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Simple trial function for shallow dono~ D states in GaAs-Ga, „Al„As quantum-well structures
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A three-nonlinear-parameters trial variational function is proposed for the ground and first excited
states of a hydrogenic donor at the center and off center in the GaAs quantum well in a magnetic field.
Binding energies are in very good agreement with recent effective-mass calculations for the
intermediate-width well and there are more accurate results in narro~ ~elis approximating asymptoti-
cally to exact ones (L~O). Results are improved for ground and low-lying excited states, with or
without an applied magnetic field in all cases, as the barrier well approaches the impurity center.

I. INTRODUiwxON

Many efrects such as quantum Hall efFects, metal-
insulator transitions, and electron localizations, are inti-
mately related to phenomena of high magnetic fields and
impurity states. ' The theoretical study of the behavior of
a hydrogenic impurity located in a quantum well has
been a subject of considerable interest in recent years. '

Using the Bastard quantum-well model, it was demon-
strated in both theory ' and experiment' ' that the
energy spectrum of a shallow impurity in multiple-
quantum-well heterostructures depends strongly on the
geometry of the structure, the position of the impurity
ion, the number of wells, and the presence of a magnetic
field. The model was applied to a neutral shallow donor
(D ) at the center and off center in a quantum-well semi-
conductor of GaAs, surrounded by layers of
Ga, „Al„As, to calculate the binding energy for the
ground state ( ls-like) and low-lying excited states (2p+-
like) for a hydrogenic donor associated with the first sub-
band level.

Most of the investigations have used linear combina-
tions of Gaussian-type ' or exponential ' ' ' trial
functions in the variational method. A study using the
free-hydrogenic-atom Huzinaga' trial function obtained
results in good agreement with simulations by the
di8'usion quantum Monte Carlo method' for intermedi-
ate and large well width (L). The Huzinaga trial func-
tion is the best in all cases, except when the barrier edge
is approximated to the impurity atom suKciently to des-
troy the system spheric symmetry. Otherwise the ex-
ponential trial function, perhaps, is better.

Any trial function has to take into account the symme-
try aspect. The model of the hydrogenic impurity in a
quantum-well structure has cylindrical symmetry, but it
transforms in the central symmetry (two-dimensional
hydrogenic-atom model) for narrow wells (L~O). One
exact solution for this case is given by an exponential'
function. On the other hand, for large well widths
(L~ Do ) spherical symmetry appears, and the Huzinaga
Gaussian wave function' becomes suitable when the im-
purity is located at the quantum-well center, but when it
is located at the edge, the symmetry is not spherical and

this function is not the best.
Taking into account the symmetry aspect, we expect

improvement in the results using only three nonlinear
variation parameters. Previous papers " based on
Huzinaga's representation' have taken 13 or more linear
combinations of Gaussian functions to obtain results for
the binding energy that are close to experimental values.
But there are cases where increasing the number of the
linear variational parameters does not improve the re-
sults. For example, if the potential barrier crosses the
Coulomb potential curve near the impurity center point,
the wave function is strongly confined. For this case, the
set Huzinaga free-hydrogenic-atom base functions be-
come quasidependent and the minimizing processes be-
come unstable. This situation has been observed in previ-
ous works "for narrow wells (L ~0).

Some authors have used only one "' ' or two'
nonlinear parameters. The object of this paper is to show
that results considerably improve by including only a few
nonlinear variational parameters and are not improved
by increasing the number of linear parameters as the im-
purity approaches the edge. In addition, the nonlinear
parameters allow us to construct one trial function that is
flexible enough to change between cylindrical and spheri-
cal symmetries. We propose a simple trial wave function
with three nonlinear variational parameters to improve
the stability of the calculation for narrow wells, near the
edge impurity position and low-lying excited states. Our
trial wave function is sufBciently flexible to change from a
Gaussian-type (L —+ ao ) to an exponential function
(L ~0). Results on binding energies for the ground state
(ls-like) and low-lying excited states (2p+-like) of a hy-
drogenic donor associated with the first subband level, as
a function of quantum-well width and the impurity posi-
tion, are reported. We have considered the cases as an
impurity atom is located at the center and at the edge of
a GaAs well with a magnetic field applied to the axis of
growth of the quantum-well structure.

II. METHOD OF CALCULATION

Within the framework of an effective-mass approxima-
tion, the dimensionless Hamiltonian in cylindrical coordi-
nates for a donor impurity located at z =Z, in a quantum
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The efFective Bohr radius in GaAs, ao =(i' e/m*e ), is
used as the unit length and the effective Rydberg,
Ry =(e /2eao ), is the unit of energy. m ' and e are the
effective mass of the electron and the static dielectric con-
stant, respectively. Z; is the z coordinate of the impurity
atom. y is a dimensionless measure of the magnetic field,
defined as y=(efiB/2m 'cRy'). V~(z) is the square-well
potential of height Vo and width L,

0, Izl &—L
2
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To calculate the eigenvalues of the Hamiltonian de-
scribed by Eq. (1) following a variational approach, let us
choose the trial function, with an explicit factor for the
lowest-energy solution to the square well, f&(z), out of
the donor variational wave function g:

g(p, z, y) =G(p, z, %)f&(z),
(3)

GaAs well surrounded by two semi-infinite layers of
Ga& Al As, can be written as

8=P, (p, q )+P,(z)+'B, (p, z),
where

function, (e ' ). It is clear that our R (p) function has
—PlP

sufficient variational fiexibility to be interchanged be-
tween exponential (e '

) and Gaussian (e ~ ) func-
—P)p

tions.
The eigenvalues E(a,P„P2), for m =0 and —1, are

determined by numerically minimizing
(~gl~lg}/(/if) ). The binding energies of the ground
state (E» } and first excited (Ezz ) states are determined

by a variational method in the following way:

E =k +y —E(a,P, ,P~), (6)

where k is the lowest subband energy of the square well,
and y is the energy of the first Landau level. The method
to calculate this energy is given in the Appendix.

III. RESULTS AND DISCUSSION

Two separate sets of calculations of the binding ener-
gies of the ground and excited states with the impurity
ion located at the center and off-center of the well were
performed. The results have been extrapolated to
different values of the well width and barrier height, Vo,
and magnetic field. For numerical computing, we assume
the effective mass for GaAs as m *=0.067m„where m,
is the free-electron mass and the static dielectric constant
a= 12.5. Values of the effective mass, m*, and the static
dielectric constant, e, are constrained to be equal in
GaAs and Ga& „Al As. The barrier height, Vo, is
chosen to be 0.60 bEg (Ref. 8) and 0.856,E (Ref. 9),
where the total band-gap difference, bEg, between GaAs
and Ga, Al As is given as a function of the Al concen-
tration, x, '

—P (z —Z )

G(p, z, y) =e™PI~IR(p}e b.E =1.155x+0.37x [eV] . (7)

and R (p) is defined as

~P ~~PR (p)=e (4)

We have taken three variational parameters, a, p„and
P2, for the trial function given by Eqs. (3) and (4).
G(p, z, p} describes the internal states of the donor and
the (unnormalized) lowest-energy solution to the square-
well problem, given as

coskz, lzl ~—
2

fa(»= '

2

(5)

The parameter k is determined from the energy of the
first subband and the quantities 2 and ~ are determined
by the matching conditions at the interface. The form of
Eq. (3) is similar to previous authors, "who have used
R (p) as an exponential or Gaussian function. For large
well widths (L~ ao ), R (p) as a Gaussian function gives
the best results. The wave function for small well widths
(L~O) becomes almost planar and the system trans-
forms to a planar hydrogenic atom. In this case, the
Schrodinger equation's exact solution is an exponential

The value of the Al concentration, x, in the barrier layers
is taken to be 0.3 throughout this work.

Apparently, it is possible to directly calculate the vari-
ational energy, (( tPlPl g}/(/if} ), but it is necessary to
take into account minimizing the process unstability, re-
lated, on one hand, with the loss of precision computing
of two-dimensional integrals and, on the other hand, with
the appearance of a ill-conditioned matrix. As the non-
linear variational parameters a, P„P2 decrease during
the minimization processes, the form of the subintegral
functions becomes similar to Dirac 5-like ones and it is
very difficult to compute such integrals with sufficient
precision. But for our trial function, one can analytically
calculate almost all integrals (see the Appendix). Besides,
the minimizing process is sufficiently simple because the
trial function has a few variational parameters and con-
sists of only the single term.

In Fig. 1, we display the variation of the binding ener-

gy (units of the Rydberg effective) of the donor ls state in
a quantum well for Vo =0.606E as a function of a donor
position (2Z;/L), without magnetic field, (y =0), and for
four different trial functions. Curve (a) presents results
of calculations using the Huzinaga trial function with 13
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FIG. 1. Binding energies of the ground state of a shallow
donor in a GaAs-GaQ 7AlQ 3As quantum well as a function of
donor position (L =1.0aQ, y=0): (a) Gaussian trial function
with 13 linear variation parameters; (b} Gaussian trial function
with one nonlinear variational parameter (pi=0; p2=a); (c)
Gaussian two variational parameters trial function (P, =0), and
(d) mixing three variational parameters trial function [Eqs. (3)
and (4)].

linear variational parameters from Ref. 9. Results of our
calculations using the Gaussian trial function with one
(b) and two (c) nonlinear variational parameters are
shown. The last functions have been obtained from Eqs.
(3) and (4), replacing p, =0 and p2=a, respectively, at
curve (b). Curve (d) shows results of our calculations us-
ing the three-nonlinear-variational-parameters trial func-
tion given by Eqs. (3) and (4).

From Fig. 1, three important findings seem clear: (1)
the binding energy slightly increased with the number of
linear parameters (a), but a drastic increase ( —100%) is
observed by using only one nonlinear variational parame-
ter (b) when the barrier edge is near the impurity center;
(2) in the last case, for each additional nonlinear parame-
ter, the binding energy increases about 7%; and (3) our
three-nonlinear-parameters trial function overcomes all
results of Ref. 9 for all impurity-center positions [com-
pare curves (d) and (a)]. In addition, the behavior of our
curves (b, c,d) is much smoother than (a). This gives fur-
ther support to our minimizing process.

As the impurity center approaches the edge, we see a
remarkable advantage of our mixing trial function [Eq.
(3)] in comparison with the Gaussian ones. A similar sit-
uation also occurs for narrow wells. Let us study the
binding-energy dependence of the well size.

Figures 2 and 3 present our results (solid curves) and
the previous results (+, X,Q', E3) of Ref. 8 for
Vp =0.854Eg ~ The dependence of the binding energy of
the ground state and first excited state on the impurity at
the center of the quantum well is shown for different
magnetic-field values as a function of the well width.

In general, our curves and previous results are similar,
except in the extremes. To clarify the differences, extrac-
tion of some results for 1s and 2p states without mag-
netic field from Fig. 2 are presented in Table I. Column
(c) of the table gives the exact limit energies for well
width L —+0 (free two-dimensional hydrogenic-atom) and
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FIG. 2. Binding energies of the ground state of a shallow
neutral donor in a GaAs-GaQ 7AlQ 3As quantum well as a func-
tion of the well size (L) for four different values of magnetic-
field parameter: our results (solid curve) and results of Ref. 8
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FIG. 3. Binding energies of the 2p state of a shallow neu-
tral donor in a GaAs-GaQ 7A1Q 3As quantum well as a function
of the well size (L), for four different values of magnetic-field
parameters: our results (solid curve) and results of Ref. 8
(+,x,0,0).

L~ ac (free three-dimensional hydrogenic-atom), which
have been obtained from the following formulas'
E„= (n ——

—,') and E„= n(n —=1,2 for is and
2p, respectively).

For the 1s state from the table, it seems clear that our
trial function provides better results for well widths
smaller than 100 A and has a true asymptotic behavior
for narrow wells. In contrast, the Gaussian trial function
gives erroneous asymptotic results for I.—+0 and differs
from the exact result by more than 30%%uo. But for L ~ ao,
our results for the three-parameters variational trial func-
tion are slightly worse ( (4%%uo) than ones from Ref. 8.

The table indicates that our results for the 2p state
are in good agreement with exact ones for all limit cases.
Despite the fact that the column (a) results for 2p states
in the table are superior to our results, those are also in
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TABLE I. Binding energies for ground and 2p states with
the impurity at the center of a GaAs-Ga07A103As quantum
well, without a magnetic field (@=0), for different well widths:
(a) results of Ref. 8, (b) results of the present work, and (c)
theoretically exact limit energies. +denotes extrapolation re-
sults.
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APPENDIX

E~ (Ry*) 1s
L (A) (a) (b) (c)

E& (Ry*) 2p
(a) (b) (c)

The Hamiltonian [Eq. (1)] contains three variational
energies,
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where 8k and f are given by Eqs. (1) and (3), respective-
ly. Substituting expressions (1) and (3) in (Al) and after
simplifications, one can obtain for E&,

contradiction with exact ones' for L —+0 and
Perhaps this is explained by errors of the minimizing pro-
cess for Gaussian trial functions.

In addition, we have studied the dependence of the
binding energy for an off-center impurity position. Our
results for L &100 A are in good agreement, but for
L ( 100 A, the binding energies of Ref. 8 are smaller than
ours up to 11%.

+2m J(2lml —1) J(l), (A2)

where J(1) is

2

E, = 4a + J(2lml+ 3)+4ap, J(2lm I+2)1 4

+ (Pzi —4a lm I )J(21m I
+ 1)—2lm IPiJ(2 lm I )

IV. CONCLUSION J(1)= 1

4a
pi pi /2a ao

8 e "du,
2aV2a p, W za

(A3)

We have performed a theoretical. calculation of the
binding energies for ground (ls) and first excited (2p )

states of shallow donors in a GaAs-Ga, „Al„As hetero-
structure as a function of the size of the quantum well
and the impurity position in the presence of a magnetic
field, using a variational method and mixing trial wave
functions. The binding energy increases dramatically
with the number of nonlinear variational parameters and
the best results for the binding energy were obtained by
using a mixing trial function with only three nonlinear
variational parameters. We show that our nonlinear-
three-parameters trial mixing function gives binding-
energy results overcoming previous ones when the barrier
edge is near the impurity center.

J(k)= —— J(k —1) .1 8
2 aP,

The energies E2 and E3 are equal to
—2P(z —Z)

E =k +4P —2P(z —Z)

—2p2(z —z, )E3= —2I dze

(A4)

(A5)

and J(k) for any k can be obtained from the recurrent re-
lation,
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