As we have discussed already, the electrons in the
Cu02 plane do not couple in first order to the phonon
modes with displacernent vectors perpendicular to the
plane, because in that case the hopping integrals change
only in second order in the displacements. However, if
there is an electric field perpendicular to the plane, first-
order electron-phonon coupling is generated. In our case
this field originates fI'om the asymmetric environment
around the Cu02 plane (see Fig. 1), and is also respon-
sible for the buckling of the plane with restoring force
provided by the covalent bonds.

I et us consider the efFect of a lattice periodic crystal
field E(r) = —VP, &(r) on the electrons in the plane.
The electron density at each (displaced) site couples to
the external field via the Hamiltonian

H' = e) (bt—b p~~, [an+ uq(an)]
n, cr

+a am, m, n4ext[an + ax/2 + u ( n)]
+at a w P,~&[an+ ay/2+ uw(an)]), (17)

where u~(an), u (an), and uw(an) are displacement vec-
tors of the Cu, O(2), and O(3) in the unit cell at the
lattice site n, e is the electron charge, and w and y are

where Eg, E~, and E& are the electric fields at the Cu,
O(2), and O{3) sites, respectively, which are parallel to
the z axis due to symmetry. In the absence of chains
E = E„would hold.

H ~ ph can be written in momentum representation
with the help of Eqs. (2) and (3), and Eq. (15) allows
us to express the interaction of phonons and electrons of
the reduced Hamiltonian Eq. (13) in the usual form

H, i wh —— ) ) gg(k, q)d„+ di, [c),(q)+c„(—q)].
g, A k, cr

g~, (k, q = 0) = e [(E ),1$ {k)1'
1

1g

—(Ew). 14'w (k) I'] (21)

where Mo is the oxygen mass and ~~, is the phonon
frequency. In the following we make the approximation
(E ), = (E„), = E, . Due to the opposite displace-
ments of the oxygens, the difference of the P functions
[given by Eq. (16)] determines the k dependence of the
Biw coupling. Since A(k) = const on the Fermi surface
[see Eq. (14)], this coupling constant is proportional to
t (k) —t2 (k) oc cos(ak ) —cos(ak„), which is clearly of
B~~ character. In fact, this is exactly the second-order
Fermi surface harmonic of our model band structure
[Eq. (14)] transforming according to the Biw symmetry.
Therefore we can write the coupling in the form

gg„(k, q = 0) = gg„@,= (k),

where

(22)

P~,
=

(k) = [cos(ak ) —cos(ak„)] (23)N~„(Ep.)

(20)

Here cp(q) annihilates a phonon mode A with wave vector
q and gg(k, q) is the coupling constant of that mode to
an electron of wave vector k. Based on our microscopic
model the coupling constant can easily be evaluated using
standard procedures of the quantum theory of phonons.

In the context of Raman scattering we are interested
in g = 0 optical phonons. In case of the Big phonon the
Cu displacement is zero, while the O(2) and O(3) atoms
have equal and opposite displacements [Fig. 1(b)]. The
corresponding coupling constant is evaluated as
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2t
g~, ———eE

2Mciu) g„EF(2EF —s')

Ng„(Ep)
2

(25)

In case of the Ai~ phonon the oxygen displacements are
the same both in magnitude and in direction [Fig. 1(a)]
and the displacement of the copper is negligible due to
the relative rigidity of its vertical bonds. The same pro-
cedure employed for the Bi~ phonon yields the following
coupling constant for the Aiz phonon,

gg, (k, q = 0)

(26)

In this case, however, the coupling depends on k only
through the energy E(k); i.e. , it is constant on the Fermi
surface for any band filling. Therefore within the present
model the Ai~ phonon couples to homogeneous d.ensity
fluctuations only, and since these fluctuations are sup-
pressed by the long-range Coulomb interaction, the re-
sulting coupling is vanishingly small. This conclusion
remains valid if we allow for a finite Cu displacement as
well, but does not necessarily hold if, e.g. , O-O hopping
is included.

At the end of this section we wish to evaluate the cou-
pling in Eq. (25). For a half-filled band the Fermi energy
Ep = s'/2+ g(s/2) 2 + (2t) 2, and the normalization con-
stant N~, (E~) = 4. It is reasonable to suppose that
s/2 « 2t, and in this limit we only need the electric field
E at the oxygen site for a numerical value of g~, . In
order to estimate this field we suppose that the charges
on the planes of the unit cell of YBa2Cu307 are evenly
distributed, and the charges (per unit cell, in units of
e) for the planes Y, Ba, and Cu02 are +3, +2, and —2
respectively, while the remaining (chain) region has —3
electron charge to ensure neutrality of the unit cell. Each
plane produces an electric field at the oxygen site we
are concerned with independent of its distance. Since all
planes in the sample contribute, we consider ever larger
environments of the Cu02 plane in question. We calcu-
late the field produced by the two neighboring (Y and
Ba) planes first, then include the next nearest neighbors,
etc. The series of values for E, is of course not conver-
gent, but has a period of the unit cell. Although a more
accurate calculation applying the Ewald summation is
desirable, for an estimate we use the average value in
this series, which yields eE = —2vre /a = —6.1 eV/A. .

is the normalized second-order Fermi surface harmonic
of Bi~ symmetry with the normalization constant at the
Fermi energy E~ given by

I d kb[E~ —E(k)][cos(ak ) —cos(ak„)]2

jd2kh[E~ —E(k)]

(24)

All information about the strength of the coupling is now
compressed in the expansion coefBcient

According to Eq. (25) this crystal field generates a cou-
pling g~, ——0.12 eV. The relevant dimensionless cou-
pling A~„= Npg&, /huge„= 0.078 if we use a total
density of states at the Fermi level N~ = 0.22/eV corre-
sponding to a bandwidth of 9 eV. We note here that due
to the presence of chains the tetragonal symmetry of the
Cu02 plane is weakly broken, and (E ), g (E„),. This
leads to the slight mixing of the Ai~ and Bi~ modes.

III. NORMAL STATE

In this section we utilize our calculations for the cou-
pling constant to discuss the resulting spectra of the
cuprates in the normal state, while in the next section
we discuss the changes in the spectra due to supercon-
ductivity.

The inelastic scattering of photons from a metal can
either be caused by collisions with phonons or via the
creation of electron-hole pairs. As well, the phonons in-
teract with the electronic continuum and have a dynam-
ical eKect on the way photons are scattered. The total
light scattering cross section resulting from these con-
tributions is depicted by the Feynman diagrams in Fig.
3. The coupling constant p describes the electron-photon
coupling (i.e., the Raman vertex for particle-hole creation
due to the vector potential of the incoming light). In the
limit of small momentum transfer and frequency trans-
fers smaller than the optical band gap, the Raman vertex
is simply related to the curvature of the band dispersion
e(k) and the incident (e ) and scattered (e ) polarization
light vectors via

(27)

which can be expanded in terms of Fermi surface har-
monics P (k), p(k) = P p P (k). The remaining
vertices we denote by g~„ for the photon-phonon vertex,
and gg for the electron-phonon vertex as discussed in the
previous section. The bare phonon propagator is given
by

(im) = v

+ 2 ~pp

g

FIG. 3. Feynman diagrams depicting the three contribu-
tions to Raman scattering in metals. Here the solid line is the
electron Green's function, the wavy line the phonon propaga-
tor, and the dashed line the photon propagator. The vertices
are de6ned as in the text.



510 T. P. DEVEREAUX, A. VIROSZTEK, AND A. ZAWADOWSKI 51

2M'D ((u& = —(dp t(dg
(28)

where I'& is the intrinsic phonon linewidth resulting from,
e.g. , the decay of the phonon caused by the presence of
an anharmonic lattice potential. In the metallic state,
the electron-phonon coupling renormalizes the phonon
propagator such that

~~ = ~~(1 —&(~)) (30)

24)gD~(~) =
cd —(d~ + 22(dpi g((d)

where A(cu) = 2g&2g&(w)/cuq and y' denotes the real part
of the susceptibility, we arrive at the following expression
for the renormalized phonon propagator:

1+g~D~(~)»(~) '

where yp is the complex electronic susceptibility evalu-
ated in channel A. Defining the renormalized phonon.
f'requency through

where I'p is the total frequency-dependent linewidth of
the phonon, I'p(cu) = I *„+g„y'„'(~).

We now sum up the diagrams in Fig. 3 for the Raman
response in terms of the susceptibility yp. After some
lengthy but trivial algebra we obtain

2 2
rr (~ + ~~)»,run(~) =

~ 2 -2.2 I, ~ "2 4&w(~) (~ ~~) + 41&l &(~) l +
W

2

Cd +Cd~)

with

2g& &gp » = (&~(I )~(k)).

+ —1

6(~) =~~
+ 'Tg

(34)

Here 1/vg = 1/w~ 0 —1/wp is the channel-dependent

Here ( . ) denotes an average over the Fermi surface.
Thus pg represents the symmetry elements of the Ra-
man vertex projected out by the incoming and outgoing
photon polarization vectors.

Equation (32) is a generalized form of the Breit-Wigner
or Fano line shape describing the interaction of a dis-
crete excitation (phonon) with an electronic continuum.
Here the frequency w = mphil + P sets the position
of the antiresonance of the line shape. If the intrin-
sic phonon width I'& —— 0, then at the antiresonance
y& &„&&(w = w ) = 0. Since» describes the electronic
contribution to Raman scattering, which is generally fea-
tureless and a smooth function of frequency, we can re-
place everywhere yp by the value it takes on near the
phonon frequency to fit the Raman spectra in the vicin-
ity of the phonon. However, to fit the entire spectrum in
the normal state, the full u dependence is required.

The description of the continuum in high-T supercon-
ductors has been the focus of a large body of both theo-
retical and experimental work. While at present no the-
ory can completely describe the full symmetry-dependent
continuum for a large range of &equency shifts, we now
give expressions for the continuum in two separate cases.
In the presence of impurity scattering, the continuum line
shape has a simple Lorenztian form

impurity scattering rate reduced by vertex corrections.
While this form can fit the data on the cuprate materi-
als at least in the Bqz channel (i.e. , crossed polarization
orientations aligned 45' with respect to the a-b axis in
the Cu-0 planes) at low frequencies, the high-frequency
tail which remains relatively constant and the frequency
behavior at low frequencies in other channels cannot be
accounted for.

Another form for the continuum can be arrived at
by taking nesting of the Fermi surface into account as
has been done by one of the present authors. The Ra-
man susceptibility has a similar form as Eq. (34) with
the impurity scattering rate replaced by the addition of
the electron-electron and impurity scattering rates on a
nested Fermi surface and the effect of mass renormaliza-
tion taken into account,

'+ nv'(p'T)
~ -+ (em*((u)/m,

cwith m*((u)/m = 1+ ln, (35)
(PrT)2 + ~2

where n, P', and w, are constants determined by a fit
to the electronic continuum in the normal state. This
form for the Raman susceptibility provides an adequate
description to the continuum in the normal state of both
Y-Ba-Cu-0 and Bi-Sr-Ca-Cu-0 (see Ref. 17) and thus
vre will use this form rather than Eq. (34).

In order to fit the Raman spectra in the normal state,
one sees from Eqs. (32) and (35) that a great deal of
parameters are required. A fitting procedure is now dis-
cussed that greatly reduces the number of &ee param-
eters. The first step in the procedure is to determine
the bare phonon parameters w~ and I'&, which in princi-
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pie can simply be read oK from a fit to the line shape
of the phonon in the insulating state where gg

——0.
While the intrinsic width of the phonon can be read oK as
I'& ——2.5 cm, a problem arises with the position of the
Bqg phonon, since it shows only a small renormalization
with doping Rom the insulator to the metallic state, the
origin of which is unknown. This could be due in part
to changes of the lattice parameters with doping and/or
the tetragonal to orthorhombic transition. Therefore, we
thus must keep this parameter free and use the bare fre-
quency we obtain from Gtting the normal state. While
in principle g~z can be determined as well at this stage,
since the intensity of the spectra is given in arbitrary
units, this parameter (which sets the overall intensity)
must also remain free.

Turning next to the metallic state, the continuum pa-
rameters n, P', and pp are tuned to fit the full frequency
range of the continuum minus the contribution of the
phonons. We then tune the renormalized phonon posi-
tion, ~~, , which we later can compare with the result
predicted &om the value of g~, obtained in Sec. II.
Thus the only unknown parameters are g„z (and thus
P), which also sets the antiresonance position w, and
the bare phonon frequency.

With these constraints, such a procedure produces the
theory lines shown in Fig. 4(a) compared to the data of
Ref. 19 on Y-Ba-Cu-O. The parameters used to obtain
the fit are as follows: u~, ——358 cm, u~„——348

P' = 3.3, g&2 N~/~~, = 0.0624, r& ——600 cm

~, = 12000 cm, and g„„/p~, =- 0.0026, which sets
360 cm . Similar fits have been obtained be-

fore via the usual Fano expression ' albeit with uncon-
strained parameters determined solely via a fitting rou-
tine. The value of the coupling constant used is roughly
20% smaller than the one given by the crude approx-
imation in Sec. II. Given the uncertainty involved in
the band parameters and the neglect of screening (which
will reduce the crystal field and thus lower the coupling
constant), we remark that the coupling constant derived
ft..om a microscopic picture of charge transfer within the
unit cell provides an accurate description of the strength
of the asymmetric Fano line shape of the B~g phonon in
Y-Ba-Cu-O.

IV. SUPERCONDUCTING STATE

Turning now to the superconducting state, we note
that Eq. (32) is still a valid description of the Raman
line shape provided that we use the Raman susceptibil-
ity calculated for the superconducting case. In fact, it
is possible to obtain important information about the
symmetry of the electron pairing in a superconductor
through an investigation of the changes in the phonon
line shape below T . In particular, the electron-phonon
coupling depends crucially on the symmetries of both the
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FIG. 4. (a) Fit of Eqs. (32), (34), and (35) to the Bzg
spectra from Ref. 19 on Y-Ba-Cu-0 at T = 100 K. The pa-
rameters used to obtain the fit are discussed in the text. (b)
Fit of Eqs. (32) and (36) to the Bq~ spectra from Ref. 21 on
Y-Ba-Cu-0 at T = 20 K. The parameters used to obtain the
Gt are discussed in the text. The additional phonons besides
the 340 cm have been subtracted off for clarity [see Fig.
4(a).

phonon and the order parameter. The role of the cou-
pling between a phonon of given symmetry and an order
parameter of a di8'erent symmetry was recently discussed
by one of the authors, where it was shown that changes
in the phonon line shape are the greatest for a phonon
which possesses the same symmetry as the order param-
eter while smaller changes are predicted for phonons of
a symmetry orthogonal to that of the energy gap. This
is pictorially shown in Fig. 2, which shows the energy
gap A(k) squared and the electron-phonon vertex g(k)
squared, which enters into the Raman response function
y as a weighted average around the Fermi surface. Thus
the phonon vertex and the energy gap will constructively
(destructively) interfere with each other if they have the
same (orthogonal) symmetry. This fact can be used to
determine the predominant energy gap symmetry.

In Ref. 2 the electronic contribution to Raman scat-
tering yp was calculated in detail for a superconductor
with d&2 y2 pairing symmetry and good its were ob-
tained to the Raman spectra of Bi-Sr-Ca-Cu-O. For de-
tails of the theory, we direct the reader to that refer-
ence and simply write down the Raman response func-
tion obtained for the B~~ channel using a d 2 —y2 gap,
A(k, T) = b, o(T) cos(2y) for a cylindrical Fermi surface
(here x = w/Ao):

2' [(2+ x )K(x) —2(1 + x )E(x)], x&1,
I + 2 )K(1/ ) —2(1+ )@(I/ )I, + 1

(36)
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The real parts are obtainable through Kramers-Kronig
analysis (see Ref. 3). The resulting response has a log-
arithmic divergence at the pair edge (an artifact of the
two-dimensional nature of the Fermi surface) and van-
ishes as x for small frequencies. To make a fit to the
continuum in the superconducting state, we first convo-
lute Eq. (36) with a Gaussian to mimic the effect of
finite z dispersion of the Fermi surface, impurity eBects,
etc. Fitting the resulting function to the superconducting
state continuum for Y-Ba-Cu-0 leads to value L = 240
cm and a smearing width I'/A = 0.2 applied directly
to y&ii (not to be confused with the intrinsic phonon1g
linewidth). Then, Eq. (36) can be used to draw a fit to
the full Big response using the parameters obtained from
the Gt to the response in the normal metal.

The resulting fit to the line shape using Eq. (36)
and its corresponding real part (determined via Kramer's
Kronig transformation) at T = 20 K is shown in Fig. 4(b)
compared to the data on Y-Ba-Cu-0 from Ref. 21. Here
the parameters used are the same as in the normal metal
case (Sec. III) with the only change resulting in the use
of Eq. (36) and its real part rather than Eqs. (34) and
(35). Using the coupling constant A = 0.0624 as obtained
in fitting the normal state leads to w~, = 337 cm and
I'~, ——7.9 crn; i.e. , the phonon broadens and softens
at low temperatures compared to its normal state line
shape.

The fit points towards the predominance of an energy
gap of B~g symmetry for the following reasons. First we
remark that the theory predicts the correct magnitude
and sign of the phonon renormalization due to supercon-
ductivity. This would be in marked contrast if the gap
was s-wave or of d-wave nature but of other symmetry
(d + ds 2 2 etc.). In the first case an isotropic gap
would lead to trivial coupling of the energy gap to the
symmetry of the phonon and all phonons would show the
same qualitative behavior, which is not the case for the
cuprates. In the second case, previous work has demon-
strated that the channel probed via Raman scattering
which shows a peak at the highest frequency in the con-
tinuum in the superconducting state of all the channels
gives the predominant symmetry of the energy gap. This
again points to d~z „2 pairing. Further, if the gap was
of another symmetry (i.e. , B2g or Aig), then the posi-
tion of the phonon, w~, /4 = 1.42, would predict small
phonon softening since (i) the real part of the phonon
self-energy changes from negative to positive values at
roughly w/A = 1.5, and (ii) the weight (p (k) ~

A(k) ~2)

over the Fermi surface which determines the coupling
would be smaller for a gap of di8'erent symmetry than
the vertex. Therefore, while although Raman cannot
distinguish whether an energy gap changes sign or not
around the Fermi surface, the evidence &om the data
indicate that the electronic pairing is predominantly of
d ~ „~ symmetry. As it will be discussed in Sec. V, it is
very diKcult to reconcile the data with even a strongly
anisotropic s-wave gap.

V. CDNCLU SIONS

In order to improve the study of the superconducting
gap anisotropy in high-temperature superconductors '

the interactions of the electronic continuum and the char-
acteristic phonons shown in Fig. 1 have been included in
the theory. These interactions and the intrinsic width of
the phonons had complicated a previous comparison of
the theory for the continuum for certain gap anisotropy
to the experimental data since the contribution of the
phonons had to be subtracted in an intuitive way (see
Ref. 2). In addition, the phonon line shape is of course
distorted by the Fano interference.

The starting point of our calculation was the model cal-
culation of the electron-phonon interaction based on Ref.
6 and a simple tight-binding calculation for the electrons
is used. The latter is certainly not very adequate but
demonstrates the correct characteristic symmetry prop-
erties of the electronic wave functions.

Our main conclusions are as follows:
(i) Phonon line shape. The asymmetric Fano line shape

of the Bqg phonon is reproduced while the interaction of
the continuum with the Aig phonon is much weaker ac-
cording to the experiments and disappears in our model
calculation (see Sec. II 8). Using more adequate elec-
tronic wave functions, this coupling may reappear but
still must be weaker than in the case of the Bqg phonon.

(ii) Electric field The .perpendicular electric field act-
ing on the oxygen atoms in the Cu02 plane has been
determined by a comparison with the experiments in
the normal phase, assuming tetragonal symmetry, i.e. ,
E = E~ = E„. This symmetry is certainly destroyed by
the presence of the chains as shown in Fig. 1, and results
in a mixing of the Aqg and Bqg symmetry channels. It
is obvious from the coupling presented in Sec. II 8 and
&om the calculation of the diagrams depicting in Fig. 3
that starting with, e.g. , light polarizations assigned to
Big symmetry, the coupling with E g E„ leads to a
contribution to the electronic continuum of Aig symme-
try which is further coupled to the A j g phonons The
Aqg phonons do appear in the Big spectrum observed by
experiments [see Fig. 4(a)], but it is not clear whether
this is dominantly due to misalignments of the samples
or to the channel mixing. A more elaborate calculation
of the electric fields K~ and E& arising from di8'erent ions
would certainly help to resolve this question.

(iii) Gap anisotropy. The excellent fit of the combined
electronic continuum + phonon spectrum in Fig. 4(b)
is obtained by assuming the simplest form of the super-
conducting gap of d 2 „2 type for Big symmetry. The
parameters are borrowed from the fitting of the normal
state. The only additional parameters introduced are the
gap amplitude defined above Eq. (36) and an additional
smearing I' 0.2Ao with a nonunique origin (see Sec.
IV). This fit certainly supports the previous fit in Ref. 2
where the phonons had been subtracted.

Concerning the anisotropy of the gap it has already
been pointed out that Raman scattering provides infor-
mation only concerning the absolute value of the gap.
The fit of the low-energy spectra in the present paper
clearly demonstrates that assuming d-wave pairing in the
superconductor, the gap with d 2 „2 symmetry gives an
excellent fit but d „,d, and d„are not applicable (see,
e.g. , Ref. 2). A very highly anisotropic extended s-wave
state which has predominantly B'ig symmetry cannot be
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ruled out.
For instance recently the photoemission experiment of

Ref. 22 suggests a gap which can be represented by the
form b, (y) = Do[1 + acos(4p)]/(1 + a), with the pa-
rameter a just exceeding 1. Our fits clearly show that a
fit with a = 1 are not satisfactory. The reason is that
the different contributions of the different gap features
to the low-energy (~ (( Ao) part of the spectra with,
e.g. , Big symmetry: (i) The large gap around p = 2n
(n = 0, 1, 2, . . .) does not contribute (see Fig. 2); (ii) the
gap changing sign at y =

4 + n 2 contributes as ~ at
low frequencies; (iii) the gap touching zero with zero slope
(parameter o = 1) at y =

4 + n 2 contributes as ~ at low
frequencies (see Ref. 2); (iv) the gap with zero slope but
not at zero energy (parameter a g 1) gives a sharp dis-
continuity and approxiinately linear term (modulo logs)
above or below it (a ( 1 and a ) 1, respectively).

On the basis of the above features, the zero slope at
energy larger than 20 cm and at y =

4 + n 2 can
be ruled out. Any feature with a gap minimum on a
smaller energy scale can, however, still be possible, but
the region of the Fermi surface where the minima occur
must be very narrow compared with those given by the
expression mentioned above. As the minima should occur
in an anomalously narrow region, the slopes coming or
leaving the minima must be very large. Such a behavior
appears to us as very unlikely.

In summary, the main result of the present paper is
the confirmation of the conclusion of Refs. 2, 3, namely,
that the Raman spectra are in excellent agreement with a
superconducting gap of d 2 „2 symmetry, but gaps with
very sharp features on a small part of the Fermi surface

cannot be ruled out.
Note added in proof .(1) It has been recently shown

by one of us that the present work is not sensitive to
the effect of impurity scattering [T. P. Devereaux (un-
published)]. Moreover, the analysis including iinpurity
scattering provides further support for a gap of d~~
symmetry as opposed to highly anisotropic 8-wave sym-
metry. (2) After completion of the manuscript, we be-
came aware of the work by E. Rashba and E. Sherman
[JETP Lett. 47, 482 (1988)], in which the crystal field
mechanism of the present paper was brieQy discussed.
Moreover, buckling as a source of electron-phonon cou-
pling was examined in C. Thomsen et al. , Solid State
Commun. 75, 219 (1990). The resulting coupling is in-
deed significantly smaller than the one due to the crystal
Geld, as it is pointed out in the Introduction.
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