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Relativistic and nonrelativistic empirical tight-binding theory is generalized to incorporate time-
dependent electromagnetic fields in a gauge-invariant manner that does not introduce any extra
adjustable parameters. Based on this approach, it is shown that explicit expressions can be derived
for the effective mass tensor, the effective Landé g factor, the current, the frequency-dependent
transverse dielectric function, and the wave-vector-, and frequency-dependent longitudinal dielectric
function. A finite basis analogue of the optical f-sum rule is derived and shown to impose a condition

on tight-binding parameters.

I. INTRODUCTION

Since the pioneering work of Harrison,! it has become
evident that empirical tight-binding theory is the tool
of choice when one is looking for a physically transpar-
ent, qualitative picture of electronic or structural prop-
erties of solids. Tight-binding theory has even been
useful as a semiquantitative tool in solid-state physics
and chemistry, particularly when applied to very large
quantum mechanical systems involving hundreds or thou-
sands of atoms. The empirical tight-binding method has
been applied to bulk band structures,? * superlattices,?
amorphous solids,® surfaces,” transition metals,® struc-
tural phase transformations,® lattice dynamics,'® molec-
ular dynamics,'''2 and many other situations, to cite
just a few applications.

The crucial results of tight-binding theory as developed
by Harrison! may be summarized as follows. While it is
difficult to characterize the crystal Hamiltonian H and
a basis of orthogonalized atomiclike functions |I) sep-
arately in any simple way, the combination of the two
elements, i.e., the Hamiltonian matriz elements (I|H|I'),
follow very simple chemical trends indeed. The diago-
nal matrix elements are proportional to atomic ioniza-
tion energies and the off-diagonal matrix elements are,
to a good approximation, universal functions of the inter-
atomic distance. While many more refined tight-binding
parametrizations have been developed (e.g., in Refs. 2,
4, and 13), it is this approximate universality that deter-
mines the overall chemical trends and ensures consistency
between different calculated properties, at least within
one scheme of parameters.

As a consequence of these results, most applications
of tight-binding theory rest entirely on a formulation in
terms of Hamiltonian matrix elements. Unfortunately,
this is insufficient to incorporate electromagnetic fields
®(r,t), A(r,t) into the theory or to calculate linear re-
sponse functions, since they require the knowledge of ad-
ditional matrix elements such as momentum or current
matrix elements. Therefore one usually introduces a fair
number of extra parameters to calculate, for example,
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optical properties of solids.'%1%

The purpose of this paper is to show that time-
dependent electromagnetic fields can be incorporated in
empirical tight-binding theory in a way that is manifestly
gauge invariant, guarantees charge conservation, and
does not introduce any extra free parameters. Within
this scheme, response functions can be calculated with-
out additional approximations or assumptions.

In the framework of one-band models and envelope
function approaches, magnetic fields have been incorpo-
rated into tight-binding theory before by invoking the so-
called Peierls substitution.}®71® Static electric fields and
static screening have also been treated in tight-binding
before.!®72! In this paper, we generalize these models to
arbitrary electromagnetic fields and general multiband
tight-binding Hamiltonians and focus on the aspects of
gauge invariance, charge conservation, and sum rules. In
fact, the present work was stimulated by a recent paper of
Lew Yan Voon and Ram-Mohan?? who showed that the
momentum matrix elements can be expressed entirely in
terms of Hamiltonian matrix elements. However, as we
will show in detail below, this relation must be general-
ized to correctly yield observables such as effective masses
or optical dielectric functions.

In Sec. II, we briefly set up our notation. In Sec. III, we
show that k - p theory can be quite generally recast into
a form that solely refers to Hamiltonian matrix elements.
An explicit expression for the effective mass tensor is de-
rived. In Sec. IV, the main section of this paper, a gauge-
invariant modification of the tight-binding Hamiltonian
matrix elements is proposed that takes into account elec-
tromagnetic fields. In Secs. V and VI, these results
are used to derive explicit expressions for the transverse
and longitudinal dielectric function, respectively. In Sec.
A, we also derive a finite-basis analogue of the f-sum
rule that imposes constraints on tight-binding parame-
ters. In Sec. VI, the longitudinal dielectric function is
calculated, including charge self-consistency in the tight-
binding Hamiltonian. Electromagnetic fields can also be
incorporated by means of an envelope function approach,
as shown in Sec. VII. This method is used to derive a
tight-binding expression for the Landé factor. The proofs
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of gauge invariance and charge conservation are given in
the Appendixes.

II. NOTATION

In the empirical tight-binding scheme,! the Hamilto-
nian is represented in terms of an orthogonal basis set of
atomiclike orbitals |a, I) that are characterized by a site
index I and a symmetry-related index o that specifies the
angular-momentum and spin quantum numbers of the
atomic orbitals on that site. In the two-center approx-
imation, the Hamiltonian matrix elements depend only
on the difference vector between sites; additionally, they
are usually restricted to first or second neighbors. Both
approximations greatly reduce the number of free param-
eters. We invoke the two-center approximation through-
out this paper, mainly to be able to use a simple notation.

The on-site and off-site Hamiltonian matrix elements
are denoted by, respectively,

€ar = (o, I|H|a, I) ,
tara(Rr —Ry) = (o, I'|H|a, I) . (1)

Following the work of Chadi,?® we assume relativistic ef-
fects to affect only intra-atomic Hamiltonian matrix ele-
ments, I' = I. In particular, the spin-orbit interaction is
assumed to couple only intra-atomic states with nonzero
angular momentum.2??

In this paper, we focus on periodic crystals and denote
the lattice vectors by Ry = R + R, where L labels
the unit cells and 7 the different atoms within the unit
cell. In order to avoid too many indices in the matrix
elements, it is convenient to lump together the orbital
index a and the intracell site index 7 into a single index
that we also label . Henceforth, a sum over a implies
a sum over all orbital states in the unit cell. The lattice
vectors are written as Ry = R, .

We now form Bloch basis functions that are character-
ized by the crystal momentum k,

o, k) = ﬁ ZL: e Raija, L), (2)
where N is the number of unit cells. In this basis, the
Hamiltonian matrix reads

Hy o(k) = (¢, k|H|a, k)
= Z eik'(R"""_R“) ta',a(Ra’L — Ra)
L
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where R, = R,p. Its dimension equals the number of
orbitals per atom times the number of atoms within the
unit cell. The Bloch eigenfunctions of this Hamiltonian
are denoted by |nk), where n labels the energy bands
and includes the Kramers index if spin is included. We
expand these eigenfunctions in terms of the Bloch basis
functions of Eq. (2), and define the coefficients C(nk) by
the relation

Ink) =) Ca(nk)|a, k) . (4)

III. EFFECTIVE MASS TENSOR

The standard k - p theory is based on the expansion
of H(k) in Eq. (3) around some wave vector k* and uti-
lizes the fact that the kinetic energy is quadratic in wave
vector. In a tight-binding representation, however, the
Hamiltonian matrix in Eq. (3) contains terms to all or-
ders in k. In order to derive an explicit expression for the
effective mass in this situation, we therefore expand Eq.
(3) in powers of (k —k*). This gives, in matrix notation,

H(k) = H(k*) + Vi H(k*) - (k — k*)
+%(k ~k*) - Viee Vi H(K®) - (k — k)

+0[(k —k*)%] . (5)

For the effective mass, we only need H(k) up to the sec-
ond order in (k — k*). We now define an effective mo-
mentum operator p and a kinetic-energy-related operator

Pt (K*) = %C"(nk*)vk-H(k*)C(n’k*)

_m 3 Ca (k) B (Rt < Ra)

Xeik“_(RalL—Ra)ta"a(Ra,L _ Ra)

xCa(n'k*)

mo

= Cl(nk*)Vi-Vi-H(k*)C(n'k*) ,  (6)

T (k*) =

where mg is the free electron mass. With these defini-
tions, the matrix elements of H(k) in the Bloch basis

+eabara (3) |[nk*) can now be written as
J
H, k) = E,(k*)é + h (k*) (k——k"’)-’r-—ﬁ2 (k — k*) - Thn(k*) - (k — k*)
nnt (k) = B (K")0n mo Prn’ 2mo "
52 pnm(k*)pm‘n’ (k*)
_kY .2 - (k — k*). 7
m#n,n'

For a nondegenerate band edge state, this expression yields the effective mass tensor in terms of the operators p and

T,
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This equation has a similar form as the standard expres-
sion in the Kohn-Luttinger basis but there are several
significant differences. First, there is an intraband term
T,, which is unity in the Kohn-Luttinger basis. This
additional term in the tight-binding basis is of the same
order as or even larger than the interband term in Eq. (8)
as will be seen later (Sec. V). This term was not taken
into account in Ref. 22. Second, the operator p is related
to but not equal to the momentum operator. One of the
consequences is that the spin-orbit interaction enters Eq.
(6) only via the eigenfunction coefficients; there is no sep-
arate additive term to the operator p in the tight-binding
basis. Further properties of p and T will be discussed in
Secs. V and VI.

IV. TIGHT-BINDING HAMILTONIAN WITH
ELECTROMAGNETIC FIELDS

First, we discuss the incorporation of vector poten-
tials into the tight-binding approach. Given a general
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En(k*) = En(k*)

[

Hamiltonian H(r,p) that is a function of the position
and momentum operators, minimal coupling to a vector
potential A(r,t) can be achieved by the transformation!®

exp [—%—‘Z /rA(s,t) -ds] H(r,p)

X exp [% / Als,t) -ds] = H (r,p+ SA(,1)) -
(9)

In the spirit of the two-center approximation, this be-
comes in a tight-binding representation

RalLl . Raor
(o, L'|H (r,p+ fA(r,t)) la, L) = exp —’—e/ A(s,t)-ds| (o/, L'|H(r,p)|a, L) exp E/ A(s,t)-ds
c ke ke
ie R, iz
= exp [—-——/ A(s,t) -ds:| (o/,L'|H(r,p)|e, L) . (10)
ﬁc Rar

For nonzero magnetic fields, the contour integral in this
equation is path dependent and we have to select a con-
crete path. For all field strengths of interest in a solid,
we can safely assume the fields to excite only extended
states. Consequently, we require this integral to vanish
for Ry = Rp. Obviously, the simplest path that obeys
this condition is the line connecting the two lattice sites.
Assuming A (r,t) does not vary strongly along this path,
one is led to

/ A(s,t)-ds = (R'— R)- % AR, 8) + AR, 1)] ,
R

(11)

where we have omitted the site indices in R,R’ for
brevity. Even though alternative paths could be cho-
sen as well, Eq. (11) does have the advantage of avoiding
extra adjustable parameters. In any case, Eq. (11) is the
only essential assumption we make. From now on, gauge
invariance dictates all further steps.

In particular, it is consistent with this treatment of the
vector potential to assume that a scalar potential ®(r,t)
modifies only the diagonal matrix elements of the tight-
binding Hamiltonian matrix, and adds a term —e®(R, )

f

to the on-site energies. In Appendix A we show that this
addition, together with Egs. (10) and (11), indeed satis-
fies gauge invariance. This treatment of a scalar poten-
tial implies the assumption that the potential is constant
across an atom. Thus, local field effects on an intra-
atomic scale are neglected.

To summarize, a gauge-invariant modification of the
tight-binding Hamiltonian matrix elements by electro-
magnetic potentials is given by

€a,R = egz,R. —€ Q(Ra t) ’

taroa(R'—R) =t (R’ —R)

X exp [—;—;(R' _R)-[A(R?)

+A(R,t)]] , (12)

where the field-free matrix elements are € and t°. When
spin is included, the intra-atomic diagonal matrix ele-
ments are to be augmented by the spin contribution to
the magnetic moment, ugo - B, where pp is the Bohr
magneton.
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Two limitations of this scheme should be pointed out.
First, Eq. (12) is only valid up to field strengths that do
not significantly affect intra-atomic states. This is be-
cause we use only a small number of (field-independent)
basis states.?? Fortunately, intra-atomic Stark shifts or
intra-atomic diamagnetic shifts barely reach the meV
scale even for the highest attainable electric or mag-
netic fields. Second, the present scheme also neglects
intra-atomic excitations in the limit of isolated atoms.
In fact, the valence states in a solid are extended and
one cannot unambiguously discriminate between intra-
and inter-atomic transitions. Moreover, the dominant
peaks in the optical absorption spectra of nonmetallic
systems can often be interpreted as bonding-antibonding
or anion-to-cation transitions and these are adequately
reproduced by the present model (see Sec. V).!

A. Example: magnetic band structure

As a first example, we consider GaAs in an extremely
high magnetic field along the [001] direction in order to
illustrate a situation where the periodic potential and the
magnetic field are of comparable magnitude.'® Realisti-
cally, such a situation can be reached in antidot lattices.?®
Since the present approach applies to any arrangement
of atoms and we only wish to illustrate the method, we
use the symmetry and tight-binding parameters of bulk
GaAs. We have taken the latter parameters from Ref. 4.
It is advantageous to choose the magnetic field B in such
a way that the flux ® = B-(a; X a3)/2 is a rational mul-
tiple of the lux quantum ®, = hc/e. Here, a;(i = 1,2, 3)
are the bulk primitive lattice vectors with ag chosen along
the field direction. In this way, the Hamiltonian remains
periodic, albeit in a very large supercell.26 We choose a
magnetic flux ratio of

[i3) a’B 1
B, 8B, 160 (13)

where a is the bulk lattice constant. This gives a mag-
netic unit cell with primitive lattice vectors that are 160
times larger than those of bulk GaAs in the two direc-
tions perpendicular to the field. The resulting magnetic
Brillouin zone reduces practically to a line when plotted
on the same scale as the Brillouin zone of the bulk lat-
tice (see Fig. 1) and leads to a highly degenerate folded
band structure along the z direction. Figure 1 shows this
energy band structure for the lowest conduction bands,
the top of the valence band (at B = 0) representing the
zero of energy.

The minimum of the conduction band at the Z point
in the magnetic Brillouin zone originates in the L point
of the underlying bulk zone. Since the effective mass at L
is larger than at I', the magnetic-field-induced shift of the
lowest band state pushes the conduction band minimum
at the I' point above the L minimum. In bulk GaAs,
this transition to an indirect gap would require rather
unrealistic magnetic fields (637 T) but analogous effects
in antidot lattices may be observable.
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FIG. 1. Calculated magnetic conduction band structure of
GaAs in a magnetic field parallel to the [001] direction that
corresponds to 637 T (full lines). This magnetic field would
be required to make GaAs an indirect gap material. For com-
parison, we also show the lowest conduction bands for zero
magnetic field and for k vectors near I' and L in the fcc Bril-
louin zone. The latter is depicted as inset. Also shown in
the inset is the magnetic Brillouin zone that appears as a
thick line along the [001] direction. The cyclotron frequency
is denoted by w..

B. Example: Landau states in quantum disk

As a second rather tutorial but elucidating example,
we consider a finite nonperiodic structure, namely, a disk-
shaped arrangement of atoms on a square lattice [see in-
set of Fig. 2(a)]. We take into account only a single s or-
bital per atom, a diagonal matrix element €® = 4t°, and
the nearest-neighbor hopping —t°. We apply a magnetic
field B perpendicular to the disk, using Eq. (12). For
comparison, we additionally solve the two-dimensional
effective mass Schréodinger equation

0.20
> 0.151
(&)

2 o0.10}
L

0.05¢ (@

o Tight binding
— Eff. mass

0.00 0.01 0.02 0.03

(I)/CDO

FIG. 2. Energy (in units of the nearest-neighbor matrix
element t°) and mean square radius (in units of the lattice
constant a) of the lowest electronic state for atoms arranged
in a two-dimensional disk of radius 20a, as shown in the inset.
The full lines have been calculated with the real space effective
mass equation and the circles are obtained with the present
tight-binding approach.
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1 e \2
H= (p+ ;A) +V(z,y) (14)
in real space, where the potential is taken as V' = 0 inside
the disk and V' = oo at its rim. For low B, nonparabolic-
ity effects are small and thus both approaches should give
the same results provided we choose the same band edge
effective mass. This amounts to taking m* = A2/(2a%t°)
in Eq. (14). In Fig. 2(a), we depict the ground-state level
energy as a function of the flux ratio ®/®¢ (® = a?B),
as calculated within the tight-binding approach and Eq.
(14), respectively. Indeed, both methods agree excel-
lently with one another. The energy is approximately
hw./2 = 4nt°® /P, except for ® — 0 due to the bound-
ary condition at the rim of the disk. For higher ®, the
tight-binding calculation gives slightly lower energies due
to nonparabolicity effects that are neglected in Eq. (14).
In Fig. 2(b), we show the mean square radius of the elec-
tron density in the ground state, which illustrates the
shrinkage of the wave function with increasing B and the
diamagnetic susceptibility. Again, both methods yield
the same results.

It has previously been pointed out that the total elec-
tronic energy in this model does not continuously increase
with increasing flux and that this result is likely to be an
artifact that stems from the severe truncation of the basis
to a single s state with a field-independent coupling ma-

J

. ie
(o, L'|j(Ronpi,t)|a, L) = _Zhﬂpa
ze
1 Ral 1
X { + 2hc( L

Here, t° are the transfer matrix elements for A = 0 and
Qp. is the volume per atom. When the vector potential
is spatially uniform, only the total current operator

(o, L"|I(t)|a, L) = Qpa (o, L"|j(Rarpn,t)|e, L)
all ,Lll
(17)
enters the correlation functions. Note that the total cur-
rent averages over all atoms in the unit cell. In the Bloch
basis, Eq. (2), this total current matrix can be converted

into a more transparent expression. From Eq. (16), one
easily obtains

(o k|T(t)|a, k) = T o (K, t)
= %VkHa,,,,(k)

Vi (Vi o) - 6A(H)]
(18)

Therefore the current matrix element becomes in the ba-
sis of the Hamiltonian eigenfunctions, Eq. (4),

e?

2
mgc

Jnl,n<k,t)=5opn,n<k>+ T (k) - 6A(E), (19)

— RaL) . [5A(RalLl,t) + 5A(RQL,t)]} .
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trix element t°.2¢ This effect becomes appreciable only
for extremely high fields of the order of 10* T (taking
t® =1 eV and m*/m = 0.1).

V. TRANSVERSE DIELECTRIC FUNCTION

The general results of Sec. IV allow us to derive an
explicit expression for the current-current response or,
equivalently, the transverse dielectric function without
any additional approximations or assumptions. In this
section, we limit ourselves to the long-wavelength limit
which is the most useful case.

First, we need to calculate the tight-binding matrix
elements of the current j(r) that is induced by a small
vector potential  A(r,t). The change in the Hamiltonian
is

1 f.

§H = — /J(r) -8A(r,t) d3r . (15)
In the present context, this equation serves as a defini-
tion of the current operator since it provides a relation
between the change dH of the Hamiltonian by a field
0A(r,t), which can be calculated from Eq. (12), and the
field itself. Using Eq. (12), one obtains to first order in
d0A(r,t)

tg;’,a(Ra’L’ - RaL)(Ra’L’ - RaL) (6aL,a”L“ + 6a’L’,a“L”)

(16)

f
where the operators p and T have been defined in Eq.

(6)-

Standard linear response theory gives the thermody-
namic average of the total current in terms of the current-
current response function,

@O = @O+ 5 [ (O3, ) ar.

(20)

Here, the tilde denotes the interaction picture and ( ), im-
plies the average to be taken with the equilibrium density
matrix. The frequency-dependent transverse conductiv-
ity tensor o is defined by (J;) = Q) 0;;(w)dE;(w),
where Q is the crystal volume, i,;j are Cartesian com-
ponents, and §F is the transverse electric field given by
0A; = icdE; /w in the Coulomb gauge. Inserting the cur-
rent from Eq. (19) into Eq. (20), one obtains the real and
imaginary parts of the transverse dielectric susceptibility
tensor x(w) = to(w)/w, respectively,

—e? iy e?
Rexj(w) = oPmeQ) D (KT (k) + SPmI0
n,k

) = Frn(1)] Do ()P ()
P> Homn®) =]

n,m,k
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e2r

Imy;j(w) = —7—=
7 wzhmgﬂ

[fn (k) -

n,mk
X Drm (k) P (k) 8(w — Winn (K)).

In this equation, P denotes the principal value and
hwmn(k) = Em(k)— E, (k). The Fermi distribution func-
tion in the Bloch eigenstates |nk) is denoted by f, (k). In

deriving these equations, we have used f,(k) = f.(—k)
J

fm (k)]

(22)

Rexs; () = ;Z—Q 5 [-T:m(k

m;én
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and ViH(—k) = —VyH(k). These relations only hold
if the unperturbed Hamiltonian does not contain a finite
electromagnetic field.

The second term on the right hand side of Eq. (21)
is actually regular for w — 0, in spite of its singular
appearance. This can be shown explicitly by an algebraic
rearrangement of terms, as has been recently pointed out
by Sipe and Ghahramani.?” Following the same steps as
in their paper,?” one ends up with

P (K) P (K)
P (K)

(k) = fm (k)] Phn (K) P (k)

Here, Eq. (8) for the effective mass tensor has been used.
This final expression for x or, equivalently, for the trans-
verse dielectric function €(w) = 1 + 4mx(w), is identical
to the standard random phase expression, except that
the momentum operator is replaced by the operator p(k)
from Eq. (6).

In the case of full bands (e.g., a semiconductor at zero
temperature), the first term on the right hand side of
the final expression in Eq. (23)—i.e., the k sum over the
inverse effective mass—is zero, since the latter is pro-
portional to the second derivative of a function that is
periodic in k.27 Consequently, this term vanishes for an
insulator and x only contains interband contributions in
this case.

In this section, we have focused on the frequency-
dependent dielectric response in the long-wavelength
limit. The procedure can staightforwardly be generalized
to finite wave vectors. If we assume a perturbing vec-
tor potential of the form §A(r,t) = exp(iq-r)dA(q,t),
the current operator follows from Eq. (15), leading to
j(—q,t) = —c6H/6A(q,t). In this way one obtains
the orbital contributions to the current, in analogy to
Eq. (18). In addition, the ppo - B(r,t) term in the diag-
onal part of the Hamiltonian leads to a spin contribution
to the current that is relevant for the magnetic perme-
ability and is given by

(o K'|i(q, t)|o, k) = =i 4q,kciBq
x{(a',Rar|o|o, Ra).
f-sum rule

The f-sum rule for the diagonal components of the
transverse dielectric function €(w) reads

272e2?

/ dww Imfii ((IJ) = Nval ) (24)
0

mg 2o

where Q¢ and Ny, are the volume and number of va-
lence electrons per unit cell, respectively, and Ime is the

Q

wﬁm(k)ﬁ[wmn(k) -]

Z )ﬁ(wmn(k) - w)

(23)

[
imaginary part of the dielectric function. This equa-
tion is usually derived by forming matrix elements on
the right and left hand sides of the commutator relation
[zi, H] = ihp;/mo and invoking the orthogonality and
completeness of the Hamiltonian eigenfunctions. This
relation cannot hold in a representation with only a fi-
nite number of basis states. First of all, z; and p; cannot
obey the commutator relation [x,p] = ¢%1 in any finite
basis set. This can be seen by taking the trace of both
sides and noting that Tr(AB) =Tr(BA) holds for any fi-
nite matrices A, B. Second, assume that all energy bands
are completely occupied. Then it follows that Ime = 0,
in contradiction to Eq. (24).

Nevertheless, an analog of Eq. (24) for the present fi-
nite tight-binding basis can be derived. Consider a semi-
conductor at zero temperature where the Fermi factors
of the energy bands are either 1 or zero. With the help
of Egs. (8) and (22), one obtains the identity

2n2e? 1 y
N T (k)
Moo k, nEVB

/00 dw w Ime;;(w) = (25)
0

30

—theory
251 | ___exp. e

20+ /

8 //\\‘ K
2

151

\

10}

2.0 3.0 4.0 5.0 6.0
Energy (eV)

FIG. 3. Calculated imaginary part of the transverse dielec-
tric function as function of energy in bulk GaAs. The exper-
imental results (dashed line) are from Ref. 33.
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where the summation on the right hand side extends over
the valence bands (VB’s) only. While this equation is
automatically obeyed for any set of tight-binding param-
eters, it is clear from the analysis given above that in
general

1 i
“N‘ Z Tnn(k) 7é Nva.l . (26)
k, n€eVB

However, if one requires this relation to become an equal-
ity, it provides an additional condition for good tight-
binding parameters. This may be useful in the calcula-
tion of optical properties. Actually, most published sets
of parameters do not do too well in this respect since
Ime, depends sensitively on the joint density of valence
and conduction bands near the L point and the conduc-
tion bands are usually not very accurately modeled in
tight binding. As an example, we show the dielectric
function of GaAs in Fig. 3, as obtained with the param-
eters of Priester et al.* These authors employed a rela-
tivistic sp3s* nearest-neighbor tight-binding model. In
this case, the left hand side of Eq. (26) gives 9.15 instead
of 8. Still, the dielectric function is seen to be somewhat
smaller than the experimental one for small frequencies
(Fig. 3). Other tight-binding parametrizations, such as
Ref. 2, give similar results.

VI. LONGITUDINAL DIELECTRIC FUNCTION

Simple tight-binding models for the static longitudi-
nal dielectric function have already been developed in
Refs. 19 and 20. In the framework of the bond-orbital ap-
proximation (which neglects the coupling between bond-
ing and antibonding states), an illustrative analytic ex-
pression has been derived in Ref. 19.

In this section, we derive a general expression for the
longitudinal susceptibility and dielectric function in a
crystal. Linear response functions are, in a Wannier
or tight-binding representation, matrices of the form
Xaa! (Rar; Rarrr,t) and give the density response at ol
due to a perturbation at @’L’. It is more convenient, how-
ever, to work in Fourier space and to calculate xqa'(q, t)-
In contrast to the situation in a plane wave representa-
tion, however, these response functions are periodic func-
tions of the wave vector in a complete Wannier basis and
local field effects are reflected by the off-diagonal matrix
elements o # o'.

We consider an infinitesimal external scalar potential
of reduced wave vector q and frequency w,

Y (Rar,t) = 692 (q,w) exp [—i(q - Rar + wt)] .
(27)

This potential alters the electronic occupancies in the
perfect crystal,

QRar) = Y fuxl{aLnk)|®, (28)

nkeVB

by an amount §Q(Ra,r,t) and induces a total self-
consistent potential §® = §®°*t 4 §&"d that enters the
perturbed Hamiltonian according to Eq. (12). This in-
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duced charge density can easily be determined invoking
standard linear response theory for longitudinal pertur-
bations (see, e.g., Ref. 28). Adapting this approach to
the present tight-binding basis, one easily obtains the
first order change of the statistical density operator dp
by the perturbed Hamiltonian,

(n'k|dp(w)Ink + q)

- fn’k - fnk+q
En’k - Enk+q — hw — ih”]

X Y Ca(n'k)Ca(nk + q)3®a(q,w) . (29)

In addition, one can write the induced charge density as
6Q(Rar,t) = Tr (3p |aL)(aL|)
= 6Qa(q’ w) exp [“'Z(q ° RaL + wt)] . (30)

Calculating the trace in this equation with the Bloch
eigenstates and combining Eqs. (29) and (30), one ob-
tains the longitudinal susceptibility matrix x,

6Q(q7“)) = X(qﬂ‘”)‘s‘}(q’w) s

Xa,a’ (q7 “‘))
- i fn’k — fnk+q
N g Enlk — Enk+q - ﬁw - ihT]

xCq(n'k)Cy(nk + q)CL (n'k)Co (nk + q) . (31)

The size of this susceptibility matrix equals the number
of ions per unit cell times the number of orbitals per site.
Actually, the matrix dimension cau be reduced to the
number of ions per unit cell since we assume that the
perturbing potential is independent of the atomic orbital
it acts on.

In order to calculate the longitudinal dielectric func-
tion, one needs to establish a relation between the in-
duced charge density §Q and the induced potential §&"9,
In a continuous real space basis, this relation is simply
provided by the Poisson equation. In a tight-binding
framework, however, one needs to specify how the on-
site Hamiltonian matrix elements depend on charge
transfer.%19:29:30 A quite general ansatz is

€al =WaL — Z (Za’L’ - QQ’L’)Uaa’(RQL - Ra’L’) ’
o' L'

(32)
where Z,re is the core charge of the ion at site Raz
and wg,y are the orbital energies of the neutral atoms.
The coefficients U reflect the on-site Coulomb repulsion
for Ror = Ry and must tend to a Coulomb potential
for long distances in order to ensure charge conservation
(see Appendix B). When the ion is neutral, Qor = Zor.
Equations (31) and (32) imply the matrix relation

§®(q,w) = 2(q,w) + U(q)x(q,w)i®(q,w) , (33)

where U(q) is the Fourier transform of U(R). The di-
electric matrix is then given by

e(q,w) =1 - U(q)x(q,w). (34)
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FIG. 4. Calculated longitudinal macroscopic dielectric
function €(q,0) of Si along different directions of the wave
vector in the Brillouin zone.

Finally, we may define a scalar macroscopic dielectric
function by averaging over all N, orbital states in the
unit cell,

Ny
1
emacro(q7 0) = Fb Z €aa’ (q7 0) . (35)

a,a’'=1

We illustrate these results for bulk Si. We have used a
strictly Coulombic interatomic potential U in Eq. (32),

expliq - (Rar — R
Usar(@) =€ ' [IR (L T y I (36)
L "t (o3

where the prime indicates that the sum excludes the
intra-atomic term. The intra-atomic Coulomb repul-
sion has been taken as U,, = 7.64 eV.? The resulting
dielectric function is shown in Fig. 4 where the tight-
binding parameters of Ref. 2 have been used. The long-
wavelength limit of €(q) gives €x, = 7.2 which somewhat
underestimates the experimental value of 12.0 but, since
no parameters have been adjusted, the present results are
in the expected range of accuracy.

Finally, we turn to the important question of consis-
tency between the longitudinal and transverse dielectric
function in the present tight-binding framework. As a
consequence of charge conservation, these two functions
should become equal in the limit of long wavelengths.?®
Indeed, we show in Appendix B that the present formal-
ism obeys charge conservation.

VII. LUTTINGER-KOHN APPROXIMATION
AND EFFECTIVE LANDE FACTOR

Within an envelope function approach,'”:32 there is
an alternative way to introduce electromagnetic fields,
namely, to replace the wave vector in the k - p Hamilto-
nian, Eq. (7), by an operator.!” Let us consider a semi-
conductor in a magnetic field B = rotA and apply this
substitution to Eq. (7),

ko k=—iV+ %A(x,t). (37)

This substitution is sometimes also termed Peierls substi-
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tution?* but is not equivalent to Eq. (12) since it relies on
a one-band effective mass description that breaks down
when the applied fields introduce significant mixing be-
tween different valleys or bands.

As an illustration, we calculate the effective Landé g
factor for a band edge state.31:32 To this end, we first add
the Pauli term pupgoo - B/2 to the Hamiltonian Eq. (7),
where go = 2 is the gyromagnetic factor of electrons, and
write the product of the wave vectors—which are now
operators—in this equation as

kik; % ([];iyl;j]+ + [’;i”:’j]—)

’;i’:ﬁj + ]::JIEZ - ;—i Z fiijm , (38)
m

I

where €;;,, is the Levi-Civita index or unit antisymmetric
tensor. For simplicity, we consider only k* = 0 and insert
the symmetric and antisymmetric combinations of k into
the Hamiltonian matrix,

A . . 5o
Hpni (k) = Enbpn + Y 5 (kik; + kjk:)

%5

: J
PrmPmn:
Aeijm) Bm . (39)
m

The last two terms on the right hand side of this equa-
tion are the spin and orbital contributions to the effective
magnetic moment, respectively, and define the effective
Landé factor. In the case of an sp®s* nearest-neighbor
tight-binding model and a diamond structure, this ex-
pression can be evaluated analytically and gives

_ + mo a2t2 1 _ 1
9= 9 122 P Er,. — Er,, Er,. — Er,, )

(40)

Here a is the lattice constant and t,,, is the transfer
matrix element between neighboring s and p states. Note
that the interband contribution in this equation is always
negative, since the I'g, state forms the top of the valence
band whereas I'z, is the split-off band.

Narrow-gap semiconductors are known to have very
large and negative effective Landé factors associated with
the lowest conduction band. We have numerically com-
puted the effective g factor from Eq. (39) for InSb, again
employing the tight-binding model of Ref. 4. We obtain
g = —26.6, which is too small compared to the experi-
mental value, g = —50, but does reflect the correct sign
and order of magnitude.

In summary, we have extended the empirical tight-
binding method to incorporate electromagnetic fields in a
gauge-invariant manner. Based on this method, we have
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derived explicit expressions for the effective mass tensor,
the effective Landé g factor, and linear response functions
for transverse and longitudinal fields.
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APPENDIX A: GAUGE INVARIANCE

In a shorthand notation, the fields & and A modify the
zero-field tight-binding parameters €? and t‘}y 1 according
to Eq. (12),

6]:6?—6431,

. J
trr =ty exp l:—E / Af(s) - ds} . (A1)
] hc I

(J|ihd: ¥') = ihexp [—%

ie

M. GRAF AND P. VOGL s1

Under the gauge transformation of the potentials and the
wave function,

A—>A'=A+VA,
@—)@':@—E&A,
c
l¥) = > Cr|I)
I; .
no_ _e
- ¢y = ;CI exp [ ﬁcAI(t)] |I) (A2)

the tight-binding matrix elements transform into

e e
g =€) — e =€ —e®; + z&,AI =er+ —-8A1,
c

-
ie
ty; =t exp i / A'(s)-ds
L C I

L .
=t5 rexp ——h—i/l A(s) - ds| exp [—E(AJ—AI)]
i ie
ke

Therefore, the Schrédinger equation in the gauge trans-
formed system reads

= tj 1 €Xp (A3)

(Ay— A,)] .

AJ] [_h—’:(atAJ) + Jt] Cy

_ 1 e '
= exp |~ oA [E(stAJ)cJ +ih 5tcj] ,
(JIH' 4') =Y t,Cr + € 5Ch
I£J
= exp —"%AJ ZtJ)ICI+EJCJ+E(6tAJ) Cy (A4)
c
L 4 12
[

This shows the gauge invariance of the field-dependent 7(q) = Zeiq'R““la,L) {a, L] . (B2)

tight-binding Hamiltonian. We note that this invariance
is independent of the approximation that is used to evalu-
ate the contour integral, Eq. (11). For example, (R’ —R)
in Eq. (11) may be multiplied by a universal constant.

APPENDIX B: CHARGE CONSERVATION

We show that the longitudinal macroscopic dielectric
function, as defined in Eq. (35), tends towards the trans-
verse dielectric function as defined in Sec. V in the limit
q — 0. More precisely, we show that

Ei'i(w) = éii}}) 6macro(q7 UJ) ) (Bl)
where the limit is taken with q parallel to the direction
¢ of a principal axis. For simplicity, we only consider the
case of an insulator at zero temperature. The Fourier
transform of the electron density operator is

(nk|[H,7(q)]|n'k + q)

— Z C:;, (’nk)eik'(R"L_R"'L')ta'a(Ra'L' _ RaL) [eziq~RaL _ eiq»(RarLl-f—RaL)] Ca(n'k + q) .

o'L!\aL

alL

We calculate the commutator of this operator with the
Hamiltonian and obtain

[H @)= > |l )taa(Rar —Rar)
a'L!' aL

x (eI Rar _ giaRair) (g [ | (B3)

The Bloch function matrix element of this commutator
can be written as

(nk|[H,7(q)]In'k + )

= (BEnk — Enik+q) Z C(nk)Co(n'k + q) . (B4)

a

Alternatively, by using directly Eq. (B3) in the matrix
element, one finds

(B5)
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We expand this expression in powers of q and obtain to
first order

(k| [H, A(@)]ln'k + @) = == Paw () + O?) - (BS)

Using the expression Eq. (19) for the current, one finally
obtains in the Schrédinger picture

h
lim (iﬁat(nkm(q)’n'k +q)— —q-Jnn (k)) =0, (B7)
q—0 [

which proves the charge conservation. Following Ref. 28,
one can now easily establish Eq. (B1) by using this result
and the long-wavelength limit of the intersite Coulomb
interaction U(q) in Eq. (32),

4me?
q2Q

Uaa' (q) = + O(qo) . (BS)
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