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We show that a simple model involving two narrow (=500 K) peaks in the density of states (DOS) at
the edges of a narrow (= 1000 K) gap can account for the observed anomalies in the magnetic suscepti-

bility, specific heat, thermal expansion, and elastic response of FeSi. We also show that the resistivity of
FeSi, including the metal-insulator "transition" at about 300 K, is well described by this model. Recent
band-structure calculations, although predicting the correct value for the semiconducting gap, are un-

able to account for the narrow peaks in the DOS needed to explain the thermodynamics. We conclude

that, given the available alternatives, a Kondo insulator description —involving an extreme renormaliza-

tion of the noninteracting bands —is most appropriate for FeSi.

FeSi is a narrow-gap semiconductor that has long at-
tracted the interest of solid-state physicists. ' One of
the most intriguing physical properties of FeSi is its mag-
netic susceptibility y(T), which is small at low tempera-
ture but grows rapidly until it peaks near 500 K; above
500 K the susceptibility diminishes slowly, and can be de-
scribed with a Curie-Weiss law. Not surprisingly, it was
proposed that the sharp drop in y( T) was due to an anti-
ferromagnetic transition, but neutron scattering,
Mossbauer, and NMR (Ref. 4) measurements revealed
no long-range magnetic order in FeSi.

An alternate explanation of y( T) was proposed by Jac-
carino et al. , who considered two (quite similar) models.
In the first model, two narrow bands equidistant from the
chemical potential and separated by a gap of 1520 K
were shown to explain the susceptibility, but only in the
limit of Uanishing bandwidth In the .second model, a
two-level system with ground state S=O, excited state
S=—,', and a gap of 750 K was also shown to be compati-
ble with the data. Because the authors found the zero-
bandwidth requirement to be unphysical, they concluded
that the second model, involving thermally excited local-
ized spins, was probably correct.

Yet another explanation of y( T) was offered by
Takahashi and Moriya (TM), who applied their spin-
Auctuation theory of itinerant electron systems to FeSi.
TM found that they could model y(T) assuming FeSi is a
band semiconductor with a small gap and a bandwidth of
about 1 eV. In their model, the amplitude of local spin-
density Auctuations increases strongly with temperature
until saturation; at this point, the spin Auctuations can be
regarded as a set of interacting local moments. Subse-
quent neutron-scattering measurements by Shirane
et al. were interpreted as supporting the TM theory be-
cause the magnetic (band) electrons were found to be
thermally excited.

Very recently, Mason et al. observed that the spin-
Auctuation spectrum of the Kondo insulator Ce Ni& „Sn
was similar to that of FeSi. Based on this observation,
the authors of Ref. 8 suggested that FeSi might represent
the first example of a Kondo insulator involving the d
electrons of a transition metal rather than the f electrons

of a rare earth or actinide. Subsequent local-density-
approximation band-structure calculations carried out by
Mattheiss and Hamann predicted an indirect semicon-
ducting gap of =0.11 eV in FeSi, and bandwidths of
=0.5 eV; the authors find that ordinary band theory can-
not explain even qualitatively the temperature depen-
dence of the susceptibility, but whether a spin Auctuation
description or a Kondo insulator description is more ap-
propriate they are unable to say. The inadequacy of band
theory was also emphasized by Fu, Krijn, and Doniach, '

who compared the optical conductivity o(co) predicted
by band theory with the cr(co) measured by Schlesinger
et al. ,

"and found large discrepancies.
A distinguishing characteristic of Kondo insulators is

an extreme renormalization of the noninteracting bands
and bandwidths, which leads to a very large peak in the
density of states (DOS) at the gap edges. ' ' Such a
pileup of states will produce anomalies in thermodynamic
and transport properties which should be, to lowest or-
der, describable in terms of a one-electron picture. In
this paper we show that the temperature dependence of
the magnetic susceptibility, specific heat, thermal expan-
sion, elastic response, and resistivity can all be explained
with a model DOS consisting of two narrow (=500 K)
bands placed symmetrically about the chemical potential
and separated by a small ( = 1000 K) semiconducting en-

ergy gap. Although not all of the above quantities can be
fit with exactly the same parameters, the deviations are
sufficiently small as to be explainable by sample-to-
sample variation or by departures from simple one-
electron behavior. We conclude that the existence of
sharp peaks in the DOS at the gap edges —unexplainable
in terms of conventional band theory —is strong evidence
that a Kondo-insulator description of FeSi is appropriate.

The model we use is depicted schematically in the inset
to Fig. 1: two rectangular bands, each of width S' are
separated by an energy gap E . The number of electrons
(and holes) in this model is given by
n = f (Ng/W)f (E)dE where N is the number of unit

cells, g is the number of states per unit cell, f (E) is the
Fermi function f (E)=(exp[(E p) Ik&T]+1) ', »—d

the integration is over the conduction band. Due to the
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FIG. 1. Magnetic susceptibility of FeSi. Open circles: experi-
mental points after Jaccarino et al. (Ref. 5). A low-temperature
Curie tail was subtracted from the data as described in Ref. 5.
Solid line: calculation using the model density of states shown
in the inset with parameters Eg =950 K, 8'=750 K, and

g =4.40 states/cell. Dashed line: calculation using parameters
Eg = 1100K, 8'= 500 K, and g =4.20 states/cell.

particle-hole symmetry built into the model, the chemical
potential p resides in the center of the gap and is temper-
ature independent. Physically, these rectangular bands
represent peaks in the density of states at the gap edges,
and should be thought of as riding upon a broad (semi-
conducting) background DOS.

The Pauli spin susceptibility of an electron system is
given by

FIG. 2. (a) Open circles: anomalous electronic contribution
to the specific heat of FeSi as estimated by Jaccarino et al. (Ref.
5) by taking the difference [C~(FeSil —y„,s;T]—[C~(CoSi)—yc,s;T], where y is the Sommerfeld coefficient. As discussed
in Ref. 5, the lattice contribution to the specific heat of CoSi
should be similar to that of FeSi as these compounds are iso-
structural. Solid line: calculation using the model DOS de-
scribed in the text with parameters Eg =950 K, 8'= 300 K, and

g =0.80 states/cell. Dashed line: calculation using Eg =750 K,
8'=500 K, and g =0.84 states/cell. (b) Open circles: estimate
of the anomalous electronic contribution to the volume thermal
expansion coefficient obtained by taking the difference
P(FeSi) —P(CoSi) of data from Ref. 20. Dots:
P(FeSi) —P(CoSi) obtained from capacitance dilatometry. The
solid and dashed lines are calculations using the same parame-
ters as used for the specific heat. The anomalous electronic con-
tributions to the specific heat and thermal-expansion coefficient
are related by a simple scale factor (see text).

g(T)= —2@~fN(E) ' ' dE,

where N(E) is the density of states (of one spin) and p~ is
the Bohr magneton. In Fig. 1 we show the magnetic-
susceptibility data from Jaccarino et al. and a calcula-
tion using Eq. (I) and the two sets of parameters indicat-
ed in the figure. Contrary to the claim in Ref. 5, in which
it is stated that a satisfactory fit is obtained only in the
limit W «Eg /2, we find that the susceptibility data can
be modeled using a fairly wide range of parameters: 950
K &E~ &1500 K, and 0 K & 8'&750 K. In order to
achieve acceptable fits, 8' must be made larger as E is
reduced; the quantity (Eg+ W) must be kept roughly
constant.

In Fig. 2(a), we plot the anomalous electronic contribu-
tion to the heat capacity of FeSi as estimated by Jaccari-
no et al. from the data of Ref. 16. Details of the esti-
mate can be found in the figure caption. Also plotted in
Fig. 2(a) is the contribution to the heat capacity arising
from transitions across a narrow gap as calculated from
our model DOS. This is obtained using C, =(BU/dT)„

with U given by

U= f (Ng/W)Ef (E)dE
valence band

+ f (Ng/W)Ef (E)dE .
conduction band

(2)

Again, the calculations were performed using two sets of
parameters in order to give an indication of the accept-
able range of these numbers.

If we compare the calculations of the susceptibility and
the specific heat, we can find no single set of parameters
that adequately models both. Specifically, if we consider
the calculations in which E~=950 K, we see that the
bandwidths needed to fit the data ( Wz =750 K and
Wzc =300 K) differ by more than a factor of 2. We at-

tribute this difFerence to the extreme simplicity of our
model, and to the fact that the susceptibility involves a
derivative of the Fermi function, making it more sensitive
to the detailed structure of the DOS. Also, it is likely
that exchange and correlation efFects are present, and
these will affect the susceptibility differently than the
specific heat.

It is interesting to compare the peak density of states
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(of both spins) obtained from the calculations in which
E =950 K: N(E)r=68 statesleV cell, and N(E)zc =31
states/eVcell. The difference is an indication that the
susceptibility is enhanced with respect to that predicted
by Eq. (1), and represents a breakdown of the one-
electron approximation. As pointed out by Pines, ' ex-
change and other effects that discriminate between the
two electronic spin systems can lead to a larger value of
the 13OS inferred from measurements of the susceptibility
than from the specific heat. Such Stoner-like enhance-
ments of the susceptibility are common in metals, ' and
in transition metals like palladium, and transition-metal
intermetallics like YCo2, these enhancements can grow
very large.

The relationship between the anomalous electronic
contributions to the specific heat and the thermal-
expansion coefficient is given by the Griineisen relation'

and c,z is a symmetry strain. The effect of deformation-
potential coupling on the elastic response can be calculat-
ed by first introducing the perturbed Bloch states into the
expression for the free energy, and then taking the second
derivative with respect to strain:

d F 1 ~Ekcr= z =cr
k TX &

fk(l fi—)
~sr B k El

Ek
X ~

fk(1 —fk)
B~r

Xfk(1 —fk)
k

(4)

Here cr is the background elastic constant and fk is the
Fermi distribution function. For our simple two-band
model, Eq. (4) simplifies to

Q, (EC~ )y,
b,p=

V
(3) c(T)=c (T) (d, —d—, )

where hP is the electronic contribution to the volume
thermal-expansion coefficient, 0, is the electronic
Griineisen parameter, hC is the electronic contribution
to the specific heat at constant pressure, g, is the back-
ground adiabatic compressibility, and V is the molar
volume. If the anomalous contribution to the specific
heat can be characterized by a single energy scale (such
as a semiconducting energy gap), the electronic
Gruneisen parameter gives the volume dependence of this
energy and is expected to be roughly independent of tern-
perature.

In Fig. 2(b), we plot the difference in volume expansion
coefficients between FeSi and CoSi, which is an estimate
of the anomalous electronic contribution to the thermal
expansion of FeSi. The experimental data that extend to
high temperature are from Ref. 20, and were obtained us-

ing a quartz dilatometer. The other experimental points
were obtained by us using a capacitance dilatometer. '

Also plotted in Fig. 2(b) are calculations using Eq. (3) and
the same two sets of parameters used to fit the specific
heat. The overall agreement is very good, indicating that
a Griineisen analysis is justified.

To calculate the electronic Gruneisen parameter, we
use the value of the adiabatic compressibility obtained
from low-temperature elastic modulus measurements on
FeSi, y, =0.0054 GPa '. We obtain 0, =7 using Eq. (3)
and either set of model parameters given in Fig. 2. It is
significant that the magnitude of 0, for FeSi is compara-
ble to the magnitude of 0, 's found for mixed-valent met-
als such as CeSn3 (Ref. 23) (0, =10), and Kondo insula-
tors such as Sm86 (Ref. 24) (0,= —11). Such large 0, 's

are common in highly correlated systems, and indicate a
strong volume dependence to the energy scale driving the
thermodynamics.

The Helmholtz free energy of an electron system is
given by F=Np k~ Takin(1+exp[ —E(Ek —p)l-
k~ T]). Here N is the total number of particles and Ek is
a one-particle energy. The coupling between Bloch elec-
trons and elastic waves can be written Ek =Ek+dkr cr,
where dkj- is the deformation-potential coupling constant

where d„and d, are the deformation-potential coupling
constants for the valence and conduction bands, and I,
and I, are defined by I= J f(1 f)dE, wit—h the range of
integration extending over the valence (I, ) or conduction
(I, ) band. In deriving Eq. (5), we have used a rigid-band
approximation —i.e., we have assumed that the deforma-
tion potential coupling constants are independent of k
within each band. It is important to note, however, that
if d, =d, then deformation coupling effects disappear.

In Fig. 3 we plot (open circles) the measured values of
the elastic modulus c» vs temperature for FeSi. These
values were obtained dynamically using resonant ul-
trasound spectroscopy, a technique that is reviewed at
length in Ref. 26. Also plotted in Fig. 3 (dashed line) is
an estimate of the background c». This estimate was ob-
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FIG. 3. Elastic modulus c» vs temperature for FeSi. Open

circles: experimental points. Dashed line: background c» es-
timated from c» (CoSi) as described in the text. Solid line: cal-
culation using the model DOS described in the text with param-
eters E~ =950 K, and 8'=450 K.
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tained from the c&& vs T data of Zinoveva, Andreeva, and
Geld on CoSi; the entire curve was displaced vertically
by 2.5 GPa to achieve agreement at low temperature.
Using our model density of states and Eq. (5), we were
able to simulate (solid line) the temperature dependence
of c

&& using the parameters indicated in the figure.
Although we have shown that our model density of

states can successfully explain the thermodynamics of
FeSi, it still may be objected that an equa11y viable ex-
planation may exist based on a picture of localized excita-
tions (see, e.g., Ref. 5). To show that the same electrons
participating in the thermodynamic anomalies also parti-
cipate in the transport, we can calculate the temperature
dependence of the resistivity using our model DOS. Re-
calling that p ~ I ln p, where n is the carrier density and p
is the mobility, we can calculate n (T) from our model
DOS and then assume some reasonable temperature
dependence for the mobility. An obvious starting point is
to use p(T) ~T, as expected from electron-phonon
scattering. The calculation, together with the data, is
shown in Fig. 4. Also shown in Fig. 4 is a calculation
with wider bands and a slightly different temperature
dependence to the mobility. The overall agreement is
very good, especially at high temperatures. At lower
temperatures we do not expect good agreement because
conduction by ionized impurities begins to become im-
portant.

We can understand the overall behavior of the resistivi-
ty as follows. At high temperatures the resistivity is me-
tallic because the carrier density is hardly changing (the
narrow bands are approaching their infinite-temperature
filling). As the temperature is lowered the temperature
dependence of the carrier density begins to dominate, and
the resistivity rises rapidly. At still lower temperatures
ionized impurity conduction becomes important. The
important point to note is that the combination of a small

gap, narrow bands, and a reasonable temperature depen-
dence to the mobility is sufhcient to explain the resistivity
of FeSi.

In summary, we have shown that a simple semiconduc-
tor model with two large peaks in the density of states at
the gap edges can explain the thermodynamics and resis-
tivity of FeSi. Ordinary band theory predicts band-
widths that are roughly a factor of 10 too wide to explain
the thermodynamics and resistivity. A Kondo insulator
approach, however, seems to be compatible with the
data. In Kondo insulator models' ' a fiat band of f
electrons (in FeSi these would be 3d electrons) hybridizes
with a broad conduction band, with each unit cell con-
taining an even number of electrons; the ground state is a
narrow-gap semiconductor with extremely sharp peaks in
the DOS at the gap edges. Although no comprehensive
theory of a Kondo insulator exists at present, numerical
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figure.

calculations' ' indicate that the noninteracting bands
are strongly renormalized, although the value of the gap
remains roughly the same. We conclude that, among the
existing alternatives, a Kondo insulator description is
most consistent with the thermodynamics and resistivity
of FeSi.

Note added in proof. Two recent papers that are direct-
ly relevant to the issues discussed here should also be
mentioned; in Ref. 29, Sales and co-workers analyze the
magnetic susceptibility and resistivity of FeSi using the
same model DOS considered here, and arrive at quite
similar conclusions. In Ref. 30, Park et al. report high-
resolution angle-resolved photoemission experiments on
FeSi that reveal a spectacularly sharp peak in the density
of states at the gap edge. The observation of this peak
strongly supports the phenomenological picture present-
ed here.
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