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The structural properties of binary silicon-germanium alloys are investigated by means of large-scale
constant-pressure Monte Carlo simulations of the Stillinger-Weber model. At low temperatures, the
binary-mixture phase separates into Si-rich and Ge-rich phases. The two-phase coexistence region is ter-
minated by a critical point that belongs to the mean-field universality class. We also studied the
structural properties of pure Si and Ge as well as the binary mixture. In particular, we found that the
linear thermal expansions for both Si and Ge are in agreement with experiments, and that Vegard s law
is valid at temperatures above the critical point. Finally, we compare the bond-length and bond-angle
distributions with earlier analytical and numerical calculations based on the Kirkwood potential.

I. INTRODUCTION

Semiconductor alloys, which are solid solutions of two
or more semiconducting elements, have important tech-
nological applications, especially in the manufacture of
electronic and electro-optical devices. ' For this reason,
Si, Ge alloys have received extensive attention, as
reQected by the recent experimental, theoretical, and nu-
merical studies. Among the many unsolved questions
concerning these alloys is their bulk phase behavior. Al-
though it is well known that Si

&
Ge alloys are mixed

at room and higher temperatures, the presence and the
locus of an unmixing phase transition at low tempera-
tures remains an open question due to the lack of experi-
mental evidence.

In contrast to some metallic alloys, Si, Ge cannot
be adequately modeled by simple lattice-gas Ising-like
models, due to the important contribution of bond elasti-
city to the total energy. As a result, more refined models
which take this effect into account must be considered.
Empirical models have been proposed, some of which are
based on small perturbations of the site positions around
their ground-state values in the diamond lattice, such as
the Kirkwood model and the Keating model. Other
models are constructed in such a way that they predict
the diamond-lattice structure at low temperatures and a
melted liquid structure at high temperatures. These cor-
respond, for instance, to the Stillinger-Weber potential,
the Biswas-Hamman potential, and the Tersoff poten-
tial. Cowley has made a comparative study of the pre-
dicted lattice dynamics of the last three models with ex-
perimental data, and showed that the Stillinger-Weber
(SW) model, which ironically is the simplest one, gives
the best overall comparison.

Traditionally, studies of surface and bulk properties of
semiconductors are performed via molecular-dynamics

methods. ' ' However, these methods use very small
time scales and are, in general, performed in the micro-
canonical or the canonical ensemble where the composi-
tions of the two elements are fixed throughout the whole
simulation. Consequently the Monte Carlo (MC) method
remains the most powerful tool for studying SiI Ge
phase behavior. In this paper, we present our recent re-
sults for a detailed constant pressure MC simulation of
the SW potential in the semi-grand-canonical' ensemble
combined with a finite-size scaling analysis.

There are already studies of Si& „Ge phase behavior
in the literature. Kelires and Tersoff" performed a
constant-pressure MC simulation of the Tersoff potential
in the semi-grand-canonical ensemble. They showed that
Si and Ge phase separate below a critical temperature lo-
cated around 170 K. Their simulation was, however, per-
formed on only small system sizes, and no finite-size
analysis was made. Later, Weakliem and Carter' per-
formed a constant pressure MC simulation of the SW po-
tential in the canonical ensemble where the concentra-
tions of Si and Ge were conserved. Due to long correla-
tion times in these simulations, their results on the misci-
bility gap were not conclusive. More recently, Dunweg
and Landau' have studied the Keating potential for
Si& Ge alloys by means of an extensive constant pres-
sure, semi-grand-canonical, MC simulation. Their calcu-
lations were performed in conjunction with a detailed
finite-size scaling analysis allowing them to accurately
study the nature of the phase transition. Their most im-
portant result was that the phase transition of Si, Ge„
alloys has a mean-field-like behavior, unlike most binary
alloys. Among their other results was that the linear
thermal expansion coefficient is negative at all tempera-
tures, in contradiction to experimental facts. ' The irn-
plication of this result is that the Keating model is not re-
liable for studying the structural properties of Si or its al-
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loys at finite temperature. Hence, a question must be ad-
dressed: How much does the choice of the model afFect
the locus and the nature of the phase transition? In order
to answer this question, we have considered an obsten-
sively reliable model for studying the phase behavior of
Si, Ge alloys.

This paper is organized as follows: In Sec. II we
present the model, discuss the choice of the parameters,
and describe the numerical technique used in our simula-
tions. In Sec. III we present our results, in particular, the
phase diagram is presented and the nature of the unmix-
ing critical point is discussed. We also present and dis-
cuss, in this section, our results on the structural proper-
ties of the binary mixture, including the linear thermal
expansion, the dependence of the average bond lengths
on the composition of the alloy, and the bond-length and
bond-angle distributions. Comparison with previous
analytical and numerical calculations will also be con-
sidered. Finally, we summarize and conclude in Sec. IV.

II. THE MODEL

In our simulation, we assume that Si and Ge atoms are
always located on the nodes of a diamond network with

fluctuating bonds and interacting via the Stillinger-Weber
potential. This assumption is somewhat midway be-
tween a totally continuum-space one and a lattice-gas-like
one, although the SW interaction, by itself, is able to pro-
duce the diamond network without the prior assumption.
Our assumption, however, neglects the presence of vacan-
cies or interstitials in the lattice. Since the concentration
of these impurities is vanishingly small in a real system,
their total number would be virtually zero within the lat-
tice sizes considered by our simulation, thereby justifying
our approximation. This method is very efficient compu-
tionally because the nearest-neighbor list is known at the
very beginning of the simulation and is used throughout
the rest of the computation.

Stillinger and Weber originally proposed their model
with a certain parametrization for Si only. Later, Ding
and Andersen were able to reparametrize the SW model
for Ge and fit their theoretical phonon-dispersion rela-
tionship to the experimental one. Fortunately, almost all
parameters were found to be identical to those of Si.

Each atom in the system has four degrees of freedom:
The first is a discrete variable (or pseudospin) S; given by
the nature of the atom. We choose the notation so that
S,. =+1 for a Si atom, and S, = —1 for a Ge atom. The
three other degrees of freedom correspond to the three
coordinates of the atom r, . The Hamiltonian of the
binary mixture can be written as a sum of three terms: A
two-body interaction term &2, a three-body interaction
term &3, and a chemical potential term &&.

The two-body part of the Hamiltonian can be written
as follows:

&2= g e(S;,S, )F~[r,j lo (S;,SJ )],
&i j)

where the sum is performed over all nearest-neighbor
bonds (i,j ). e(S;,S ) corresponds to the covalent bind-
ing energies: For Si, e(+ 1, + 1)=2. 17 eV and for Ge

e( —1, —1)= 1.93 eV. For calculating the binding energy
between Si and Ge, we adopt the argument of Kelires and
Terso6'. " Using the Terso6' potential, they derived an
unmixing enthalpy AH =7.3 meV. Using mean-field con-
siderations, one finds a critical temperature given by
ks T, = —[2e(+ I, —1)—e(+1,+1)—e( —1, —1)]=26H
from which one obtains e(+1,—1)=2.0427 eV. For the
ideal bond length of Si we have taken
Ro(+1, +1)=2.34779 A, and for Ge we have taken
Ro( —1, —1)=2.44598 A. Assuming that Vegard's law
is valid, a mixed system with 50% composition should
have a lattice constant which is the arithmetic mean
of that of pure Si and pure Cxe. Hence we have
taken Ro(+1, —1)=[Ra(+1,+1)+Ra( —1, —1)]/2=
2.396 885 A.

The spatial dependence of the two-body interaction is
introduced through the function F, which has the follow-
ing explicit form:

e '" ' for y &b
B 1

yP yV

0 for y ~b. (2)

It is interesting to note that F2(y) is a function of the re-
scaled bond length y only, and therefore is the same for
both Si and Ge. Another interesting feature of F2(y) is
that, at y =b, it vanishes without any discontinuities in
its derivatives. The parameters of the function Fz, which
are identical for the three types of bonds, are given by

A =7.049 556277, B=0.602 224 5584, p =4,
q=0, 5=1, and b=1.80 . (3)

XF3[r; lo(S;,$.), rjk lo(SJ,Sk )]

X (cos8,"„+—,
'

) (4)

where the sum is performed over all triplets (i,j,k ) with
the vertex at site j (i and k are nearest neighbors of j).
The angle between r; and r k is given by its cosine,

r;"r -k

cosOiJk =
iJ Jk

Here again, the function F3 depends only on the rescaled
bond lengths and is given by

r l'[~ I
—b)+ r /(~, —b)

e ' ' for y, &b and yz(b
F3 yi yz = '

0 otherwise,

where the constant y=1.20. The function X is written
as follows:

At y =2i~6, i e., when r, =Ro(S;",S.)=2 o(S;,SJ ), the
function Fz exhibits a minimum equal to —l.

Due to its small coordination number, the diamond
structure must be stabilized by an additional three-body
interaction, for which we write, generalizing the original
SW form,

[e(S;,S )e(S,S„)) ' X(S, ,SJ,S„)
( ', J,k)
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z(s, ,s, ,s„)= [x(s, g.(s, )'x(s„)]'" (7)

with A,(+ 1)=21.0 (Ref. 4) and A, ( —1)=31.0. Note that
in Eqs. (4) and (7) we have used the geometric mean of
the interaction parameters of the pure substances, as has
been proposed, e.g. , in the paper by Weakliem and Car-

12

Finally the chemical potential term is written as

Ps gris', +i Po gris, —i (8)

where ps; and pz, are the chemical potentials of Si and
Ge, respectively. Since the total number of atoms N is
constant, the chemical potential term can then be rewrit-
ten, within an additive constant, as

&,= ——(P,s;
—Po, )QS; .

1

The total Hamiltonian of the system is therefore

&=&,+&~+&3 . (10)

In our simulation, the pressure remains constant at
P =0, meaning that the linear sizes of the system in the
three directions are allowed to fluctuate independently.
This introduces an effective Hamiltonian used in the
simulation'
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FIG. 1. The two-body parts for pure Si of the Stillinger-
Weber potential (solid line), the Keating potential (dotted line),
and the Kirkwood model (dashed line) as a function of distance.
The minima of the Keating potential and the Kirkwood poten-
tial have been adjusted to that of the Stillinger-Weber potential,
i.e., at —2. 17 eV.

&,s.=A Nks T ln(A A—A, ),
where A is the linear size of the system along the direc-
tion a.

In Fig. 1, the two-body part of the SW potential is plot-
ted as a function of distance for pure Si. For comparison,
we have also plotted on the same graph the two-body
part of the Keating model' and the Kirkwood model. '

A clear difference is noticed between the SW potential
and the Keating potential: in contrast to the SW poten-

tial, the repulsive part of the Keating potential is weaker
than its attractive part. As we will see later, this
difference is manifested very strongly in the behavior of
the linear thermal expansion.

Our MC simulation is performed in the following
manner (for more details see Ref. 13): An atom of type S;
at position r, is chosen and we then attempt to produce a
status S (which might be equal to S; ) at a slightly altered
position r,'. The acceptance or rejection of this attempt is
done via the usual Metropolis rejection method using the
Hamiltonian in Eq. (10). After each complete sweep
over the system, we randomly choose linear sizes for the
system A', A', and A,' slightly different from the present
ones. While the types of the atoms are kept constant,
their positions are rescaled by the relative change in the
linear system size: x' =x A„' /A„y' =y A' /A, and
z'=zA,'/A, ; the acceptance or rejection of this attempt
is again performed with the Metropolis rejection method
using the effective Hamiltonian in Eq. (11). In order to
optimize our code, we have divided the network into
eight interpenetrating sublattices, so that there are no
two-body or three-body interactions between any two
atoms on the same sublattice. This allows us to use the
checkerboard method, and hence the code is run in a ful-
ly vectorized form. Data were obtained using an IBM
ES/9000 vector processor. All data presented in Sec. III
were calculated very accurately with error bars smaller or
comparable to the corresponding symbol size.

III. RESULTS

A. Phase diagram

The equilibrium concentrations of Si and Ge are ob-
tained by sweeping through the chemical potential
difference b, = (ps; —po, )/2, at fixed temperature; we
start deep in the pure Si phase and decrease 6 down to
the pure Ge phase before sweeping back up to the pure Si
phase. Due to the first-order nature of the phase transi-
tion between the Si-rich phase and the Ge-rich phase,
hysteresis is observed in x (concentration of Ge) as a
function of chemical potential difference. Since on both
metastable branches x does not vary very strongly with
6, we found it sufficient, for our purposes in the present
paper, to determine the two coexisting values of x by
direct inspection of the hysteresis loops. The resulting
phase diagram in concentration-temperature space is
shown in Fig. 2, plotted together with the phase diagrams
predicted from numerical simulation of the Tersoff mod-
el" and the Keating model. ' The accuracy obtained by
this simple method is quite satisfactory, and hence we did
not try to improve on it. A method which permits the
determination of the phase boundaries with even higher
accuracy, using thermodynamic integration, has been de-
scribed in the paper by Diinweg and Landau. ' Howev-
er, this method should have needed an increased numeri-
cal effort, because it requires the calculation of the
difference in the ground-state entropies due to the con-
tinuous degrees of freedom. '

From Fig. 2, the transition point from the two-phase
coexistence region to the disordered phase is estimated
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simulation is effectively run with infinite shear modulus.
Both properties are retained in the present model, and
hence one can expect similar behavior as for the Keating
model, i.e., mean-field-like behavior, due to the elastic in-
teractions between the atoms which result in an effective
long-range spin-spin interaction.

A thorough numerical investigation of the nature of a
phase transition can be performed only through finite-size
scaling analysis. ' In order to provide conclusive results,
we have adopted the multihistogram reweighting method
whose description can be found in Refs. 13 and 20. We
briefly describe the method and refer the reader to Ref.
13 for more details. We rewrite the Hamiltonian in Eq.
(10) as follows:

0 aa

0.0
I

0.2
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X
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FIG. 2. The phase diagram of a Si& Ge„mixture calculated
from the SW model {solid circles), the Terso6' model (open cir-
cles), and the Keating model (open squares).

N

M=gS; . (13)

where 'M is the "core" internal energy and M is defined as

around k& T; =0.021 eV, i.e., about 240 K. Using finite-
size scaling arguments, a more precise estimation of the
transition point is presented in Sec. III B.

Notice that the asymmetry of the model, Eq. (10), is
reAected in the shape of the phase diagram. This asym-
metry implies that at coexistence there are more Ge
atoms in the Si-rich phase than Si atoms in the Ge-rich
phase.

It is also of interest to note that the presence of the
elastic degrees of freedom has a strong effect on the loca-
tion of the critical point. In fact, in the absence of the
elastic degrees of freedom, the model becomes an Ising
model on the diamond lattice, whose transition point is
known to be (see Ref. 16) k~T, " '" =2.70404J. With
J= —[2e(+1,—1)—e(+1,+1)—e( —1, —1)]/4, ' the
transition would be at k~ T, =0.009 87 eV which is
roughly half that found in our simulation. Although us-
ing a different model, the simulation of the Keating mod-
el' also finds that the elastic effects roughly double the
critical temperature yielding T, about 320 K. We should
also note that our estimate for the critical temperature is
larger than that calculated by Kelires and Tersoff, " and
by the ab initio —based MC simulation of de Gironcoli,
Giannozzi, and Baroni. ' Both find roughly T, = 170 K.

B. Critical behavior

In this subsection we turn to the discussion of the na-
ture of the phase transition from the two-phase coex-
istence to the disordered, mixed phase. The numerical
study using the Keating model found critical behavior be-
longing to the mean-field universality class. ' It has been
argued that although it includes elastic interactions, the
Keating model for Si

& „Ge„ is different from the
compressible Ising model which has been shown to exhib-
it a weak first-order phase transition using a
renormalization-group calculation. ' Their argument is
based on the fact that the Keating Harniltonian is not in-
variant under an exchange between Si and Cxe (and a
simultaneous b,~—b, change), and/or the fact that the

For a given system size, two-dimensional histograms are
then obtained as a function of Vl and M for several values
of temperature and chemical potential difference h. We
then solve the multihistogram equations using the Aitken
acceleration method. '

Four system sizes, %=512, 2744, 4096, and 8000, were
simulated at multiple values of (b„k~ T) near the estimat-
ed phase transition. In order to obtain very good statis-
tics all simulations were run over 10 MCS.

Physical quantities which are interesting for the
analysis of the critical behavior are: M, its corresponding
susceptibility

((M'& —(M &')1

1Vk~ T

and its related fourth-order cumulant defined as

((M —(M &)"&

3t,'(M —(M &) &

(14)

(15)

which has been proven to be extremely sensitive to the
nature of the phase transition. ' ' ' At constant tempera-
ture, the fourth-order cumulant, for an infinite system,
exhibits as a function of 6 a maximum equal to —', at the
first-order transition line. At the critical point, the
fourth-order cumulant is discontinuous, and has a non-
trivial value which depends solely on the universality
class. For temperatures larger than the critical point, the
fourth-order curnulant is identically zero. For finite sys-
tem sizes, however, U~(T) is regular at all temperatures,
and the discontinuity found in the thermodynamic limit
is rounded. However, cumulants for different system
sizes cross at the nontrivial fixed-point value. The max-
imum of the fourth-order cumulant (along the coex-
istence line between Si and Ge) is displayed in Fig. 3, in
the vicinity of the critical point. The cumulants for the
various system sizes cross at U4 =0.28 which is very
close to the mean-field fixed point U4f =0.27052 (Ref.
22) and very different from that of the three-dimensional
Ising model, U4"" =0.47. Our results, therefore, rule
out the possibility that the critical behavior of the system
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We found excellent mean-field-like scaling of the
fourth-order cumulant, as shown in Fig. 4(a). For com-
parison, we also tried Ising-like behavior [Eq. (17)] and
found fairly good scaling as well, although poorer than
for the mean-field case. The nature of the universality
class is usually better detected through the exponent y.
In Fig. 4(b), we have plotted the susceptibility scaling
function g using the mean-field scaling relation Eq. (18)
from which we observe a very nice data collapsing.
When we used Eq. (16) with the exponents of the three-
dimensional Ising model, the scaling was fairly poor.
This also implies that the critical behavior must belong to
the mean-field universality class.

C. Lattice properties
FIG. 3. Fourth-order cumulant U4(T) as a function of tem-

perature plotted for all system sizes.

y(T) =L r y(tL '
)

and the fourth-order cumulant as

(16)

is in the same universality class as the three-dimensional
Ising model. The transition cannot be first order since
for a two-state model, such as ours, U4' =0.5. From
the crossing of the fourth-order cumulants, the transition
temperature is estimated more precisely at about 247 K.

Physical quantities, in the vicinity of a second-order
phase transition, exhibit an extremely interesting finite-
size scaling behavior for temperatures or chemical poten-
tials at which the finite system size is smaller than the
correlation length which diverges at the critical point.
However, the finite-size scaling laws are very di6'erent for
systems for which hyperscaling is valid and for those for
which it is not. The hyperscaling relation reads
dv=2 —a, where d is the dimensionality of the system
and v and a the critical exponents of correlation length
and specific heat, respectively. A mean-field system
(a=O, v= —,') does, in general, not obey this relation (ex-

cept in four spatial dimensions), while it is valid for the
universality class of the three-dimensional Ising model
(a=0. 12,v=0. 63 (Ref. 23)).

For systems for which hyperscaling is valid, the follow-
ing finite-size scaling relations, among others, hold in the
vicinity of the critical point: The susceptibility scales
with the linear system size L as'

0.7 (a)

0.6

0.5—

I— 0.4

0.3

0.2

o N =512
~ N = 2744
+ 8 =4096
+ N =8000

0.1
0.0

I

0.5
i

2.0
I

2.5 3.0

800

600

f3 N =512
~ N = 2744
+ N =4096
+ N = 8000

4 400

Based on simulations of a 512-atom system we have
calculated the lattice constant as a function of tempera-
ture for both pure Si and pure Ge. In Fig. 5, the lattice
constant for pure Si is plotted together with the experi-

Uq( T)= U(tL ) (17)

and

y( T) =L d/&g( rL d&2) (18)

In Eqs. (16) and (17), r is the reduced temperature,
t =~1—T/T, ~, while y is the critical exponent for the
susceptibility (y=1.24 in the universality class of the
three-dimensional Ising model; all critical exponents
refer to the corresponding infinite system size).

Gn the other hand, for a mean-field system the total
number of sites L is the relevant quantity. Hence in this
case the relations read

200

I

-5 -4

FIG. 4. (a) Fourth-order cumulant versus absolute value of
scaled temperature [cf. Eq. (19)]. (b) Scaled susceptibility versus
scaled temperature [cf. Eq. (18)]. In both figures, mean-field
scaling is used.
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our calculations take into account thermal Auctuations
making the distributions wider. In order to show that the
width of our distributions results from thermal Auctua-
tions, we have considered an artificial situation where Si
and Ge are mixed at low temperatures. This was done by
randomly distributing Si and Ge atoms on the diamond
network, and disallowing type fIips, while equilibrating
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FIG. 8. Bond-length distributions calculated at k& T=0.025
eV and 6=0.47951 eV. At these conditions, x =0.505. The
dotted lines correspond to the analytical calculation of
Mousseau and Thorpe (Ref. 15). Their distributions are nor-
rnalized in such a way that their heights are equal to ours.
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shape of the two-body part of the SW potential is Aatter
for distances larger than the minimum position than for
smaller distances.

In Fig. 8, we have also shown the distributions calcu-
lated analytically by Mousseau and Thorpe' (dotted
lines). The large discrepancy between our numerical data
and their theoretical prediction arises from the fact that
they have performed their calculations at T=O, whereas
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FICJ. 9. Bond-length distributions calculated at k& T=0.0005
eV and x =0.4863.

FICx. 10. Bond-angle distributions for the same conditions as
Fig. 8. The vertical dotted lines indicate the location of the ori-
gin.
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the translational degrees of freedom at k~ T =0.0005 eV.
At such a low temperature the distributions, shown in
Fig. 9, are very narrow, and very close to those calculated
in Ref. 15, due to the lack of thermal fluctuations. We
should note, however, that the configurations from which
we have calculated these distributions are not stable since
Si and Ge totally unmix at such a low temperature.

Like the bond lengths, the bond angles also exhibit de-
viations from their ideal value 0;d,»=109.47, 12'. We
have separated the distributions into three groups: An-
gles with two Si ends as shown in Fig. 10(a); those with
one end being a Si and the other being a Ge shown in Fig.
10(b); and finally those with two Ge ends shown in Fig.
10(c). These distributions are calculated for the particu-
lar case where the Si and Ge concentrations are essential-
ly equal. Unlike the bond-length distributions, the bond-
angle distributions are completely symmetric and very
well fitted by a Gaussian. We observe that the average
deviation of the bond-angle value (corresponding to the
maximum of each distribution) is positive when the two
ends of the angle correspond to Si atoms [see Fig. 10(a)],
that the maximum position is at zero when one end is oc-
cupied by a Si and the other one by a Ge [Fig. 10(b)], and
that the maximum position is negative when the two ends
are occupied by Ge atoms [Fig. 10(c)]. A similar
behavior has already been observed through the numeri-
cal simulation of Weidmann and Newman. This trend
of the bond-angle distribution can be understood using
the following arguments: For a Si-Si-Si angle, statistical-
ly speaking, at least one of the two other atoms connected
to the central atom will be a Ge atom, which will push
the central Si atom leading to the broadening of the an-
gle. Using the same argument, we can explain why an-
gles with two Ge atoms at the end are on average smaller
than the ideal angle. For a mixture with x =0.5, an atom
surrounded by two Si atoms and two Ge atoms does not
have any preferred direction for symmetry reasons, im-
plying that the average bond angle for the two following
angles Ge-Si-Si and Ge-Ge-Si must be ideal.

IV. CONCLUSION

The behavior of Si, „Ge alloys has been investigated
in detail by means of Metropolis Monte Carlo simula-
tions of the SW model. The simulations were performed
at constant pressure in the semi-grand-canonical ensem-

ble. The phase diagram of the binary system exhibits a
low-temperature coexistence region followed by a homo-
geneous disordered phase at high temperatures. Due to
the difference in the atomic sizes of Si and Ge, the phase
diagram is slightly asymmetric. The first-order line
separating Si- and Ge-rich phases is terminated by a criti-
cal point estimated quite accurately at 247 K. A detailed
finite-size scaling study of the critical point, combined
with the multihisto gram reweighting method, shows
unambiguously that the critical point exhibits mean-
field-like critical behavior, presumably due to an effective
long-range interaction resulting from the elastic interac-
tions between the atoms.

We have also studied the structural properties of the
constituent elements of the binary alloy. In particular,
we have calculated the lattice constants for pure Si and
pure Ge as a function of temperature, and found very
good agreement with experiments. For Si, experiments
have shown that the linear thermal expansion coefficient
is negative for temperatures below 120 K, whereas in the
SW model it is always positive.

Above the critical point, the average lattice constant is
found to comply with Vegard's law, i.e., the lattice con-
stant of the mixture depends linearly on the Ge composi-
tion. We also found that this law is practically indepen-
dent of temperature due to the very small linear thermal
expansions of both of Si and Ge.

The structural behavior of the mixed alloy is also in-
vestigated through the bond-length and bond-angle dis-
tributions. We found that the bond-length distributions
are very close to Gaussian, in agreement with the calcula-
tions of Mousseau and Thorpe. ' However, unlike their
analytical prediction and a related simulation, the dis-
tributions calculated in the present work are wider due to
the inclusion of thermal Auctuations in the MC simula-
tion. The bond-angle distributions were also found to
have a Gaussian shape, but they are also wider than those
found in previous simulations, due again to thermal Auc-
tuations. To our knowledge, there are no experimental
results to compare with.
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